
iRefR – An R package to manage the iRefIndex

Consolidated Protein Interaction Database

Antonio Mora

Contents

1 Installing and Running 2

2 Getting iRefIndex 2

3 ID Conversion 5

3.1 create id conversion table . 6
3.2 convert protein ID . 6

4 Browsing the Database 7

4.1 select interaction type . 7
4.2 select protein . 8
4.3 select database . 10
4.4 select confidence . 11

5 Table format conversion 11

5.1 convert MITAB to edgeList . 12
5.2 convert edgeList to MITAB . 13
5.3 convert MITAB to complexList 14
5.4 convert complexList to MITAB 15
5.5 merge complexes lists . 16

6 Statistical functions 16

6.1 summary protein . 16
6.2 summary table . 18

7 Graphical functions 19

7.1 convert edgeList to graph . 20
7.2 convert edgeList to graph -Alternative Exercise 22
7.3 convert graph to edgeList . 23
7.4 summary graph . 24

8 Bugs and Suggestions 25

A Software needed to install packages from source using Windows 26

B Code for selecting only human-human or E.coli-E.coli interac-

tions 27

1

iRefIndex is “an index of protein interactions available in a number of pri-
mary interaction databases including BIND, BioGRID, CORUM, DIP, HPRD,
IntAct, MINT, Mpact, MPPI and OPHID... This index allows the user to search
for a protein and retrieve a non-redundant list of interactors for that protein”
(http://biotin.uio.no/wiki/iRefIndex).

iRefR is an R package that allows the user to load any version of the con-
solidated protein interaction database iRefIndex and perform tasks such as:
selecting databases, publications, experimental methods, searching for specific
proteins, separate binary interactions from complexes and polymers, convert
different protein identifiers, generate complexes according to an algorithm that
looks after possible misrepresented complexes, make general database statistics
and create network graphs, among others.

The following tutorial introduces the basic use of this package. The details
of each function and its arguments can be found in the package’s help files, so
you might want to use this tutorial and the help files together.

1 Installing and Running

To install the package from CRAN, type install.packages("iRefR").
To install iRefR from source: If you are using Linux, copy the file

iRefR_0.93.tar.gz to your .../R/library/ directory. Open a terminal and
run the gzipped file using R CMD INSTALL iRefR_0.93.tar.gz -html -example.
If you are using Windows, a similar process can be followed, using the Windows
built file (R CMD INSTALL iRefR_0.93.zip -html -example); however, R for
Windows needs installing several tools in order to install packages from source.
Some help to do that is provided in Appendix A.
iRefR depends on three packages: The igraph package, which can be installed
from CRAN as explained before, and the packages graph and RBGL, which can
be installed from Bioconductor as described in http://www.bioconductor.

org/install/index.html.
Once installed, run R and call the package using:

> library(iRefR)

A warning message will appear indicating that the package igraph shares
one function name with the package graph and one with RBGL. This is only
relevant if you are planning to use those functions, in which case you must specify
the package to use (f.ex., igraph::degree). If there are no error messages, you
can start this tutorial. Read the headings of each exercise, run the examples
in your R terminal and analyze the results. If you want to understand better
the arguments and outputs of the functions, open the provided help file for the
corresponding function (typing ?name-of-the-function). This tutorial has
been included in the folder .../iRefR/doc. The tutorial was tested using R
2.13.1.

2 Getting iRefIndex

get irefindex allows the user to download the iRefIndex consolidated database
from its FTP site. By default, the file(s) are copied to the working directory,

2

http://biotin.uio.no/wiki/iRefIndex
http://www.bioconductor.org/install/index.html
http://www.bioconductor.org/install/index.html

but you can also specify the path of a folder you can access, as explained in the
documentation of the function.

> irefindex_80_mouse = get_irefindex("10090", "8.0", getwd())

Reading available iRefIndex file...

> irefindex_80_rat = get_irefindex(tax_id="10116", iref_version="8.0",

+ data_folder=getwd())

Reading available iRefIndex file...

> irefindex_80_cerevisiae = get_irefindex(tax_id="4932", data_folder=

+ getwd())

Reading available iRefIndex file...

> irefindex_80_celegans = get_irefindex(tax_id="6239")

Reading available iRefIndex file...

> irefindex_80_fly = get_irefindex("7227", "8.0")

Reading available iRefIndex file...

> irefindex_80_ecoli = get_irefindex(tax_id="562", iref_version="8.0")

Reading available iRefIndex file...

> irefindex_80_human = get_irefindex("9606", "8.0")

Reading available iRefIndex file...

> irefindex_curr_human = get_irefindex("9606", "current", getwd())

Reading available iRefIndex file...

> irefindex_curr_ecoli = get_irefindex("562", data_folder=getwd())

Reading available iRefIndex file...

Note: To june 2011, current=“8.0”.
Edit one of the tables to see the contents of an iRefIndex flat file. You will

see that every line corresponds to an interaction between a pair of proteins, and
every column stores diferent types of information about that interaction. This
format is called MITAB 2.6 (see: http://irefindex.uio.no/wiki/README_

MITAB2.6_for_iRefIndex_7.0).

edit(irefindex_curr_human[1:10,])

The Human iRefIndex version 8.0 contains 355104 interaction entries with
54 different types of information per interaction. Read the column names to
find out what type of information is available.

