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1 Introduction

The geneNetBP package implements methods to predict system-wide changes in beliefs af-
ter absorbing evidence in probabilistic graphical models. The package includes functions to
fit Conditional Gaussian Bayesian Network (CG-BN) to specifically genotype-phenotype
or Quantitative Trait Loci (QTL) data, absorb evidence in these networks and quantify
and visualize the changes in network beliefs.

The package makes extensive use of RHugin package that provides an R interface for
the Hugin Decision Engine, a commercial software for building and infering Bayesian be-
lief networks. Note that RHugin is currently not available on CRAN and is hosted on
R-Forge. geneNetBP requires Hugin and RHugin to be installed. RHugin can be down-
loaded from http://rhugin.r-forge.r-project.org. The Hugin Decision Engine can
be downloaded from http://www.hugin.com. Detailed installation instructions of the
geneNetBP package and package dependencies are available on the project homepage on
R-Forge, http://genenetbp.r-forge.r-project.org.

Please note that RHugin is required for proper functioning of geneNetBP. The package
RHugin will not automatically load upon loading geneNetBP package. Please use li-

brary(RHugin) or require(RHugin) to load RHugin before using geneNetBP.

2 Datasets

There are 3 datasets provided with this package.

2.1 mouse

The Mus Musculus Kidney eQTL data (mouse) was obtained from a F2 inner-cross be-
tween inbred MRL/MpJ and SM/J strains of mice [1]. The original data consists of 33,872
gene expression traits for 173 males. After linkage analysis and filtering based on location
and significance of QTL, the data consists of 14 genes and their SNP markers correspond-
ing to their QTL. Thus the final dataset has 2 variables mousegeno, data frame of 173
observations (genotype) of 5 variables (SNP markers) and mousepheno, data frame of 173
observations (normalized gene expression) of 14 variables (genes).

Load the dataset and view the first 3 observations:

> data(mouse,package="geneNetBP")

> head(mousegeno,n=3)
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Qchr4 Qchr17 Qchr15 Qchr11 Qchr2

1 2 3 2 2 2

2 1 3 2 <NA> 2

3 3 2 2 2 2

> head(mousepheno,n=3)

Cyp4a31 Slc5a9 Slc6a9 Hmgcl Ptp4a2 Ak2 Zbtb8a

1 -0.8581591 -1.1433976 2.1143808 -0.3683079 1.2006550 0.4149740 0.5443409

2 1.8186456 1.7480246 -1.7480246 -1.5763614 1.8186456 -1.0639390 1.0144987

3 0.2622828 0.3683079 0.6476036 0.1155036 -0.2177984 0.8581591 -1.0389014

Stx12 Trspap1 Mecr Wdtc1 Atpif1 Rbbp4 Tlr12

1 0.02881581 -1.014499 -0.4625623 -0.3224307 -1.1433976 1.364489 -0.5277093

2 -1.23081837 1.483540 2.2736256 -1.0144987 0.7018726 -1.995604 0.8581591

3 0.66547438 -1.685179 -0.7582926 0.9906857 -1.3288179 1.230818 -0.8375227

Note that there are 3 possible genotype states MM (homozygous) denoted by 1, H (het-
erozygous) by 2 and SS (homozygous) by 3. The genotypes are categorical variables and
hence all columns in data frame mousegeno have to be of class factor while the pheno-
types are continuous variables with all columns in data frame mousepheno of class numeric.

2.2 toy

The toy is a simulated eQTL dataset from the network shown below, of 500 observations,
3 genotypes (Q1,Q2,Q3) each having 2 possible states (toygeno) and 6 phenotypes, X1-
X6 (toypheno).
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Figure 1. Toy network example.

2.3 yeast

The yeast dataset is a subset of the widely studied yeast expression dataset compris-
ing of 112 F1 segregants from a cross between BY4716 and RM11-1a strains of Saccha-
romyces Cerevisiae [2, 3]. The original dataset consists of expression values reported as
log2(sample/ BY reference) for 6216 genes. The data can be accessed in Gene Expression
Omnibus (GEO) by accession number (GSE1990). After linkage analysis and filtering
based on location and significance of QTL, a final set of 25 genes and their corresponding
12 SNP markers were identified and included in the yeast dataset.

