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Abstract

Random Forests (Breiman 2001) (RF) are a non-parametric statistical method requir-
ing no distributional assumptions on covariate relation to the response. RF are a robust,
nonlinear technique that optimizes predictive accuracy by fitting an ensemble of trees to
stabilize model estimates. The randomForestSRC package (Ishwaran and Kogalur 2014) is
a unified treatment of Breiman’s random forests for survival, regression and classification
problems.

Predictive accuracy make RF an attractive alternative to parametric models, though
complexity and interpretability of the forest hinder wider application of the method.
We introduce the ggRandomForests package, tools for visually understand random for-
est models grown in R (R Core Team 2014) with the randomForestSRC package. The
ggRandomForests package is structured to extract intermediate data objects from ran-
domForestSRC objects and generates figures using the ggplot2 (Wickham 2009) graphics
package.

This document is structured as a tutorial for building random forests for regression
with the randomForestSRC package and using the ggRandomForests package for inves-
tigating how the forest is constructed. We investigate the Boston Housing data (Har-
rison and Rubinfeld 1978; Belsley, Kuh, and Welsch 1980). We demonstrate random
forest variable selection using Variable Importance (VIMP) (Breiman 2001) and Mini-
mal Depth (Ishwaran, Kogalur, Gorodeski, Minn, and Lauer 2010), a property derived
from the construction of each tree within the forest. We will also demonstrate the use
of variable dependence plots (Friedman 2000) to aid interpretation RF results. We then
examine variable interactions between covariates using a minimal depth interactions, and
conditional variable dependence plots. The goal of the exercise is to demonstrate the
strength of using Random Forest methods for both prediction and information retrieval
in regression settings.

Keywords: random forest, regression, VIMP, minimal depth, R, randomForestSRC.

About this document

This document is a package vignette for the ggRandomForests package for “Visually Ex-
ploring Random Forests” (http://CRAN.R-project.org/package=ggRandomForests). The
ggRandomForests package is designed for use with the randomForestSRC package (Ishwaran
and Kogalur 2014, http://CRAN.R-project.org/package=randomForestSRC) for growing
random forests for survival (time to event response), regression (continuous response) and
classification (categorical response) settings and uses the ggplot2 package (Wickham 2009,
http://CRAN.R-project.org/package=ggplot2) for plotting diagnostic and variable associ-
ation results. ggRandomForests is structured to extract data objects from randomForestSRC

http://CRAN.R-project.org/package=ggRandomForests
http://CRAN.R-project.org/package=randomForestSRC
http://CRAN.R-project.org/package=ggplot2
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objects and provides functions for printing and plotting these objects.

The vignette is a tutorial for using the ggRandomForests package with the randomForestSRC
package for building and post-processing random forests for regression settings. In this tuto-
rial, we explore a random forest for regression model constructed for the Boston housing data
set (Harrison and Rubinfeld 1978; Belsley et al. 1980), available in the MASS package (Ven-
ables and Ripley 2002). We grow a random forest and demonstrate how ggRandomForests
can be used when determining how the response depends on predictive variables within the
model. The tutorial demonstrates the design and usage of many of ggRandomForests func-
tions and features and also how to modify and customize the resulting ggplot graphic objects
along the way.

The vignette is written in LATEXusing the knitr package (Xie 2015, 2014, 2013, http://CRAN.
R-project.org/package=knitr), which facilitates weaving R (R Core Team 2014) code, re-
sults and figures into document text. Throughout this document, R code will be displayed in
code blocks as shown below. This code block loads the R packages required to run the source
code listed in code blocks throughout the remainder of this document.

R> ################## Load packages ##################

R> library("ggplot2") # Graphics engine

R> library("RColorBrewer") # Nice color palettes

R> library("plot3D") # for 3d surfaces.

R> library("dplyr") # Better data manipulations

R> library("tidyr") # gather variables into long format

R> library("parallel") # mclapply for multicore processing

R>

R> # Analysis packages.

R> library("randomForestSRC") # random forests for survival, regression and

R> # classification

R> library("ggRandomForests") # ggplot2 random forest figures (This!)

R>

R> ################ Default Settings ##################

R> theme_set(theme_bw()) # A ggplot2 theme with white background

R>

R> ## Set open circle for censored, and x for events

R> event.marks <- c(1, 4)

R> event.labels <- c(FALSE, TRUE)

R>

R> ## We want red for death events, so reorder this set.

R> strCol <- brewer.pal(3, "Set1")[c(2,1,3)]

This vignette is available within the ggRandomForests package on the Comprehensive R
Archive Network (CRAN) (R Core Team 2014, http://cran.r-project.org). Once the
package has been installed, the vignette can be viewed directly from within R with the fol-
lowing command:

R> vignette("randomForestSRC-Regression", package = "ggRandomForests")

A development version of the ggRandomForests package is also available on GitHub (https:

http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr
http://cran.r-project.org
https://github.com
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//github.com). We invite comments, feature requests and bug reports for this package at
https://github.com/ehrlinger/ggRandomForests.

1. Introduction

Random Forests (Breiman 2001) (RF) are a fully non-parametric statistical method which
requires no distributional or functional assumptions on covariate relation to the response. RF
is a robust, nonlinear technique that optimizes predictive accuracy by fitting an ensemble of
trees to stabilize model estimates. Random Survival Forests (RSF) (Ishwaran and Kogalur
2007; Ishwaran, Kogalur, Blackstone, and Lauer 2008) are an extension of Breiman’s RF
techniques to survival settings, allowing efficient non-parametric analysis of time to event
data. The randomForestSRC package (Ishwaran and Kogalur 2014) is a unified treatment
of Breiman’s random forests for survival (time to event response), regression (continuous
response) and classification (categorical response) problems.

Predictive accuracy make RF an attractive alternative to parametric models, though complex-
ity and interpretability of the forest hinder wider application of the method. We introduce
the ggRandomForests package for visually exploring random forest models. The ggRandom-
Forests package is structured to extract intermediate data objects from randomForestSRC
objects and generate figures using the ggplot2 graphics package (Wickham 2009).