> dim(irefindex_curr_human)

3

http://irefindex.uio.no/wiki/README_MITAB2.6_for_iRefIndex_7.0
http://irefindex.uio.no/wiki/README_MITAB2.6_for_iRefIndex_7.0

[1] 355104 54

> colnames(irefindex_curr_human)

[1] "X.uidA" "uidB"

[3] "altA" "altB"

[5] "aliasA" "aliasB"

[7] "method" "author"

[9] "pmids" "taxa"

[11] "taxb" "interactionType"

[13] "sourcedb" "interactionIdentifier"

[15] "confidence" "expansion"

[17] "biological_role_A" "biological_role_B"

[19] "experimental_role_A" "experimental_role_B"

[21] "interactor_type_A" "interactor_type_B"

[23] "xrefs_A" "xrefs_B"

[25] "xrefs_Interaction" "Annotations_A"

[27] "Annotations_B" "Annotations_Interaction"

[29] "Host_organism_taxid" "parameters_Interaction"

[31] "Creation_date" "Update_date"

[33] "Checksum_A" "Checksum_B"

[35] "Checksum_Interaction" "Negative"

[37] "OriginalReferenceA" "OriginalReferenceB"

[39] "FinalReferenceA" "FinalReferenceB"

[41] "MappingScoreA" "MappingScoreB"

[43] "irogida" "irogidb"

[45] "irigid" "crogida"

[47] "crogidb" "crigid"

[49] "icrogida" "icrogidb"

[51] "icrigid" "imex_id"

[53] "edgetype" "numParticipants"

However, those entries correspond to only 138570 distinct interactions, due
to the fact that some interactions are reported more than once, either for a
different source database, experimental method, etc. Each distinct interaction
has an identifier called rigID, which is the one we have used to retrieve this
information.

> length(unique(irefindex_curr_human$irigid))

[1] 138570

Compare the known number of protein interactions for all available organ-
isms in iRefIndex:

> list(ecoli=dim(irefindex_80_ecoli)[1],

+ scerevisiae=dim(irefindex_80_cerevisiae)[1],

+ celegans=dim(irefindex_80_celegans)[1],

+ fly=dim(irefindex_80_fly)[1],

+ mouse=dim(irefindex_80_mouse)[1], rat=dim(irefindex_80_rat)[1],

+ human=dim(irefindex_80_human)[1])

4

$ecoli

[1] 16058

$scerevisiae

[1] 480908

$celegans

[1] 41848

$fly

[1] 154229

$mouse

[1] 49064

$rat

[1] 20309

$human

[1] 355104

It is important to highlight that iRefIndex calls “human interactions” not
only to the interactions between two human proteins but also to any interaction
between a human protein and a protein from a different organism (for example,
a virus or a bacterium). This tutorial will work with all these interactions. In
case the user is interested only in human-human interactions, there is a simple
piece of code provided in Appendix B that could be run at this point.

3 ID Conversion

iRefIndex guarantees the non-redundancy of protein information by assigning
a different protein identifier (called Redundant Object Group, ROG) to every
different protein sequence. This is called the non-canonical representation of a
protein. At the same time, groups of non-redundant proteins might be different
isoforms of a given protein, and, in this case, the identifier of one protein of the
group (called cROG or canonical ROG) is chosen to represent the entire group
of similar proteins. This is called the canonical representation of proteins. The
iROG and icROG identifiers correspond to integer representations of the ROG
and cROG, respectively.

Most of the iRefR functions work with iROGs and icROGs, but the user
might be interested in convert these IDs to a more traditional protein ID, or, in
general, convert between two types of protein IDs. There are two main functions
in iRefR to handle protein ID conversion: create id conversion table allows
to generate a table to convert identifiers between the most important protein
identifiers; and convert protein ID performs the actual conversion from an
ID type to another ID type.

5

3.1 create id conversion table

> id_conversion_table_ecoli =

+ create_id_conversion_table(irefindex_80_ecoli, "data",

+ "id_conversion_table_562_a")

Generating ID Conversion table...

25% completed...

50% completed...

75% completed...

Conversion table has been copied to:

/div/dias/u2/antonimo/R-2.13.1/library/iRefR/data/id_conversion_table_562_a.txt

> id_conversion_table_human =

+ create_id_conversion_table(irefindex_80_human, "data",

+ "id_conversion_table_9606_a")

Generating ID Conversion table...

25% completed...

50% completed...

75% completed...

Conversion table has been copied to:

/div/dias/u2/antonimo/R-2.13.1/library/iRefR/data/id_conversion_table_9606_a.txt

edit(id_conversion_table_human[1:10,])

Note: Approx. Time (default ID types): E.coli: 4 s; H.sapiens: 3’; All
organisms: 18’

This table only needs to be generated once, after getting iRefIndex, and
does not need to be manipulated. When doing an actual ID conversion, the
table will be open by iRefR using the next function.

Only proteins that have known reported protein-protein interactions are in-
cluded in this table. If a protein ID has no reported interactions, ID conversion
is not possible, given that such a protein wouldn’t be relevant for the present
package.

3.2 convert protein ID

> ## converting from geneID to uniprotID

> uniprot_id_value = convert_protein_ID("entrezgene/locuslink", "23214",

+ "uniprotkb", id_conversion_table_human)

The output are two values (A1L3W4 and Q96QU8), indicating that the gene
ID 23214 corresponds to two different UniProt IDs.

> ## converting a list of iROG IDs to RefSeq IDs

> irog_list = c("4772972", "3303645", "3196230", "10724600", "3254823",

+ "3130413")

> refseq_list = list()

> for (i in irog_list) {

+ refseq_list[[i]] = convert_protein_ID("irogid", i, "refseq",

+ id_conversion_table_human)

+ }

6

The output is an R list, where each list element is named after one of the
iROGs in the original list, and the content of such a list element might be
either one value or a vector of values, depending on the case that a given iROG
represents either one or more RefSeq IDs.