Thus the final dataset has 2 variables yeastgeno, data frame of 112 observations (geno-
type) of 9 variables (SNP markers) and yeastpheno, data frame of 112 observations
(normalized gene expression) of 16 variables (genes).

Load the dataset and view the first 3 observations:

> data(yeast,package="geneNetBP")

> head(yeastgeno,n=3)

> head(yeastpheno,n=3)

Note that there are 2 possible genotype states denoted by 1 and 2. The genotypes are cat-
egorical variables and hence all columns in data frame yeastgeno have to be of class factor
while the phenotypes are continuous variables with all columns in data frame yeastpheno
of class numeric.
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3 Fit CG-BN to QTL data

3.1 Model

The graphical model is represented as a Directed Acyclic Graph (DAG). The nodes in
the graph represent the model variables, which may be discrete (QTL) or continuous
(phenotypes). The phenotypes (e.g., metabolites, gene-expression, or clinical traits etc)
are assumed to be continuous and follow a normal distribution. The data consists of n
phenotypes (X) and m genotypes at Single Nucleotide Polymorphism (SNP) markers and
is defined as: D = {X1, . . . , Xn, Q1, . . . , Qm}.

Model Assumptions:

1. Discrete variables precede the continuous variables.
2. No relationships between discrete variables (no edges between them).

Local relationships between continuous child nodes and parents are described using Ho-
mogeneous Conditional Gaussian Models (HCGM). The conditional distribution for a
phenotype Y = Xj with discrete parent Qi with genotype states (g) and continuous
parent Xi (i 6= j) is modeled as:

P (Y | Qi = g,Xi = xi) = N
(
α(g) + β(g)Txi, γ(g)

)
, (1)

where the mean is a regression that depends on both discrete and continuous parents,
but the variance depends only on the discrete parents (genotype states). The parameters
of the CG-BN and subsequently the marginal distributions are inferred from the data
under the constraints of the topology and the Markov condition using the PC-algorithm
in RHugin package.

3.2 Mouse Example

We will use the function fit.gnbp to learn the structure of a genotype-phenotype network
from mouse dataset. This function uses the PC algorithm and the EM algorithm imple-
mented in the RHugin package to learn the network structure and and the conditional
probability tables for each node in the network.

3.2.1 fit.gnbp

The simplest example of fitting a CG-BN to mouse QTL data is given below. This exam-
ple uses default parameters.
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> fit.gnbp(mousegeno,mousepheno)

$gp

A Hugin domain: there are 19 nodes and 17 edges

$gp_nodes

node class levels type

[1,] "Cyp4a31" "numeric" "0" "pheno"

[2,] "Slc5a9" "numeric" "0" "pheno"

[3,] "Slc6a9" "numeric" "0" "pheno"

[4,] "Hmgcl" "numeric" "0" "pheno"

[5,] "Ptp4a2" "numeric" "0" "pheno"

[6,] "Ak2" "numeric" "0" "pheno"

[7,] "Zbtb8a" "numeric" "0" "pheno"

[8,] "Stx12" "numeric" "0" "pheno"

[9,] "Trspap1" "numeric" "0" "pheno"

[10,] "Mecr" "numeric" "0" "pheno"

[11,] "Wdtc1" "numeric" "0" "pheno"

[12,] "Atpif1" "numeric" "0" "pheno"

[13,] "Rbbp4" "numeric" "0" "pheno"

[14,] "Tlr12" "numeric" "0" "pheno"

[15,] "Qchr4" "factor" "3" "geno"

[16,] "Qchr17" "factor" "3" "geno"

[17,] "Qchr15" "factor" "3" "geno"

[18,] "Qchr11" "factor" "3" "geno"

[19,] "Qchr2" "factor" "3" "geno"

$gp_flag

[1] "cg"

attr(,"class")

[1] "gpfit"