Many of the figures created by the ggRandomForests package are also available directly from
within the randomForestSRC package. However ggRandomForests offers the following ad-
vantages:

• Separation of data and figures: ggRandomForests contains functions that operate on ei-
ther the randomForestSRC::rfsrc forest object directly, or on the output from random-
ForestSRC post processing functions (i.e. plot.variable, var.select, find.interaction)
to generate intermediate ggRandomForests data objects. functions are provide to fur-
ther process these objects and plot results using the ggplot2 graphics package. Alter-
natively, users can use these data objects for their own custom plotting or analysis
operations.

• Each data object/figure is a single, self contained object. This allows simple modifica-
tion and manipulation of the data or ggplot2 objects to meet users specific needs and
requirements.

• The use of ggplot2 for plotting. We chose to use the ggplot2 package for our figures
to allow users flexibility in modifying the figures to their liking. Each plot function
returns either a single ggplot object, or a list of ggplot objects, allowing users to
use additional ggplot2 functions or themes to modify and customize the figures to their
liking.

This document is formatted as a tutorial for using the randomForestSRC package for building
and post-processing random forest models with the ggRandomForests package for investigat-
ing how the forest is constructed. In this tutorial, we use the Boston Housing Data (Section 2),
available in the MASS package (Venables and Ripley 2002), to build a random forest for re-
gression (Section 3) and demonstrate the tools in the ggRandomForests package for examining
the forest construction.

https://github.com
https://github.com
https://github.com/ehrlinger/ggRandomForests
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Random forests are not parsimonious, but use all variables available in the construction of
a response predictor. We demonstrate a random forest variable selection (Section 4) process
using the Variable Importance (Section 4.1) measure (VIMP) (Breiman 2001) as well as
Minimal Depth (Section 4.2) (Ishwaran et al. 2010), a property derived from the construction
of each tree within the forest, to assess the impact of variables on forest prediction.

Once we have an idea of which variables we are want to investigate further, we will use variable
dependence plots (Friedman 2000) to understand how a variable is related to the response
(Section 5). Marginal dependence plots (Section 5.1) give us an idea of the overall trend
of a variable/response relation, while partial dependence plots (Section 5.2) show us a risk
adjusted relation. These figures may show strongly non-linear variable/response relations that
are not easily obtained through a parametric approach. We are also interested in examining
variable interactions within the forest model (Section 6). Using a minimal depth approach,
we can quantify how closely variables are related within the forest, and generate marginal
dependence (Section 7) and partial dependence (Section!7.1) (risk adjusted) conditioning plots
(coplots) (Chambers 1992; Cleveland 1993) to examine these interactions graphically.

2. Data: Boston Housing Values

The Boston Housing data is a standard benchmark data set for regression models. It contains
data for 506 census tracts of Boston from the 1970 census (Harrison and Rubinfeld 1978;
Belsley et al. 1980). The data is available in multiple R packages, but to keep the installation
dependencies for the ggRandomForests package down, we will use the data contained in the
MASS package (Venables and Ripley 2002, http://CRAN.R-project.org/package=MASS),
available with the base install of R. The following code block loads the data into the environ-
ment. We include a table of the Boston data set variable names, types and descriptions for
reference when we interpret the model results.

R> # Load the Boston Housing data

R> data(Boston, package="MASS")

R>

R> # Set modes correctly. For binary variables: transform to logical

R> Boston$chas <- as.logical(Boston$chas)

The main objective of the Boston Housing data is to investigate variables associated with
predicting the median value of homes (continuous medv response) within 506 suburban areas
of Boston.

2.1. Exploratory Data Analysis

It is good practice to view your data before beginning an analysis, what Tukey (1977)
refers to as Exploratory Data Analysis (EDA). To facilitate this, we use ggplot2 figures
with the ggplot2::facet_wrap command to create two sets of panel plots, one for cate-
gorical variables with boxplots at each level, and one of scatter plots for continuous vari-
ables. Each variable is plotted along a selected continuous variable on the X-axis. These
figures help to find outliers, missing values and other data anomalies in each variable be-
fore getting deep into the analysis. We have also created a separate shiny app (Chang,

http://CRAN.R-project.org/package=MASS


Ehrlinger 5

Variable Description type

crim Crime rate by town. numeric

zn Proportion of residential land zoned for lots over 25,000 sq.ft. numeric

indus Proportion of non-retail business acres per town. numeric

chas Charles River (tract bounds river). logical

nox Nitrogen oxides concentration (10 ppm). numeric

rm Number of rooms per dwelling. numeric

age Proportion of units built prior to 1940. numeric

dis Distances to Boston employment center. numeric

rad Accessibility to highways. integer

tax Property tax rate per $10,000. numeric

ptratio Pupil teacher ratio by town. numeric

black Proportion of blacks by town. numeric

lstat Lower status of the population (percent). numeric

medv Median value of homes ($1000s). numeric

Table 1: Boston housing data dictionary.

Cheng, Allaire, Xie, and McPherson 2015, http://shiny.rstudio.com), available at https:
//ehrlinger.shinyapps.io/xportEDA, for creating similar figures with an arbitrary data
set, to make the EDA process easier for users.

The Boston housing data consists almost entirely of continuous variables, with the exception
of the “Charles river” logical variable. A simple EDA visualization to use for this data is a
single panel plot of the continuous variables, with observation points colored by the logical
variable. Missing values in our continuous variable plots are indicated by the rug marks
along the x-axis, of which there are none in this data. We used the Boston housing response
variable, the median value of homes (medv), for X variable.

R> # Use tidyr::gather to transform the data into long format.

R> dta <- gather(Boston, variable, value, -medv, -chas)

R>

R> # plot panels for each covariate colored by the logical chas variable.

R> ggplot(dta)+

+ geom_point(alpha=0.4, aes(x=medv, y=value, color=chas))+

+ geom_smooth(aes(x=medv, y=value), se=FALSE)+

+ labs(y="", x=st.labs["medv"]) +

+ scale_color_brewer(palette="Set2")+

+ facet_wrap(~variable, scales="free_y", ncol=3)

This figure is loosely related to a pairs scatter plot (Becker, Chambers, and Wilks 1988), but
in this case we only examine the relation between the response variable against the remainder.
Plotting the data against the response also gives us a ”sanity check” when viewing our model
results. It’s pretty obvious from this figure that we should find a strong relation between
median home values and the lstat and rm variables.

http://shiny.rstudio.com
https://ehrlinger.shinyapps.io/xportEDA
https://ehrlinger.shinyapps.io/xportEDA
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Figure 1: EDA variable plots. Points indicate variable value against the median home value
variable. Points are colored according to the chas variable.