4 Browsing the Database

iRefIndex stores information of several databases, proteins and three types of
interactions (binary, complex and polymer). The following functions are useful
to get the specific subset of iRefIndex according to the needs of the user:

select interaction type, select protein, select database and
select confidence select the records belonging to a specified interaction type,
protein ID, primary database or confidence score, respectively.

4.1 select interaction type

> iRef_binary = select_interaction_type("binary", irefindex_curr_human)

> iRef_complex = select_interaction_type("complex", irefindex_curr_human)

> iRef_polymer = select_interaction_type("polymer", irefindex_curr_human)

Generate a pie with the number of binary, complex and polymer records in
iRefIndex. Roughly 7/8 of the human interaction records are binary interac-
tions, while roughly 1/8 corresponds to complex interactions.

> pie_int_type = pie(c(dim(iRef_binary)[1], dim(iRef_polymer)[1],

+ dim(iRef_complex)[1]),labels=c("Binaries","Polymers","Complexes"),

+ main="iRefIndex Records per Interaction Type")

Binaries

Polymers

Complexes

iRefIndex Records per Interaction Type

7

Take a look at the tables of binaries and complexes and observe the differ-
ences between the interactionType and numParticipants columns. You can
see that X is the tag for binary interactions while C is the tag for complexes.
Binary interactions have always 2 participants, while complexes have more than
two.

edit(iRef_binary[1:5,])

edit(iRef_complex[1:5,])

We can also check the number of records and the number of distinct in-
teractions per interaction type: There are 371244 reported binary interaction
records, corresponding to 132889 distinct binary interactions, while there are
122486 complex records, corresponding to 5232 complexes.

> number_binary_interactions = dim(iRef_binary)[1]

> number_distinct_binary_interactions =

+ length(unique(iRef_binary$irigid))

> number_complex_interactions = dim(iRef_complex)[1]

> number_distinct_complex_interactions =

+ length(unique(iRef_complex$irigid))

> list(number_binary_interactions = number_binary_interactions,

+ number_distinct_binary_interactions =

+ number_distinct_binary_interactions,

+ number_complex_interactions = number_complex_interactions,

+ number_distinct_complex_interactions =

+ number_distinct_complex_interactions)

$number_binary_interactions

[1] 301129

$number_distinct_binary_interactions

[1] 132889

$number_complex_interactions

[1] 53125

$number_distinct_complex_interactions

[1] 5232

4.2 select protein

> output_1 = select_protein("irogid", "4566610", irefindex_80_human,

+ "not_full_complex") #P53

> output_2 = select_protein("icrogid", "4566610", irefindex_80_human,

+ "not_full_complex")

> output_3 = select_protein("icrogid", "3484827", irefindex_80_human,

+ "not_full_complex")

> output_4 = select_protein("icrogid", "3484827", irefindex_80_human,

+ "full_complex")

Note that icROG stands for the iRefIndex integer identifier of the canonical
representation of the protein, while iROG stands for the non-canonical version

8

(for the distinction between canonical and non-canonical proteins please read
above or go to the documentation of this function). The full_complex option
indicates that we have retrieved all the interaction records presented in every
complex, besides the ones containing that protein, while not_full_complex

limits the report to only the lines containing that protein, as shown in the
documentation of the function.

In the previous exercise, we have recovered all interaction records for one
protein (irogid=4566610) and its canonical counterpart (irogid=3484827). In
the first case, the search retrieves 46 records in iRefIndex/MITAB format. The
second case does not retrieve any record, meaning that such a protein iden-
tifier does not exist. This is because the canonical protein representing the
irogid=4566610 is not 4566610 but 3484827, and 4566610 was never used as a
canonical protein. We can know that by converting the irogid to icrogid.

> dim(output_1)

[1] 46 54

> dim(output_2)

[1] 0 54

> convert_protein_ID("irogid", "4566610", "icrogid",

+ id_conversion_table_human)

[1] "3484827"

In the third exercise, we found that there are 236 records for the canonical
protein of that canonical group. We can find all the irogids for such a group,
to discover that this canonical group contains 68 different proteins, including
3484827 and 4566610. The fourth case is the same third case but adding the
full_complex parameter. We can observe the number of records going from
236 to 378 for this reason.

> dim(output_3)

[1] 236 54

> unique(c(output_3$irogida, output_3$irogidb))

[1] 3484827 5831940 4566610 4831970 2186087 1505377 2697990 4724590

[9] 16583742 4497269 5365786 1961605 4303895 2428575 5824296 4972844

[17] 4497883 4122724 4435463 746078 4691983 4629164 4041918 4577585

[25] 2886402 4867693 2413104 13976011 5335424 1208032 1885413 2857551

[33] 5310451 14005586 517184 16751042 13987717 4615198 878471 5017653

[41] 4819293 4826045 2791218 991986 5254792 4728973 1636625 793231

[49] 5821280 3995154 2583546 11793640 4835255 660830 16743445 16743450

[57] 16743446 16743454 548553 16743443 16743449 16743453 16743452 16743447

[65] 16743442 16743444 16743451 16743448

> dim(output_4)

[1] 378 54

9

iRefR also allows the user to perform a selection of multiple proteins at
the same time. Two examples of this are shown below. In the first case, a list
of tables is generated using a simple for loop. In the second case, the vector
of protein identifiers is directly introduced in the function, generating a single
iRefIndex MITAB table as an output. The first one might be faster while the
second one allows the user to use the output directly into any other iRefR

function.