The learnt network structure is returned as RHugin domain in the first element gp of the
list. An RHugin domain is an external pointer and hence cannot be saved in R workspace.
The RHugin package provides functions read.rhd and write.rhd for loading and saving
Hugin domains. The domains that are not saved will be lost when quitting R. The use
of assignment operator such as <- or = will only return the pointer.Refer to the RHugin
help manual for more information.
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The inferred network structure is very sensitive to the significance level (specified as
alpha) and hence it is recommended to try out different values of the argument alpha.
Note that the argument alpha is for use with RHugin package i.e. the function fit.gnbp

will pass on alpha to RHugin functions.For example,

> fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

$gp

A Hugin domain: there are 19 nodes and 31 edges

$gp_nodes

node class levels type

[1,] "Cyp4a31" "numeric" "0" "pheno"

[2,] "Slc5a9" "numeric" "0" "pheno"

[3,] "Slc6a9" "numeric" "0" "pheno"

[4,] "Hmgcl" "numeric" "0" "pheno"

[5,] "Ptp4a2" "numeric" "0" "pheno"

[6,] "Ak2" "numeric" "0" "pheno"

[7,] "Zbtb8a" "numeric" "0" "pheno"

[8,] "Stx12" "numeric" "0" "pheno"

[9,] "Trspap1" "numeric" "0" "pheno"

[10,] "Mecr" "numeric" "0" "pheno"

[11,] "Wdtc1" "numeric" "0" "pheno"

[12,] "Atpif1" "numeric" "0" "pheno"

[13,] "Rbbp4" "numeric" "0" "pheno"

[14,] "Tlr12" "numeric" "0" "pheno"

[15,] "Qchr4" "factor" "3" "geno"

[16,] "Qchr17" "factor" "3" "geno"

[17,] "Qchr15" "factor" "3" "geno"

[18,] "Qchr11" "factor" "3" "geno"

[19,] "Qchr2" "factor" "3" "geno"

$gp_flag

[1] "cg"

attr(,"class")

[1] "gpfit"

The inferred network structure can be visualized by the generic plot method for RHugin
domain, however it has minimal graphic capabilities. Refer to RHugin manual for more
help on the plot method. We will plot the network using Rgraphviz package that has
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several ways of rendering customized graphs. Good news is that the RHugin package has
a function to coerce the RHugin domain into a graph object of class ”graphNEL”.

> network<-fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

> ##convert the RHugin domain to a graph object

> BNgraph<-as.graph.RHuginDomain(network$gp)

> ##set node font size

> attrs<-list()

> attrs$node$fontsize<-30

> ## plot method for graph objects

> plot(BNgraph,attrs=attrs)
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Figure 2. Conditional Gaussian network learnt from mouse QTL data

Notice that the network now has 31 edges.Also, Qchr17 and Qchr2 are not included in the
network. Any additional domain knowledge can be provided through a list of constraints.

More help about the structure of the constraints list can be found in RHugin documen-
tation.
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4 Absorbing evidence and network comparison

4.1 Evidence Absorption and Belief Propagation

New evidence can be entered by setting phenotypes in the network to a particular value,
Xi = x∗i . The evidence can pertain to a single node or multiple nodes in the network.

Through message passing, the probability distributions are updated (called as beliefs)
after taking into account new evidence. Updated beliefs for discrete nodes (genotypes)
are simply updated estimated frequencies under the new evidence.For continuous nodes
(phenotypes), the updated beliefs are in terms of revised parameters for the Gaussian
distribution. The original and absorbed network are compared node-wise by quantifying
the change in marginals.

A symmetric version of the Kullback-Leibler information, known as Jeffrey’s information
is calculated to compare the marginal belief in the original network X0

i ∼ N(µ0, σ
2
0) to

the absorbed network Xabs
i ∼ N(µabs, σ

2
abs). Jeffrey’s information, which is computed for

all continuous unabsorbed nodes in the network, is given as:

J
(
X0

i , X
abs
i

)
= IKL

(
X0

i , X
abs
i

)
+ IKL

(
Xabs

i , X0
i

)
where

IKL
(
X0

i , X
abs
i

)
=

1

2

{
(µ0 − µabs)

2

σ2
0

+
σ2
0

σ2
abs

− log

(
σ2
0

σ2
abs

)
− 1

}
.