3. Random Forest - Regression

A Random Forest is grown by bagging (Breiman 1996a) a collection of classification and
regression trees (CART) (Breiman, Friedman, Olshen, and Stone 1984). The method uses a
set of B bootstrap (Efron and Tibshirani 1994) samples, growing an independent tree model
on each sub-sample of the population. Each tree is grown by recursively partitioning the
population based on optimization of a split rule over the p-dimensional covariate space. At
each split, a subset of m ≤ p candidate variables are tested for the split rule optimization,
dividing each node into two daughter nodes. Each daughter node is then split again until the
process reaches the stopping criteria of either node purity or node member size, which defines
the set of terminal (unsplit) nodes for the tree. In regression trees, the split rule is based
on minimizing the mean squared error, whereas in classification problems, the Gini index is
used (Friedman 2000).

Random Forests sort each training set observation into one unique terminal node per tree.
Tree estimates for each observation are constructed at each terminal node, among the terminal
node members. The Random Forest estimate for each observation is then calculated by
aggregating, averaging (regression) or votes (classification), the terminal node results across
the collection of B trees.

For this tutorial, we grow the random forest for regression using the rfsrc command to
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predict the median home value (medv variable) using the remaining 13 independent predictor
variables. For this example we will use the default set of B = 1000 trees (ntree argument),
m = 5 candidate variables (mtry) for each split with a stopping criteria of at most nodesize=5
observations within each terminal node.

Because growing random forests are computationally expensive, and the ggRandomForests
package is targeted at the visualization of random forest objects, we will use cached copies of
the randomForestSRC objects throughout this document. We include the cached objects as
data sets in the ggRandomForests package. The actual rfsrc calls are included in comments
within code blocks.

R> # Load the data, from the call:

R> # rfsrc_Boston <- rfsrc(medv~., data=Boston)

R> data(rfsrc_Boston)

R>

R> # print the forest summary

R> rfsrc_Boston

Sample size: 506

Number of trees: 1000

Minimum terminal node size: 5

Average no. of terminal nodes: 79.799

No. of variables tried at each split: 5

Total no. of variables: 13

Analysis: RF-R

Family: regr

Splitting rule: regr

% variance explained: 85.81

Error rate: 12

The randomForestSRC::print.rfsrc summary details the parameters used for the rfsrc

call described above, and returns variance and generalization error estimate from the forest
training set. The forest is built from 506 observations and 13 independent variables. It
was constructed for the continuous medv variable using ntree=1000 regression (regr) trees,
randomly selecting 5 candidate variables at each node split, and terminating nodes with no
fewer than 5 observations.

3.1. Generalization error estimates

One advantage of Random Forests is a built in generalization error estimate. Each bootstrap
sample selects approximately 63.2% of the population on average. The remaining 36.8% of
observations, the Out-of-Bag (OOB) (Breiman 1996b) sample, can be used as a hold out test
set for each of the trees in the forest. An OOB prediction error estimate can be calculated
for each observation by predicting the response over the set of trees which were NOT trained
with that particular observation. The Out-of-Bag prediction error estimates have been shown
to be nearly identical to n–fold cross validation estimates (Hastie, Tibshirani, and Friedman
2009). This feature of Random Forests allows us to obtain both model fit and validation in
one pass of the algorithm.
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The gg_error function operates on the randomForestSRC::rfsrc object to extract the er-
ror estimates as the forest is grown. The code block demonstrates part the ggRandom-
Forests design philosophy, to create separate data objects and provide functions to operate
on the data objects. The following code block first creates a gg_error object, then uses the
plot.gg_error function to create a ggplot object for display.

R> # Plot the OOB errors against the growth of the forest.

R> gg_e <- gg_error(rfsrc_Boston)

R> plot(gg_e)
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Figure 2: Random forest generalization error. OOB error convergence along the number of
trees in the forest.

This figure demonstrates that it does not take a large number of trees to stabilize the forest
prediction error estimate. However, to ensure that each variable has enough of a chance to be
included in the forest prediction process, we do want to create a rather large random forest
of trees.

3.2. Random Forest Prediction

The gg_rfsrc function extracts the OOB prediction estimates from the random forest. This
code block executes the the data extraction and plotting in one line, since we are not interested
in holding the prediction estimates for later reuse. Also note that we add in the additional
ggplot2 command (coord_cartesian) to modify the plot object. Each of the ggRandom-
Forests plot commands return ggplot objects, which we can also store for modification or
reuse later in the analysis.

R> # Plot predicted median home values.

R> plot(gg_rfsrc(rfsrc_Boston), alpha=.5)+

+ coord_cartesian(ylim=c(5,49))
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Figure 3: OOB predicted median home values. Points are jittered to help visualize predictions
for each observation. Boxplot indicates the distribution of the predicted values.

The gg_rfsrc plot shows the predicted median home value, one point for each observation
in the training set. The points are jittered around a single point on the x-axis, since we are
only looking at predicted values from the forest. These estimates are Out of Bag, which are
analogous to test set estimates. The boxplot is shown to give an indication of the distribution
of the prediction estimates. For this analysis the figure is another model sanity check, as we
are more interested in exploring the “why” questions for these predictions.

4. Variable Selection

Random forests are not parsimonious, but use all variables available in the construction of
a response predictor. Also, unlike parametric models, Random Forests do not require the
explicit specification of the functional form of covariates to the response. Therefore there is
no explicit p-value/significance test for variable selection with a random forest model. Instead,
RF ascertain which variables contribute to the prediction through the split rule optimization,
optimally choosing variables which separate observations. We use two separate approaches
to explore the RF selection process, Variable Importance (Section 4.1) and Minimal Depth
(Section 4.2).