> irog_list = c("4772972", "3303645", "3196230", "10724600", "3254823",

+ "3130413")

> table_list = list()

> for (i in irog_list) {

+ table_list[[i]] = select_protein("irogid", i,

+ irefindex_80_human, "not_full_complex")

+ }

> table_single = select_protein("irogid", irog_list, irefindex_80_human,

+ "not_full_complex")

4.3 select database

> binary_INTACT = select_database("intact", iRef_binary,

+ "this_database")

> binary_non_INTACT = select_database("intact", iRef_binary,

+ "except_this_database")

> complex_INTACT_CORUM = select_database(c("intact", "CORUM"),

+ iRef_complex, "this_database")

> complex_non_INTACT_CORUM = select_database(c("intact", "CORUM"),

+ iRef_complex, "except_this_database")

In the first exercise, only the binary records coming from the primary database
IntAct has been selected. In the second case, all binary records of iRefIndex
are selected except for those coming from IntAct. The third case selects all
complex records coming from the primary databases IntAct and CORUM. The
last case, all complexes records after removal of IntAct and CORUM.

> dim(binary_INTACT)

[1] 39969 54

> dim(binary_non_INTACT)

[1] 261160 54

> dim(complex_INTACT_CORUM)

[1] 26313 54

> dim(complex_non_INTACT_CORUM)

[1] 26812 54

By default, iRefIndex includes both experimental and computationally pre-
dicted interactions. Besides allowing the user to make analyses per database,
this function can be also important to include or exclude predicted interactions
in the analysis, which can be done by selecting the OPHID database (select only
predicted), or excluding it (excluding predicted).

10

4.4 select confidence

> high_confidence_complexes = select_confidence("lpr", c(1, 3:10),

+ iRef_complex)

> dim(high_confidence_complexes)

[1] 19434 54

iRefIndex includes three bibliometric confidence scores of an interaction:
The lpr score (lowest pmid re-use) is the lowest number of distinct interactions
(irigids) that any PMID (supporting the interaction in this row) is used to
support. A value of 1 indicates that at least one of the PMIDs supporting this
interaction has never been used to support any other interaction. This likely
indicates that only one interaction was described by that reference and that the
present interaction is not derived from high throughput methods. Other scores
are defined in the documentation and the iRefIndex website.

In the exercise, we have asked for the set of complex interactions whose lpr-
score is equal to 1 or between 3 and 10. The result is a subset of 19434 complex
interaction records.

5 Table format conversion

There are three types of table formats in iRefR: MITAB format, complexList
format and edgeList format.

The MITAB format is an international standard where each line repre-
sents either an interaction between two proteins or between the same pro-
tein or the membership of a protein to a complex, and it is described here:
http://biotin.uio.no/wiki/README_iRefIndex_MITAB_7.0. The iRefIndex
MITAB format includes 54 columns with different types of information regard-
ing each interaction.

The complexList format is a table with two columns, where the first column
corresponds to a group identifier and the second column to a group of proteins,
commonly a complex, written as a comma-separated string. This representation
has less information than the MITAB but simplifies the visualization of groups
of proteins, such as complexes. A similar format is used by complex databases
such as CORUM.

Finally, the edgeList format offers a list of edges and their weights, coming
from binary interactions and/or complexes that has been represented using a
spoke, bipartite or matrix model. This format is mainly used for graphical
purposes.

There are five functions related to table format conversion:
convert MITAB to edgeList,
convert edgeList to MITAB,
convert MITAB to complexList and
convert complexList to MITAB do the format conversions described in their
names. merge complexes lists merges an ordered list of tables in complexList
format.

11

http://biotin.uio.no/wiki/README_iRefIndex_MITAB_7.0

5.1 convert MITAB to edgeList

> ## undirected edges (to generate undirected graphs):

> all_INTACT = select_database("intact", irefindex_curr_ecoli,

+ "this_database")

> binary_INTACT = select_interaction_type("binary", all_INTACT)

> complex_INTACT = select_interaction_type("complex", all_INTACT)

> edgeList_binary_INTACT = convert_MITAB_to_edgeList(binary_INTACT)

> edgeList_complex_INTACT_s = convert_MITAB_to_edgeList(

+ complex_INTACT, "default", "spoke")

> edgeList_complex_INTACT_m = convert_MITAB_to_edgeList(

+ complex_INTACT, "default", "matrix")

> edgeList_all_INTACT = convert_MITAB_to_edgeList(all_INTACT,

+ "default", "spoke")

We have generated four edgeLists: a binary set, a spoke-represented com-
plex set, a matrix-represented complex set and the whole database using spoke-
represented complexes. Note that the matrix model is more time-consuming.
Generating an edgeList for the whole human iRefIndex using a matrix model
can take less than 2 minutes. As expected, spoke models generate less edges
than matrix models (834 vs 5636).

> dim(edgeList_binary_INTACT)

[1] 123 3

> dim(edgeList_complex_INTACT_s)

[1] 834 3

> dim(edgeList_complex_INTACT_m)

[1] 5636 3

> dim(edgeList_all_INTACT)

[1] 951 3

edit(edgeList_binary_INTACT[1:5,])

edit(edgeList_complex_INTACT_s[1:5,])

> ## directed edges (to generate directed bait-prey graphs):

> edgeList_binary_INTACT_dir = convert_MITAB_to_edgeList(

+ binary_INTACT, "default", "bipartite", "yes", "directed")

[1] "Only rows with bait information are included in directed edgeLists"

> edgeList_complex_INTACT_sdir = convert_MITAB_to_edgeList(

+ complex_INTACT, "default", "spoke", "yes", "directed")

> edgeList_all_INTACT_dir = convert_MITAB_to_edgeList(all_INTACT,

+ "default", "spoke", "yes", "directed")

[1] "Only rows with bait information are included in directed edgeLists"

12

Here we generated three directed examples. In a directed edgeList, the
arrow will point from the first node to the second node. Compare the undirected
edgeList to the directed one: Only 108 binary edges (versus 123 in the undirected
case) while 849 complex-spoke edges (versus 834 in the undirected case). The
reason for having less binary edges is that only rows with bait information are
included in binary directed edgeLists. The reason of having more complex-
spoke edges is that some complexes have more than one bait, giving origin to
bidirectional edges (represented in an edgeList as two different edges in opposite
direction).