For ease of interpretation, the signed Jeffrey’s information

sign(µ0 − µabs) · J
(
X0

i ,X
abs
i

)
is used to demonstrate the direction of change after the absorption of evidence.

The changes in belief are measured only for the nodes that are d-connected (conditionally
dependent) to the entered evidence. Nodes that are d-separated from absorbed evidence
are not influenced, and, consequently, do not change beliefs.

4.2 Mouse Example

Suppose we know the marginal mean of one of the nodes Tlr12 is -0.99 and we wish to
enter this new information in the mouse network and see the updated states of other nodes.
New evidence for single or multiple nodes can be entered using the function absorb.gnbp

which absorbs evidence and propagates the beliefs.
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4.2.1 absorb.gnbp

The function absorb.gnbp uses the RHugin package to absorb the evidence in the specified
nodes and update the beliefs of all nodes and then calculates Jeffrey’s signed information
for all d-connected nodes. The following example illustrates how to absorb evidence after
fitting a network to QTL data using geneNetBP package.

1. Absorb a single evidence for a single node

> network<-fit.gnbp(mousegeno,mousepheno,alpha=0.1)

> ## Absorb evidence

> absorb.gnbp(network,node="Tlr12",evidence=matrix(-0.99))

$gp

A Hugin domain: there are 19 nodes and 31 edges

$gp_flag

[1] "cg"

$gp_nodes

node class levels type

[1,] "Cyp4a31" "numeric" "0" "pheno"

[2,] "Slc5a9" "numeric" "0" "pheno"

[3,] "Slc6a9" "numeric" "0" "pheno"

[4,] "Hmgcl" "numeric" "0" "pheno"

[5,] "Ptp4a2" "numeric" "0" "pheno"

[6,] "Ak2" "numeric" "0" "pheno"

[7,] "Zbtb8a" "numeric" "0" "pheno"

[8,] "Stx12" "numeric" "0" "pheno"

[9,] "Trspap1" "numeric" "0" "pheno"

[10,] "Mecr" "numeric" "0" "pheno"

[11,] "Wdtc1" "numeric" "0" "pheno"

[12,] "Atpif1" "numeric" "0" "pheno"

[13,] "Rbbp4" "numeric" "0" "pheno"

[14,] "Tlr12" "numeric" "0" "pheno"

[15,] "Qchr4" "factor" "3" "geno"

[16,] "Qchr17" "factor" "3" "geno"

[17,] "Qchr15" "factor" "3" "geno"

[18,] "Qchr11" "factor" "3" "geno"

[19,] "Qchr2" "factor" "3" "geno"
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$evidence

[,1]

[1,] -0.99

$node

[1] "Tlr12"

$marginal

$marginal$pheno

$marginal$pheno$mean

[,1]

Rbbp4 2.317482e-17

Atpif1 2.190113e-03

Wdtc1 2.514671e-17

Mecr -1.551256e-16

Trspap1 4.239712e-03

Stx12 4.433032e-17

Zbtb8a -2.003327e-17

Ak2 -7.153821e-03

Ptp4a2 3.519799e-03

Hmgcl -7.136515e-03

Slc6a9 -1.957688e-02

Slc5a9 2.471620e-02

Cyp4a31 1.914642e-02

$marginal$pheno$var

[,1]

Rbbp4 0.9557443

Atpif1 0.9027874

Wdtc1 0.9574396

Mecr 0.9550281

Trspap1 0.8530483

Stx12 0.9575380

Zbtb8a 0.9551227

Ak2 0.7696464

Ptp4a2 0.8550665

Hmgcl 0.8509102

Slc6a9 0.7939058

Slc5a9 0.8538129

Cyp4a31 0.8965621
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$marginal$geno

$marginal$geno$freq

state1 state2 state3

Qchr4 0.2312139 0.4682081 0.300578

$belief

$belief$pheno

$belief$pheno$mean

[,1]