4.1. Variable Importance.

Variable importance (VIMP) was originally defined in CART using a measure involving surro-
gate variables (see Chapter 5 of Breiman et al. (1984)). The most popular VIMP method uses
a prediction error approach involving “noising-up” each variable in turn. VIMP for a variable
xv is the difference between prediction error when xv is noised up by randomly permuting
its values, compared to prediction error under the observed values (Breiman 2001; Liaw and
Wiener 2002; Ishwaran 2007; Ishwaran et al. 2008).
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Since VIMP is the difference between OOB prediction error before and after permutation, a
large VIMP value indicates that misspecification detracts from the variable predictive accu-
racy in the forest. VIMP close to zero indicates the variable contributes nothing to predictive
accuracy, and negative values indicate the predictive accuracy improves when the variable is
mispecified. In the later case, we assume noise is more informative than the true variable. As
such, we ignore variables with negative and near zero values of VIMP, relying on large positive
values to indicate that the predictive power of the forest is dependent on those variables.

The gg_vimp function extracts VIMP measures for each of the variables used to grow the
forest. The plot.gg_vimp function shows the variables, in VIMP rank order, from the largest
(Lower Status) at the top, to smallest (Charles River) at the bottom. VIMP measures are
shown using bars to compare the scale of the error increase under permutation.

R> # Plot the VIMP rankings of independent variables.

R> plot(gg_vimp(rfsrc_Boston), lbls=st.labs)

Charles River (tract bounds river).

Proportion of residential land zoned for lots over 25,000 sq.ft.

Accessibility to highways.

Proportion of blacks by town.

Property tax rate per $10,000.

Proportion of units built prior to 1940.

Proportion of non−retail business acres per town.

Distances to Boston employment center.

Pupil teacher ratio by town.

Crime rate by town.

Nitrogen oxides concentration (10 ppm).

Number of rooms per dwelling.

Lower status of the population (percent).

0 20 40
Variable Importance

Figure 4: Random forest VIMP plot. Bars are colored by sign of VIMP, longer blue bars
indicate more important variables.

For our random forest, the top two variables (lstat and rm) have the largest VIMP, with a
sizable difference to the remaining variables, which mostly have similar VIMP measure. This
indicates we should focus attention on these two variables, at least, over the others.

In this example, all VIMP measures are positive, though some are small. When there are
both negative and positive VIMP values, the plot.gg_vimp function will color VIMP by the
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sign of the measure. We use the lbls argument to pass a named vector of meaningful text
descriptions to the plot.gg_vimp function, replacing the often terse variable names used by
default.

4.2. Minimal Depth.

In VIMP, prognostic risk factors are determined by testing the forest prediction under al-
ternative data settings, ranking the most important variables according to their impact on
predictive ability of the forest. An alternative method uses inspection of the forest con-
struction to rank variables. Minimal depth assumes that variables with high impact on the
prediction are those that most frequently split nodes nearest to the trunks of the trees (i.e.
at the root node) where they partition large samples of the population.

Within a tree, node levels are numbered based on their relative distance to the trunk of the
tree (with the root at 0). Minimal depth measures the important risk factors by averaging
the depth of the first split for each variable over all trees within the forest. Lower values of
this measure indicate variables important in splitting large groups of patients.

The maximal subtree for a variable x is the largest subtree whose root node splits on x. All
parent nodes of x’s maximal subtree have nodes that split on variables other than x. The
largest maximal subtree possible is at the root node. If a variable does not split the root
node, it can have more than one maximal subtree, or a maximal subtree may also not exist if
there are no splits on the variable. The minimal depth of a variables is a surrogate measure of
predictiveness of the variable. The smaller the minimal depth, the more impact the variable
has sorting observations, and therefore on the forest prediction.

The gg_minimal_depth function is analogous to the gg_vimp function for minimal depth.
Variables are ranked from most important at the top (minimal depth measure), to least at
the bottom (maximal minimal depth). The vertical dashed line indicates the minimal depth
threshold where smaller minimal depth values indicate higher importance and larger indicate
lower importance.

The randomForestSRC::var.select call is again a computationally intensive function, as
it traverses the forest finding the maximal subtree within each tree for each variable before
averaging the results we use in the gg_minimal_depth call. We again use the cached object
strategy here to save computational time. The var.select call is included in the comment
of this code block.

R> # Load the data, from the call:

R> # varsel_Boston <- var.select(rfsrc_Boston)

R> data(varsel_Boston)

R>

R> # Save the gg_minimal_depth object for later use.

R> gg_md <- gg_minimal_depth(varsel_Boston)

R>

R> # plot the object

R> plot(gg_md, lbls=st.labs)

In general, the selection of variables according to VIMP is to rather arbitrarily examine
the values, looking for some point along the ranking where there is a large difference in
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Figure 5: Minimal Depth variables in rank order, most important at the top. Vertical dashed
line indicates the maximal minimal depth for important variables.

VIMP measures. The minimal depth threshold method has a more quantitative approach
to determine a selection threshold. Given minimal depth is a quantitative property of the
forest construction, Ishwaran et al. (2010) also construct an analytic threshold for evidence
of variable impact. A simple optimistic threshold rule uses the mean of the minimal depth
distribution, classifying variables with minimal depth lower than this threshold as important in
forest prediction. The minimal depth plot for our model indicates there are ten variables which
have a higher impact (minimal depth below the mean value threshold) than the remaining
three.

Since the VIMP and Minimal Depth measures use different criteria, we expect the variable
ranking to be somewhat different. We use gg_minimal_vimp function to compare rankings
between minimal depth and VIMP. In this call, we plot the stored gg_minimal_depth object
(gg_md), which would be equivalent to calling plot.gg_minimal_vimp(varsel_Boston) or
plot(gg_minimal_vimp(varsel_Boston)).

R> # gg_minimal_depth objects contain information about

R> # both minimal depth and VIMP.

R> plot(gg_minimal_vimp(gg_md))

The points along the red dashed line indicates where the measures are in agreement. Points
above the red dashed line are ranked higher by VIMP than by minimal depth, indicating the
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Figure 6: Comparing Minimal Depth and Vimp rankings. Points on the red dashed line are
ranked equivalently, points below have higher VIMP, those above have higher minimal depth
ranking. Variables are colored by the sign of the VIMP measure.

variables are sensitive to misspecification. Those below the line have a higher minimal depth
ranking, indicating they are better at dividing large portions of the population. The further
the points are from the line, the more the discrepancy between measures. The construction
of this figure is skewed towards a minimal depth approach, by ranking variables along the
y-axis, though points are colored by the sign of VIMP.