> dim(edgeList_binary_INTACT_dir)

[1] 108 3

> dim(edgeList_complex_INTACT_sdir)

[1] 849 3

> dim(edgeList_all_INTACT_dir)

[1] 954 3

5.2 convert edgeList to MITAB

> new_binary = convert_edgeList_to_MITAB(edgeList_binary_INTACT,

+ irefindex_curr_ecoli, "yes", "binary")

> reconstructed_binary_INTACT = select_database("intact",

+ new_binary, "this_database")

> setequal(dim(binary_INTACT), dim(reconstructed_binary_INTACT))

[1] TRUE

> new_complex_s = convert_edgeList_to_MITAB(

+ edgeList_complex_INTACT_s, irefindex_curr_ecoli, "yes",

+ "complex")

> reconstructed_complex_INTACT_s = select_database("intact",

+ new_complex_s, "this_database")

> setequal(dim(complex_INTACT), dim(reconstructed_complex_INTACT_s))

[1] TRUE

> new_all = convert_edgeList_to_MITAB(edgeList_all_INTACT,

+ irefindex_curr_ecoli)

> reconstructed_all_INTACT = select_database("intact", new_all,

+ "this_database")

> setequal(dim(all_INTACT), dim(reconstructed_all_INTACT))

[1] TRUE

In this exercise, we have reconstructed the original MITAB tables from the
edgeLists we generated in the previous exercise. The human case is more time-
consuming and the cases with the whole database and the matrix model can
take several hours. Note that the dimensions would not be equal for the directed
case at previous examples because only records with baits can be reconstructed.
Directed edgeLists only include information with baits, so that all other cases
are ignored during edgeList generation and there is no way to go back to the
complete original MITAB.

13

5.3 convert MITAB to complexList

> known_complexes_ecoli_complexList =

+ convert_MITAB_to_complexList(irefindex_curr_ecoli,

+ canonical_rep="yes", include_generated_complexes="no",

+ list_methods="default")

> generated_complexes_ecoli_complexList =

+ convert_MITAB_to_complexList(

+ select_interaction_type("binary", irefindex_curr_ecoli),

+ canonical_rep="yes", include_generated_complexes="yes",

+ list_methods="default")

> all_complexes_ecoli_complexList = convert_MITAB_to_complexList(

+ irefindex_curr_ecoli, canonical_rep="yes",

+ include_generated_complexes="yes", list_methods="default")

This function does convert a table from MITAB format to complexList for-
mat. To do that, it does convert all interactions listed as complexes in the
MITAB table and, optionally, check if some groups of binary interactions can
be interpreted as complexes (possibly misrepresented or binary-represented),
according to an iRefR algorithm that searches for groups of proteins coming
from co-precipitation experiments, sharing the same PMID, source database
and bait. In this exercise, we generate three complexLists: one for the known
complexes (124 complexes), one for the generated complexes from binary data
(505 complexes) and one for the combined case. Note that the names of the
known complexes are just the irigids or icrigids, while the names of generated
complexes are composed of the source database, PMID, experimental method
and bait they were generated from.

> dim(known_complexes_ecoli_complexList)

[1] 124 2

> dim(generated_complexes_ecoli_complexList)

[1] 505 2

> dim(all_complexes_ecoli_complexList)

[1] 629 2

edit(known_complexes_ecoli_complexList[1:5,])

edit(generated_complexes_ecoli_complexList[1:5,])

This function might generate repeated complexes; f.ex. when the same
complex is generated from two different sources. If the user wants a list of
unique complexes, the unique function must be applied after generating the
complexList. In this case, 628 unique complexes.

> length(unique(all_complexes_ecoli_complexList[,2]))

[1] 628

14

5.4 convert complexList to MITAB

> reconstructed_known_ecoli_MITAB =

+ convert_complexList_to_MITAB(known_complexes_ecoli_complexList,

+ irefindex_curr_ecoli, "yes", "no")

> reconstructed_generated_ecoli_MITAB =

+ convert_complexList_to_MITAB(

+ generated_complexes_ecoli_complexList, irefindex_curr_ecoli,

+ "yes", "yes")

> reconstructed_all_ecoli_MITAB = convert_complexList_to_MITAB(

+ all_complexes_ecoli_complexList, irefindex_curr_ecoli,

+ "yes", "yes")

In this exercise, we have reconstructed the original MITAB tables from the
complexLists we generated in the previous exercise. Note that, in the first
case (only real known complexes), all complex interactions were correctly re-
constructed. However, in the second and third cases, smaller tables are recon-
structed: That is because only the known complexes plus the binary interactions
that were used to construct complexes can be recovered; the other binaries were
previously ignored.

> setequal(dim(select_interaction_type("complex", irefindex_curr_ecoli)),

+ dim(reconstructed_known_ecoli_MITAB))

[1] TRUE

> setequal(dim(select_interaction_type("binary", irefindex_curr_ecoli)),

+ dim(reconstructed_generated_ecoli_MITAB))

[1] FALSE

> setequal(dim(irefindex_curr_ecoli), dim(reconstructed_all_ecoli_MITAB))

[1] FALSE

It is possible, however, to use the reconstructed MITAB tables to regenerate
the complexList tables and compare them to the originals. In this case, it is
reported that the functions are successful converting forth and back between
these two formats.