Rbbp4 0.8776457

Atpif1 -0.6538109

Wdtc1 0.6669131

Mecr -0.8791569

Trspap1 -0.6613503

Stx12 0.8676931

Zbtb8a -0.1222389

Ak2 0.6720433

Ptp4a2 -0.6969352

Hmgcl 0.6855139

Slc6a9 0.5667517

Slc5a9 -0.6510656

Cyp4a31 -0.5043484

$belief$pheno$var

[,1]

Rbbp4 0.4859803

Atpif1 0.6226163

Wdtc1 0.6627283

Mecr 0.4428854

Trspap1 0.5679888

Stx12 0.4933635

Zbtb8a 0.8083572

Ak2 0.5327134

Ptp4a2 0.5448964

Hmgcl 0.5628789

Slc6a9 0.5718937

Slc5a9 0.5254673

Cyp4a31 0.6995273
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$belief$geno

$belief$geno$state1

[,1]

Qchr4 0.007944801

$belief$geno$state2

[,1]

Qchr4 0.2152284

$belief$geno$state3

[,1]

Qchr4 0.7768268

$JSI

[,1]

Rbbp4 0.71650239

Atpif1 -0.32687548

Wdtc1 0.31813768

Mecr -0.79365404

Trspap1 -0.36674950

Stx12 0.69209864

Zbtb8a -0.01550701

Ak2 0.40056441

Ptp4a2 -0.42017671

Hmgcl 0.39734466

Slc6a9 0.28567820

Slc5a9 -0.41106696

Cyp4a31 -0.18983139

$FC

NULL

attr(,"class")

[1] "gnbp"

Note that the function absorb.gnbp requires the argument evidence to be of class matrix.
If only a single value of evidence is to be entered, this can be done by simply using the
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function matrix(), as above.

absorb.gnbp returns an object of class ”gnbp” which is a list of several variables.

The Jeffrey’s signed information is returned as a matrix JSI that gives the quantified
comparison of beliefs of the continuous nodes (phenotypes) before and after evidence ab-
sorption. Note that since we absorbed only a single value of evidence, JSI is a column
vector.In addition to Jeffrey’s signed information, the marginal distributions (mean and
variance for continuous nodes in and genotype frequencies for SNP markers) before evi-
dence absorption and the updated beliefs (after evidence absorption) are also returned.

Since Qchr15 is d-separated when evidence is absorbed in Tlr12, it’s marginal distribu-
tion is not affected and hence the beliefs are not calculated. Qchr4, on the other hand
is d-connected and a list returns the updated frequencies of all 3 genotype states of the
SNP marker Qchr15.

2. Absorb a sequence of evidence for a single node

> network<-fit.gnbp(mousegeno,mousepheno,alpha=0.1)

> ##Absorb evidence

> absorb.gnbp(network,node="Tlr12",evidence=t(matrix(c(2.5,3,3.5,4))))

4.2.2 gen.evidence

A function gen.evidence is useful to generate evidence for a node based on it’s marginal
distribution. This is particularly useful when network perturbation to assess the network
behaviour is of interest.

To generate a spectrum of evidence for Tlr12 within ±2 standard deviations of it’s
marginal distribution, we input the inferred network to gen.evidence

> network<-fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

> ##Generate evidence

> evidence<-gen.evidence(network,node="Tlr12",std=2,length.out=20)

> ##absorb evidence

> absorb.gnbp(network,node="Tlr12",evidence=evidence)

Note that JSI will now be a matrix whose number of rows are the d -connected phe-
notype nodes to Tlr12 and the number of columns is the length of evidence absorbed in
Tlr12.
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When a sequence of evidence is absorbed for a single node in the network, absorb.gnbp
also plots the JSI of the d -connected nodes vs the evidence absorbed.