In our example, both minimal depth and VIMP indicate the strong relation of lstat and
rm variables to the forest prediction, which agrees with our expectation from the EDA (Sec-
tion 2.1) done at the beginning of this document. We now turn to investigating how these,
and other variables, are related to the predicted response.

5. Response/Variable Dependence.

As random forests are not a parsimonious methodology, we can use the minimal depth and
VIMP measures to reduce the number of variables we need to examine to a manageable
subset. We would like to know how the forest response depends on some specific variables
of interest. We often choose to examine variables of interest based on the study question, or
other previous knowledge. In the absence of this, we will look at variables that contribute
most to the predictive accuracy of the forest.

Although often characterized as a “black box” method, it is possible to express a random
forest in functional form. In the end the forest predictor is some function, although complex,
of the predictor variables

f̂rf = f(x).

We use graphical methods to examine the forest predicted response dependency on covariates.
We again have two options, variable dependence (Section 5.1) plots are quick and easy to



14 Random Forests for Regression

generate, and partial dependence (Section 5.2) plots are computationally intensive but give
us a risk adjusted look at the dependence.

5.1. Variable Dependence

Variable dependence plots show the predicted response as a function of a covariate of interest,
where each observation is represented by a point on the plot. Each predicted point is an
individual observations, dependent on the full combination of all other covariates, not only on
the covariate of interest. Interpretation of variable dependence plots can only be in general
terms, as point predictions are a function of all covariates in that particular observation.
However, variable dependence is straight forward to calculate, only requiring the predicted
response for each observation.

We use the gg_variable function call to extract the training set variables and the predicted
OOB response from randomForestSRC::rfsrc and randomForestSRC::predict objects. In
the following code block, we will store the gg_variable data object for later use, as all
remaining variable dependence plots can be constructed from this (gg_v) object. We will
also use the minimal depth selected variables (minimal depth lower than the threshold value)
from the previously stored gg_minimal_depth object (gg_md$topvars) to filter the variables
of interest.

The plot.gg_variable function call operates in the gg_variable object. We pass it the list
of variables of interest (xvar) and request a single panel (panel=TRUE) to display the figures.
By default, the plot.gg_variable function returns a list of ggplot objects, one figure for
each variable named in xvar argument. The next three arguments are passed to internal
ggplot plotting routines. The se and span arguments are used to modify the internal call to
ggplot2::geom_smooth for fitting smooth lines to the data. The alpha argument lightens the
coloring points in the ggplot2::geom_point call, making it easier to see point over plotting.
We also demonstrate modification of the plot labels using the ggplot2::labs function.

R> # Create the variable dependence object from the random forest

R> gg_v <- gg_variable(rfsrc_Boston)

R>

R> # We want the top ranked minimal depth variables only,

R> # plotted in minimal depth rank order.

R> xvar <- gg_md$topvars

R>

R> # plot the variable list in a single panel plot

R> plot(gg_v, xvar=xvar, panel=TRUE)+

+ labs(y=st.labs["medv"], x="")

This figure looks very similar to the EDA (Section 2.1) figure, although with transposed axis
as we plot the response variable on the y-axis. The closer the panels match, the better the RF
prediction. The panels are sorted to match the order of variables in the xvar argument and
include a smooth loess line (Cleveland 1981; Cleveland and Devlin 1988), with 95% shaded
confidence band, to indicates the trend of the prediction dependence over the covariate values.

There is not a convenient method to panel scatter plots and boxplots together, so we recom-
mend creating panel plots for each variable type separately. The Boston housing data does
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Figure 7: Variable dependence plot. Individual case predictions are marked with points.
Loess smooth curve indicates the trend as the variables increase with shaded 95% confidence
band.

contain a single categorical variable, the Charles river logical variable. Variable dependence
plots for categorical variables are constructed using boxplots to show the distribution of the
predictions within each category. Although the Charles river variable has the lowest impor-
tance scores in both VIMP and minimal depth measures, we include the variable dependence
plot as an example of categorical variable dependence.

R> plot(gg_v, xvar="chas", alpha=.4)+

+ labs(y=st.labs["medv"])

R>

R> # , points=FALSE, se=FALSE, notch=TRUE

The figure shows that most housing tracts do not border the Charles river (chas=FALSE), and
comparing the distributions of the predicted median housing values indicates no significant
difference in home values. This reinforces the findings in both VIMP and Minimal depth, the
Charles river variable has very little impact on the forest prediction of median home values.

5.2. Partial Dependence.

Partial variable dependence plots are a risk adjusted alternative to variable dependence. Par-
tial plots are generated by integrating out the effects of all variables beside the covariate of
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Figure 8: Variable dependence for Charles River logical variable.

interest. Partial dependence data are constructed by selecting points evenly spaced along the
distribution of the X variable of interest. For each value (X = x), we calculate the average
RF prediction over all other covariates in X by

f̃(x) =
1

n

n∑
i=1

f̂(x, xi,o),

where f̂ is the predicted response from the random forest and xi,o is the value for all other
covariates other than X = x for the observation i (Friedman 2000). Essentially, we average a
set of predictions for each observation in the training set at the value of X = x. We repeating
the process for a sequence of X = x values to generate the estimated points to create a partial
dependence plot.

Partial plots are another computationally intensive analysis, especially when there are a large
number of observations. We again turn to our data caching strategy here. The default
parameters for the randomForestSRC::plot.variable function generate partial dependence
estimates at npts=25 points (the default value) along the variable of interest. For each point
of interest, the plot.variable function averages n response predictions. This is repeated for
each of the variables of interest and the results are returned for later analysis.

R> # Load the data, from the call:

R> # partial_Boston <- plot.variable(rfsrc_Boston,

R> # xvar=gg_md$topvars,

R> # partial=TRUE, sorted=FALSE,

R> # show.plots = FALSE )

R> data(partial_Boston)

R>

R> # generate a list of gg_partial objects, one per xvar.

R> gg_p <- gg_partial(partial_Boston)
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R>

R> # plot the variable list in a single panel plot

R> plot(gg_p, panel=TRUE) + #xvar=xvar, se=FALSE

+ labs(y=st.labs["medv"], x="") +

+ geom_smooth(se=FALSE)
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Figure 9: Partial dependence panels. Risk adjusted variable dependence for variables in
minimal depth rank order.