> reconstructed_generated_complexList =

+ convert_MITAB_to_complexList(

+ reconstructed_generated_ecoli_MITAB, canonical_rep="yes",

+ include_generated_complexes="yes")

> setequal(dim(generated_complexes_ecoli_complexList),

+ dim(reconstructed_generated_complexList))

[1] TRUE

> reconstructed_all_complexList = convert_MITAB_to_complexList(

+ reconstructed_all_ecoli_MITAB, canonical_rep="yes",

+ include_generated_complexes="yes")

> setequal(dim(all_complexes_ecoli_complexList),

+ dim(reconstructed_all_complexList))

[1] TRUE

15

5.5 merge complexes lists

> consolidated_complexList = merge_complexes_lists(

+ list(known_complexes_ecoli_complexList,

+ generated_complexes_ecoli_complexList))

The new table will merge the two previous ones, but repeated complexes will
stay only in the first (known complexes) table. One application of this function
might be finding the number of repeated complexes both inside each of the lists
and between the two lists. In this case, 1 complex has been repeated.

> print(paste(

+ "Number_complexes_repeated_inside_lists_or_between_lists = ",

+ dim(known_complexes_ecoli_complexList)[1] + dim(

+ generated_complexes_ecoli_complexList)[1] - dim(

+ consolidated_complexList)[1]))

[1] "Number_complexes_repeated_inside_lists_or_between_lists = 1"

6 Statistical functions

iRefR contains two main functions to easily report statistics: summary protein

gives the user information on interactors and complexes, for a given protein; and
summary table gives statistical information about some of the columns of a
given iRefIndex/MITAB table.

6.1 summary protein

> output_1 = summary_protein("irogid", "4566610", irefindex_80_human)

> output_2 = summary_protein("icrogid", "4566610", irefindex_80_human)

> output_3 = summary_protein("icrogid", "3484827", irefindex_80_human)

Using the same example than in the search protein function (p53 protein),
we have made summaries of the proteins (instead of recovering the MITAB ta-
ble). In the first example, the non-canonical protein 4566610 presents 14 binary
interactions (14 distinct interactors), 1 complex (with 4 additional subunits) and
no polymer interactions. The second example is the search for a non-existent
canonical ID and the third one is the search with the right canonical ID, giving
us 88 binary interactions and 3 complexes, corresponding to all the proteins of
the canonical group.

> output_1

$summary_interactions_per_protein

table_names table_values

1 irogid 4566610

2 number_interactions_X(#irigids) 14

3 number_interactions_C(#irigids) 1

4 number_interactions_Y(#irigids) 0

5 total_degree(#irigs) 15

16

$interactors_binary

[1] 1208032 1885413 2413104 2428575 2583546 2857551 2886402 3995154 4041918

[10] 4629164 4724590 4831970 4835255 5335424

$interactors_complex

[1] "2399757,2447260,4041918,5335424"

$interactors_polymer

integer(0)

> output_2

$summary_interactions_per_protein

[1] "ERROR. Protein ID not found."

$interactors_binary

[1] "ERROR. Protein ID not found."

$interactors_complex

[1] "ERROR. Protein ID not found."

$interactors_polymer

[1] "ERROR. Protein ID not found."

> output_3

$summary_interactions_per_protein

table_names table_values

1 icrogid 3484827

2 number_interactions_X(#icrigids) 88

3 number_interactions_C(#icrigids) 3

4 number_interactions_Y(#icrigids) 0

5 total_degree(#icrigs) 91

$interactors_binary

[1] 276591 517184 548553 746078 878471 991986 1208032 1505377

[9] 1636625 1885413 1961605 2186087 2428575 2583546 2697990 2791218

[17] 2857551 2886402 3995154 4041918 4122724 4303895 4435463 4497269

[25] 4497883 4577585 4629164 4691983 4724590 4728973 4819293 4826045

[33] 4831970 4835255 4867693 4972844 5017653 5254792 5310451 5335424

[41] 5365786 11793640 14005586 16743442 16743443 16743444 16743445 16743446

[49] 16743447 16743448 16743449 16743450 16743451 16743452 16743453 16743454

$interactors_complex

[1] "2399757,2447260,4041918,5335424"

[2] "66692,201818,321631,351104,369866,390328,399772,448835,746078,862702,899337,931820,104

[3] "2583,29715,50293,105791,327364,632859,775439,804277,972989,1017180,1309159,1471920,147

$interactors_polymer

integer(0)

17

6.2 summary table

> general_human_statistics = summary_table(irefindex_80_human)

> biogrid_statistics = summary_table(select_database("grid",

+ irefindex_80_human, "this_database"))

> complexes_statistics = summary_table(select_interaction_type("complex",

+ irefindex_80_human))

> zhu_paper_statistics = summary_table(

+ irefindex_80_human[which(irefindex_80_human$pmids == "pubmed:9989503"),])

> low_thruput_statistics = summary_table(select_confidence("lpr", c(1,2),

+ irefindex_80_human))

> p53_statistics = summary_table(select_protein("irogid", "4566610",

+ irefindex_80_human, "not_full_complex"))

This function allows the user to see a summary of a MITAB table containing
the number of non-canonical interactions, canonical interactions, non-canonical
proteins, canonical proteins, publications and experimental methods, as well
as the distribution of records per source database, records per interaction type
and records per number of participants in the interactions. The first example
contains the general statistics for the whole human dataset. The second example
is restricted to the BioGrid database: note that all interactions are binary,
and the reason of this is that BioGrid stores complexes directly in a spoke-
represented manner. The third example does the same for all complexes, the
fourth one for one specific paper (note that these interactions have been reported
by several databases), the fifth one for all interactions with an lpr of 1 or 2
(assumed to be low throughput) and the sixth one for one specific protein.