Figure 3. Plot produced by absorb.gnbp

5 Visualizing network changes

A generic plot method for plotting the genotype-phenotype network in which evidence
has been absorbed and propagated is available. It is important to note that the input to
this plot method is an object of class ”gnbp”. If a RHugin domain is input to plot, the
corresponding plot method for RHugin domain will be used. The plot method will con-
vert the RHugin domain into an object of class ”graphNEL” by using Rgraphviz package
as mentioned previously. The argument nodeAttrs to plot method for graph objects in
Rgraphviz package is then used to customize the plot.

5.1 A complete example

A complete example that fits a network, absorbs evidence and plots the network:

> network<-fit.gnbp(mousegeno,mousepheno,alpha=0.1)

> network<-absorb.gnbp(network,node="Tlr12",evidence=matrix(-0.99))

> plot(x=network)
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Figure 4. Evidence absorption in single node

The plot method will draw the network with Jeffrey’s signed information mapped onto it
by a colormap. There is an option to plot beliefs (updated marginal means) which can be
entered through the argument y (see help for plot.gnbp).

The d-separated nodes are white while the colored nodes are d-connected, with the color
indicating the strength and direction of change . By default, the continuous nodes are of
shape ”ellipse” and a ”box” shape is used for discrete nodes. The node for which evidence
is absorbed is colored green (default color).

5.2 Plot options

Colormap options such as end colors for the positive and negative gradients and the reso-
lution of the colormap can be customized. The resolution of the colormap can be specified
by col.length. The argument col.palette can be used to specify the end colors.

> col.palette<-list(pos_high="darkgreen", pos_low= "palegreen2",

neg_high="wheat1", neg_low = "red",
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dsep_col="white",qtl_col="grey",node_abs_col="yellow")

> plot(x=network,col.palette=col.palette)

Figure 5. Mouse network with custom color palette

The plot method will always map the JSI or beliefs onto the network for a single piece of
evidence. Incase a spectrum of evidence is absorbed for a single/multiple node(s), then
the evidence for which we wish to visualize the network changes can be chosen by speci-
fying the corresponding column number of JSI or belief matrix through the argument ncol.

For example we absorbed a sequence of evidence for Tlr12 and we wish to visualize the
belief changes for evidence = 1.767, we can do this as follows.

> network<-fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

> ##Generate evidence

> evidence<-gen.evidence(network,node="Tlr12",std=2,length.out=20)

> network<-absorb.gnbp(network,node="Tlr12",evidence=evidence)

> plot(x=network,y="belief",ncol=20)

6 Belief propagation in known networks

Belief propagation can be implemented in known genotype-phenotype networks. If the
network structure is known apriori from a knowledge database, then learning step can
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be skipped in fit.gnbp by seting learn = FALSE. The conditional probabilities will still
need to be learnt. This section demonstrates how to specify known networks and subse-
quent belief propagation in a simulated toy example.

First create a list of known edges from parent to child.

> ## Load the toy dataset

> data(toy)

> ## Create a list of edges ("from (parent)", "to (child)")

> edgelist=list()

> edgelist[[1]]<-cbind("Q1","X1")

> edgelist[[2]]<-cbind("Q2","X1")

> edgelist[[3]]<-cbind("Q2","X2")

> edgelist[[4]]<-cbind("Q2","X4")

> edgelist[[5]]<-cbind("X1","X2")

> edgelist[[6]]<-cbind("Q3","X2")

> edgelist[[7]]<-cbind("Q3","X3")

> edgelist[[8]]<-cbind("X2","X5")

> edgelist[[9]]<-cbind("X2","X6")

> edgelist[[10]]<-cbind("X4","X6")

In fit.gnbp provide the edgelist and set learn = FALSE. This will skip the learning and
only conditional probabilities will be calculated for each node in the network based on
the given network structure and data. Absorbing evidence and propagating the beliefs
subsequently is then straightforward.

> network<-fit.gnbp(toygeno,toypheno,learn=FALSE,edgelist=edgelist)

> ##Generate evidence

> evidence<-gen.evidence(network,node="X2",std=2,length.out=20)

> network<-absorb.gnbp(network,node="X2",evidence=evidence)

> plot(x=network,y="JSI",ncol=17,fontsize = 5)
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Figure 6. Belief propagation in known network
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