We again order the panels by minimal depth ranking. We see again how the lstat and rm

variables are strongly related to the median value response, making the partial dependence
of the remaining variables look flat. We also see strong nonlinearity of these two variables.
The lstat variable looks rather quadratic, while the rm shape is more complex.

We could stop here, indicating that the RF analysis has found these ten variables to be impor-
tant in predicting the median home values. That increasing lstat (percentage population of
lower status) values are associated with decreasing median home values (medv) and increasing
‘rm > 6‘ (number of rooms > 6) are associated with increasing median home values. However,
we may also be interested in investigating how these variables work together to help improve
the random forest prediction of median home values.

6. Variable Interactions
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Using the different variable dependence measures, it is also possible to calculate measures
of pairwise interactions among variables. Recall that minimal depth measure is defined by
averaging the tree depth of variable i relative to the root node. To detect interactions, this
calculation can be modified to measure the minimal depth of a variable j with respect to the
maximal subtree for variable i (Ishwaran et al. 2010; Ishwaran, Kogalur, Chen, and Minn
2011).

The randomForestSRC::find.interaction function traverses the forest, calculating all pair-
wise minimal depth interactions, and returns a p×p matrix of interaction measures. For each
row, the diagonal terms are are related to the minimal depth relative to the root node, though
normalized to minimize scaling issues. Each off diagonal minimal depth term is relative to
the diagonal term on that row. Small values indicate that an off diagonal term typically splits
close to the diagonal term, indicating an forest split proximity of the two variables.

The gg_interaction function wraps the find.interaction matrix for use with the pro-
vided plot and print functions. The xvar argument indicates which variables we’re interested
in looking at. We again use the cache strategy, and collect the figures together using the
panel=TRUE option.

R> # Load the data, from the call:

R> # interaction_Boston <- find.interactions(rfsrc_Boston)

R> data(interaction_Boston)

R>

R> # Plot the results in a single panel.

R> plot(gg_interaction(interaction_Boston),

+ xvar=gg_md$topvars, panel=TRUE)

The gg_interaction figure plots the interactions for the target variable (shown in the red
cross) with interaction scores for all remaining variables. We expect the covariate with lowest
minimal depth (lstat) to be associated with almost all other variables, as it typically splits
close to the root node, so viewed alone it may not be as informative as looking at a collection
of interactive depth plots. Scanning across the panels, we see each successive target depth
increasing, as expected. We also see the interactive variables increasing with increasing target
depth. Of interest here is the interaction of lstat with the rm variable shown in the rm panel.
Aside from these being the strongest variables by both measures, this interactive measure
indicates the strongest connection between variables.

7. Coplots

Conditioning plots (coplots) (Chambers 1992; Cleveland 1993) are a powerful visualization
tool to efficiently study how a response depends on two or more variables (Cleveland 1993).
The method allows us to view data by grouping observations on some conditional membership.
The simplest example involves a categorical variable, where we plot our data conditional on
class membership, for instance on the Charles river logical variable. We can view a coplot
as a stratified variable dependence plot, indicating trends in the RF prediction results within
panels of group membership.

Conditional membership with a continuous variable requires stratification at some level. Often
we can make these stratification along some feature of the variable, for instance a variable
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Figure 10: Minimal depth variable interactions. Reference variables are marked with red cross
in each panel. Higher values indicate lower interactivity with reference variable.

with integer values, or 5 or 10 year age group cohorts. However in the variables of interest
in our Boston housing example, we have no ”logical” stratification indications. Therefore we
will arbitrarily stratify our variables into 6 groups of roughly equal population size using
the quantile_pts function. We pass the break points located by quantile_pts to the cut

function to create grouping intervals, which we can then add to the gg_variable object before
plotting with the plot.gg_variable function. The simple modification to convert variable
dependence plots into condition variable dependence plots is to use the ggplot2::facet_wrap
command to generate a panel for each grouping interval.

We start by examining the predicted median home value as a function of lstat conditional
on membership within 6 groups of rm “intervals”.

R> # Find the rm variable points to create 6 intervals of roughly

R> # equal size population

R> rm_pts <- quantile_pts(rfsrc_Boston$xvar$rm, groups=6,

+ intervals=TRUE)

R>

R> # Pass these variable points to create the 6 (factor) intervals

R> rm_grp <- cut(rfsrc_Boston$xvar$rm, breaks=rm_pts)

R>

R> # Append the group factor to the gg_variable object
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R> gg_v$rm_grp <- rm_grp

R>

R> # Modify the labels for descriptive panel titles

R> levels(gg_v$rm_grp) <- paste("rm in ",

+ levels(gg_v$rm_grp), sep="")

R>

R> # Create a variable dependence (co)plot,

R> # faceted on group membership.

R> plot(gg_v, xvar = "lstat", alpha = .5)+

+ # method = "loess", span=1.5, se = FALSE) +

+ labs(y = st.labs["medv"], x=st.labs["lstat"]) +

+ theme(legend.position = "none") +

+ scale_color_brewer(palette = "Set3") +

+ # geom_smooth(se=FALSE) +

+ facet_wrap(~rm_grp)

rm in (3.56,5.73] rm in (5.73,5.98] rm in (5.98,6.21]
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Figure 11: Variable Coplots. Predicted median home values as a function of percentage of
lower status population, stratified by average number of rooms groups.

Each point in this figure is the predicted median home value response plotted against lstat
value conditional on rm being on the interval specified. We again use the smooth loess curve
to get an idea of the trend within each group. Overall, median values continue to decrease
with increasing lstat, and increases with increasing rm. In addition to trends, we can also
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examine the conditional distribution of variables. Note that smaller homes (rm) in high status
(lower lstat) neighborhoods still have high predicted median values, and that there are more
large homes in the higher status neighborhoods (bottom right panel).

A single coplot gives us a grouped view of a variable (rm), along the primary variable dimension
(lstat). To get a better feel for how the response depends on both variables, it is instructive
to look at the complement coplot. We repeat the previous coplot process, predicted median
home value as a function of the rm variable, conditional on membership within 6 groups lstat
intervals.