> general_human_statistics

$number_non_canonical_interactions

[1] 138570

$number_canonical_interactions

[1] 125898

$number_non_canonical_proteins

[1] 33180

$number_canonical_proteins

[1] 30690

$number_publications

[1] 26909

$number_experimental_methods

[1] 1632

$source_db_distribution

MI:0000(BIND_Translation) MI:0000(CORUM) MI:0000(MPACT)

2674 8666 12

18

MI:0000(MPPI) MI:0000(ophid) MI:0462(bind)

828 58427 26521

MI:0463(grid) MI:0465(dip) MI:0468(HPRD)

52423 25190 93154

MI:0469(intact) MI:0471(mint)

58398 28811

$interaction_type_distribution

C X Y

53125 301129 850

$number_participants_distribution

1 2 3 4 5 6 7 8 9 10 11

850 301129 11147 5453 3789 2290 1778 1570 1230 1301 1076

12 13 14 15 16 17 18 19 20 21 22

1185 1164 756 773 699 696 657 581 613 420 677

23 24 25 26 27 28 29 30 31 32 33

408 339 376 337 458 551 549 496 246 320 491

34 35 36 37 38 39 40 41 42 43 44

302 318 143 246 114 39 130 164 293 129 88

45 46 47 48 49 51 52 53 54 55 56

45 366 235 143 49 51 52 106 108 110 112

58 59 60 61 62 63 64 65 67 68 69

114 155 61 122 62 188 190 194 200 134 68

70 71 73 75 77 78 79 80 81 82 85

208 141 72 297 154 78 156 159 81 243 169

86 87 88 90 95 100 101 102 104 107 110

82 87 176 89 94 100 101 204 104 106 110

115 116 121 122 128 129 135 137 139 140 143

113 112 120 122 378 162 135 137 139 138 143

147 151 193 219 223 232

147 149 192 218 221 231

biogrid_statistics

complexes_statistics

zhu_paper_statistics

low_thruput_statistics

p53_statistics

7 Graphical functions

So far, iRefR contains three functions related to the graph of the network.
iRefR makes use of the graph, igraph and RBGL packages as dependencies,
so many graph-theoretical related functions may be implemented by the user.
The default graphical package is igraph but the user can specify if he/she wants
to work with graph.

convert edgeList to graph and convert graph to edgeList perform the

19

format conversion between an iRefIndex/edgeList table and a graph object.
summary graph offers some basic information on the given graph.

7.1 convert edgeList to graph

> ## undirected case:

> graph_binary_INTACT = convert_edgeList_to_graph(edgeList_binary_INTACT,

+ "undirected", "igraph")

> graph_complex_INTACT_s = convert_edgeList_to_graph(

+ edgeList_complex_INTACT_s)

> graph_complex_INTACT_m = convert_edgeList_to_graph(

+ edgeList_complex_INTACT_m)

> graph_all_INTACT =

+ convert_edgeList_to_graph(edgeList_all_INTACT)

> summary(graph_binary_INTACT)

Vertices: 193

Edges: 123

Directed: FALSE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

> summary(graph_complex_INTACT_s)

Vertices: 392

Edges: 834

Directed: FALSE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

> summary(graph_complex_INTACT_m)

Vertices: 392

Edges: 5636

Directed: FALSE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

> summary(graph_all_INTACT)

Vertices: 542

Edges: 951

Directed: FALSE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

> ## directed case:

> graph_binary_INTACT_dir = convert_edgeList_to_graph(

20

+ edgeList_binary_INTACT_dir, "directed")

> graph_complex_INTACT_sdir =

+ convert_edgeList_to_graph(

+ edgeList_complex_INTACT_sdir, "directed")

> summary(graph_binary_INTACT_dir)

Vertices: 156

Edges: 108

Directed: TRUE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

> summary(graph_complex_INTACT_sdir)

Vertices: 392

Edges: 849

Directed: TRUE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

In the undirected case, it can be observed that the sum of binary and complex
nodes/vertices and binary and complex edges is not equal to the number of
nodes/vertices and edges in the complete database (all INTACT). This is due
to the existence of polymer interactions, repeated nodes between both lists or
repeated edges between both lists. Comparing the undirected and the directed
cases, it can be observed that, for the binary case, the edge number is smaller
than the undirected case because only interactions with bait information are
used. For the complex spoke case, the edge number is bigger than the undirected
case because edges with two baits give raise to two directed edges and only one
undirected.

After converting the edgeLists to igraph-graphs, we can use the functions
of the igraph package to study their graph properties. The following example
gives the names of all nodes, the names of the nodes with degree equal to 1, one
plot with all six graphs, and one plot with the actual degree distribution of the
binary graph and its corresponding log-log representation.