R> # Find the lstat variable points to create 6 intervals of roughly

R> # equal size population

R> lstat_pts <- quantile_pts(rfsrc_Boston$xvar$lstat, groups=6, intervals=TRUE)

R>

R> # Pass these variable points to create the 6 (factor) intervals

R> lstat_grp <- cut(rfsrc_Boston$xvar$lstat, breaks=lstat_pts)

R>

R> # Append the group factor to the gg_variable object

R> gg_v$lstat_grp <- lstat_grp

R>

R> # Modify the labels for descriptive panel titles

R> levels(gg_v$lstat_grp) <- paste("lstat in ", levels(gg_v$lstat_grp), " (%)",sep="")

R>

R> # Create a variable dependence (co)plot, faceted on group membership.

R> plot(gg_v, xvar = "rm", alpha = .5)+

+ #method = "loess", span=1.5, , se = FALSE) +

+ labs(y = st.labs["medv"], x=st.labs["rm"]) +

+ theme(legend.position = "none") +

+ scale_color_brewer(palette = "Set3") +

+ # geom_smooth() +

+ #scale_shape_manual(values = event.marks, labels = event.labels)+

+ facet_wrap(~lstat_grp)

We get similar information from this view, predicted median home values decrease with in-
creasing lstat percentage and decreasing rm. However viewed together we get a better sense
of how the lstat and rm variables work together (interact) in the median value prediction.

Note that typically Cleveland (1993) conditional plots for continuous variables included over-
lapping intervals along the grouped variable. We chose to use mutually exclusive continuous
variable intervals for multiple reasons:

• Simplicity - We can create the coplot figures directly from the gg_variable object by
adding a conditional group column directly to the object.

• Interpretability - We find it easier to interpret and compare the panels if each observation
is only in a single panel.

• Clarity - We prefer using more space for the data portion of the figures than typically
displayed in the coplot function available in base R, which require the bar plot to
present the overlapping segments.
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Figure 12: Variable Coplots. Predicted median home value as a function of average number
of rooms, stratified by percentage of lower status groups.

It is still possible to augment the gg_variable to include overlapping conditional membership
with continuous variables by duplicating rows of the object, and setting the correct conditional
group membership. The plot.gg_variable function recipe above could then be used to
generate the panel plot, with panels ordered according to the factor levels of the grouping
variable. We leave this as an exercise for the reader.

7.1. Partial dependence coplots

By characterizing conditional plots as stratified variable dependence plots, the next logical step
would be to generate an analogous conditional partial dependence plot. The process is similar
to variable dependence coplots, first determine conditional group membership, then calculate
the partial dependence estimates on each subgroup using the randomForestSRC::plot.variable
function with a the subset argument for each grouped interval. The ggRandomForests::gg_partial_coplot
function is a wrapper for generating a conditional partial dependence data object. Given a ran-
dom forest (randomForestSRC::rfsrc object) and a groups vector for conditioning the train-
ing data set observations, gg_partial_coplot calls the randomForestSRC::plot.variable

function for a set of training set observations conditional on groups membership. The func-
tion returns a gg_partial_coplot object, a sub class of the gg_partial object, which can
be plotted with the plot.gg_partial function.
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The following code block will generate the data object for creating partial dependence coplot
of the predicted median home value as a function of lstat conditional on membership within
the 6 groups of rm ”intervals” that we examined in the previous section.

R> partial_coplot_Boston <- gg_partial_coplot(rfsrc_Boston, xvar="lstat",

+ groups=rm_grp,

+ show.plots=FALSE)

Since the gg_partial_coplot makes a call to randomForestSRC::plot.variable for each
group (6) in the conditioning set, we again resort to the data caching strategy, and load
the stored result data from the ggRandomForests package. We modify the legend label to
indicate we’re working with groups of the “Room” variable, and use the palette="Set1" from
the RColorBrewer package (Neuwirth 2014) to choose a nice color theme for displaying the
six curves.

R> # Load the stored partial coplot data.

R> data(partial_coplot_Boston)

R>

R> # # Partial coplot

R> # plot(partial_coplot_Boston) + ## Looks like a dangling or missing '+' characer in the plot.gg_partial_coplot

R> ggplot(partial_coplot_Boston, aes(x=lstat, y=yhat, col=group, shape=group))+

+ geom_point()+

+ geom_smooth(se=FALSE, alpha=.25)+

+ labs(x=st.labs["lstat"], y=st.labs["medv"],

+ color="Room", shape="Room")+

+ scale_color_brewer(palette="Set1")

Unlike variable dependence coplots, we do not need to use a panel format for partial depen-
dence coplots because we are looking risk adjusted estimates (points) instead of population
estimates. The figure has a loess curve through the point estimates conditional on the rm in-
terval groupings. The figure again indicates that larger homes (rm from 6.87 and up, shown in
yellow) have a higher median value then the others. In neighborhoods with higher lstat per-
centage, the Median values decrease with rm until it stabilizes from the intervals between 5.73
and 6.47, then decreases again for values smaller than 5.73. In lower lstat neighborhoods,
the effect of smaller rm is not as noticeable.

We can view the partial coplot curves as slices along a surface viewed into the page, either
along increasing or decreasing rm values. This is made more difficult by our choice to select
groups of similar population size, as the curves are not evenly spaced along the rm variable.
We return to this problem in the next section.

We also construct the complement view, for partial dependence coplot of the predicted median
home value as a function of rm conditional on membership within the 6 groups of lstat

“intervals”, and cache the following gg_partial_coplot data call, and plot the results with
the plot.gg_variable call:

R> partial_coplot_Boston2 <- gg_partial_coplot(rfsrc_Boston, xvar="rm",

+ groups=lstat_grp,

+ show.plots=FALSE)
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Figure 13: Partial Coplots. Risk adjusted predicted median value as a function of Lower
Status, conditional on groups of average number of rooms.

R> # Load the stored partial coplot data.

R> data(partial_coplot_Boston2)

R>

R> # Partial coplot

R> #plot(partial_coplot_Boston2)+ ## again plot.gg_partial_coplot

R> ggplot(partial_coplot_Boston, aes(x=lstat, y=yhat, col=group, shape=group))+

+ geom_point()+

+ geom_smooth(se=FALSE)+

+ labs(x=st.labs["rm"], y=st.labs["medv"],

+ color="Lower Status", shape="Lower Status")+

+ scale_color_brewer(palette="Set1")

This figure indicates that the median home value does not change much until the rm increases
above 6.5, then flattens again above 8, regardless of the lstat value. This agrees well with
the rm partial plot(Section 5.2) shown earlier. Again, care must be taken in interpreting the
even spacing of these curves along the percentage of lstat groupings, as again, we chose these
groups to have similar sized populations, not to be evenly spaced along the lstat variable.
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Figure 14: Partial Coplots. Risk adjusted predicted median value as a function of average
number of rooms, conditional on groups of percentage of lower status population.

8. Partial plot surfaces

Visualizing two dimensional projections of three dimensional data is difficult, though there
are tools available to make the data more understandable. To make the interplay of lower
status and average room size a bit more understandable, we will generate a contour partial
plot of the median home values. We could generate this figure with the coplot data we already
have, but the resolution would be a bit strange. To generate the plot of lstat conditional
on rm groupings, we would end up with contours over a grid of lstat= 25× rm= 6, for the
alternative rm conditional on lstat groups, we’d have the transpose grid of lstat= 6× rm=
25.

Since we are already using the data caching strategy, we will generate another set of gg_partial
objects with increased resolution in both the lstat and rm dimensions. For this exercise, we
will find 50 points evenly spaced along the rm variable values, and generate a partial plot
curve for each point. For these partial plots, we will evaluate the risk adjusted median home
value over ‘npts=50‘ points along the lstat variable. This code block finds 50 rm values
evenly spaced along the distribution of rm.

R> # Find the quantile points to create 50 cut points

R> rm_pts <- quantile_pts(rfsrc_Boston$xvar$rm, groups=50)
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We use the following data call to generate the partial plots with the randomForestSRC::plot.variable
call. Within the lapply call, we use scope to modify the value of the rm variable within the
rfsrc_Boston training set. Since all values in the training set are the same, the averaged
value of rm places each partial plot curve at a specific value of rm. This code block took about
20 minutes to run on a quad core Mac Air using a single processor.

The cached data is stored in the partial_Boston_surf data set in the ggRandomForests

package. The data set is a list of 50 plot.variable objects. This code block loads the
data, converts the plot.variable objects to gg_partial objects, attaches numeric values
for the rm variable, and generates the contour plot.

R> # Generate the gg_partial_coplot data object

R> system.time(partial_Boston_surf <- lapply(rm_pts, function(ct){

+ rfsrc_Boston$xvar$rm <- ct

+ plot.variable(rfsrc_Boston, xvar = "lstat", time = 1,

+ npts = 50, show.plots = FALSE,

+ partial = TRUE)

+ }))

R> # user system elapsed

R> # 1109.641 76.516 1199.732

R> # Load the stored partial coplot data.

R> data(partial_Boston_surf)

R>

R> # Instead of groups, we want the raw rm point values,

R> # To make the dimensions match, we need to repeat the values

R> # for each of the 50 points in the lstat direction

R> rm.tmp <- do.call(c,lapply(rm_pts,

+ function(grp){rep(grp, 50)}))

R>

R> # Convert the list of plot.variable output to

R> partial_surf <- do.call(rbind,lapply(partial_Boston_surf, gg_partial))

R>

R> # attach the data to the gg_partial_coplot

R> partial_surf$rm <- rm.tmp

R>

R> # ggplot2 contour plot of x, y and z data.

R> ggplot(partial_surf, aes(x=lstat, y=rm, z=yhat))+

+ stat_contour(aes(colour = ..level..), binwidth = .5)+

+ labs(x=st.labs["lstat"], y=st.labs["rm"],

+ color="Median Home Values")+

+ scale_colour_gradientn(colours=topo.colors(10))

The contours are generated over the raw gg_partial estimation points, not smooth curves
as shown in the partial plot (Section 5.2) and partial coplot (Section 7.1) figures previously.
Contour lines, like topographic maps, are concentrated where the slope of the surface is large.
We use color to indicate the direction of the contour lines, so that lower median home values
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Figure 15: Partial coplot contour plot. Contours of median home value along the lstat/rm
plane.

are concentrated in the lower right hand corner, and the values increase along the diagonal
toward the upper right. The close contour lines indicate some thing like a step in values at 7
and 7.5 rooms, and at 5, 10 and 15% lstat.

Contour plots are still a little difficult to interpret. However, we can also generate a surface
with this data using the plot3D package (Soetaert 2014) and the plot3D::surf3D function.
Viewed in 3D, a surface can help to better understand what the contour lines are showing us.

R> # Modify the figure margins to make the figure larger

R> par(mai = c(0,0,0,0))

R>

R> # Transform the gg_partial_coplot object into a list of three named matrices

R> # for surface plotting with plot3D::surf3D

R> suppressWarnings(

+ srf <- surface_matrix(partial_surf, c("lstat", "rm", "yhat"))

+ )

R>

R> # Generate the figure.

R> surf3D(x=srf$x, y=srf$y, z=srf$z, col=topo.colors(10),

+ colkey=FALSE, border = "black", bty="b2",
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+ shade = 0.5, expand = 0.5,

+ lighting = TRUE, lphi = -50,

+ xlab="Lower Status", ylab="Average Rooms", zlab="Median Value"

+ )
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Figure 16: Partial plot surface.

These figures reinforce the previous findings, where lower home values are associated with
higher lstat percentage, and higher values are associated with larger rm. The difference in
this figure is we can see how the predicted values change as we move around the map of
lstat and rm combinations. We do still need to be careful though, as partial plots average
over values on the surface that are note supported by actual observations.

9. Conclusion

In this vignette, we have demonstrated the use of the ggRandomForests package to explore
a regression random forest built with the randomForestSRC package. We have shown how
to create a random forest model (Section 3) and determine which variables contribute to the
forest prediction accuracy using both VIMP (Section 4.1) and Minimal Depth (Section 4.2)
measures. We outlined how to investigate variable associations with the response variable us-
ing variable dependence (Section 5.1) and the risk adjusted partial dependence (Section 5.2)
plots. We’ve also explored variable interactions by using pairwise minimal depth interactions
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(Section 6) and directly viewed these interactions using variable dependence coplots (Sec-
tion 7) and partial dependence coplots (Section 7.1). Along the way, we’ve demonstrated the
use of additional commands from the ggplot2 package for modifying and customizing results
from ggRandomForests.
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