V(graph_binary_INTACT)$name

V(graph_binary_INTACT)[degree(graph_binary_INTACT) == 1]$name

> par(mfrow=c(2,3))

> plot(graph_binary_INTACT, layout=layout.fruchterman.reingold,

+ vertex.size=3, vertex.color="green", frame=TRUE,

+ main="Binary", vertex.label=NA)

> plot(graph_complex_INTACT_s, layout=layout.fruchterman.reingold,

+ vertex.size=3, vertex.color="green", frame=TRUE,

+ main="Complex Spoke", vertex.label=NA)

> plot(graph_complex_INTACT_m, layout=layout.fruchterman.reingold,

+ vertex.size=3, vertex.color="green", frame=TRUE,

+ main="Complex Matrix", vertex.label=NA)

21

> plot(graph_all_INTACT, layout=layout.fruchterman.reingold,

+ vertex.size=3, vertex.color="green", frame=TRUE,

+ main="Binary and Complex Spoke", vertex.label=NA)

> plot(graph_binary_INTACT_dir, layout=layout.fruchterman.reingold,

+ vertex.size=3, edge.arrow.size=0.3, vertex.color="green",

+ frame=TRUE, main="Binary Directed", vertex.label=NA)

> plot(graph_complex_INTACT_sdir,

+ layout=layout.fruchterman.reingold, vertex.size=3,

+ edge.arrow.size=0.3, vertex.color="green", frame=TRUE,

+ main="Complex Spoke Directed", vertex.label=NA)

Binary

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Complex Spoke

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●● ●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

● ● ●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●●

●

●

●
●

●
●

●●
● ●

●●

●

●

●●

●

● ●

●

●

● ●●
●●

●●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

● ●

●
●

●●

●
●

●●

● ●●●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●● ●

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
●
●●

● ●●
●

●●
●●

●

●

●

Complex Matrix

●

●

●

●●

●
●

●

●

●

●●
●●

●
●

●

● ●

●

●

●

●
●

●

● ●
● ●
●

●
●

●●
●

●

● ●
●

●
●●

● ●

●
●●

●

●
●

●

●

●

●

●
●

●

● ●
●●● ●●

●

●

●
●●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●●

●●

●
●

●●

●
●●

●●●●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●
●

● ●●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●● ●●●●

●

●

●

●

●●

●●

● ●
●●●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●●

● ●
●●
●

●●

● ●
●

●●
●

●

●
●
●

●
●●

●
●

●
●

●●
●

●
●●

●

● ●●

●

●
●

●
●

● ●●

●

● ●

●
●

● ●

●
●

●

●
●

●

●

●
●
●●●

●●

●

●

●
●

●

●●

●
●

●
●

●

●
●●

●

●

●
●●
●●

●

●

●
●

●

●
●

●
●
●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●
●

●
●

●●

●● ●●●●
●

●

● ●●●●●
●

●

●

●

●
●●●

●●●●●

●
●●
●

●
●●
●

●
●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

Binary and Complex Spoke

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●●

●

●●

●

●

●●

●

●
●●

●
●

●

● ● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
● ●

●●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●
●

●

● ●

●

●

●

●
●

●

● ●●

●
●

●

●●●●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●
●

●

●
●● ●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●
●●

●●●

●●

●●●

●

●

Binary Directed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Complex Spoke Directed

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●
●

●

●

●
● ●

●
●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●●

● ●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●
● ●

●●●●
●

●●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●●

●
●

●

●

●

● ●
● ●

●

●

● ●

●
●

●

●

●
● ●

● ●
●

●
●

●
●● ●

●
●●

●

●

●

●

●
●

●

●

●●

●
●

● ●
●

●

●

●
●
●

●

●●
●

● ●

●
●

●
●

par(mfrow=c(1,2))

plot(degree.distribution(graph_binary_INTACT),

main="Degree Distribution (Binary, INTACT, E.coli)")

plot(degree.distribution(graph_binary_INTACT),log="xy",

main="Log-Log Degree Distribution (Binary, INTACT, E.coli)")

7.2 convert edgeList to graph -Alternative Exercise

We can also use graph instead of igraph and several other analysis are possible.
After converting the edgeLists to graph-graphs, we can use the functions of the
graph package to study their graph properties. For example, the summary
of number of nodes and edges, the list of nodes, the number of nodes without
edges, the name of the node with most edges, the adjacent nodes to a given
node and the accesibility of a node to other nodes.

graph_bin_INTACT = convert_edgeList_to_graph(

22

edgeList_binary_INTACT, "undirected", "graph")

graph_com_INTACT_s = convert_edgeList_to_graph(

edgeList_complex_INTACT_s, "undirected", "graph")

graph_com_INTACT_m = convert_edgeList_to_graph(

edgeList_complex_INTACT_m, "undirected", "graph")

graph_bin_INTACT

graph_com_INTACT_s

graph_com_INTACT_m

nodes(graph_bin_INTACT)

numNoEdges(graph_bin_INTACT)

mostEdges(graph_bin_INTACT)

adj(graph_bin_INTACT,"875345")

acc(graph_bin_INTACT, "875345")

As the directed and undirected edgeLists do not have the same size, for
the reasons explained above (using only information with bait and bidirectional
edges), the number of nodes and edges are different between the undirected and
the directed case.

A last application of this function might be finding all edges in a complex
representation that have been confirmed with binary interactions, in case that
a user wants to know how many binary interactions are known and reported
between the members of a given protein complex. That might give us an idea
of either false edges or edges that need to be confirmed. In this example, 11
edges of a matrix model of all complexes of the INTACT database happened to
be confirmed by binary interactions from the same database.

graph_complex_confirmed_by_binaries_INTACT = intersection(

graph_bin_INTACT, graph_com_INTACT_m)

7.3 convert graph to edgeList

> reconstructed_edgeList_binary_INTACT =

+ convert_graph_to_edgeList(graph_binary_INTACT)

> reconstructed_edgeList_binary_INTACT_dir =

+ convert_graph_to_edgeList(graph_binary_INTACT_dir,

+ "directed")

> reconstructed_edgeList_complex_INTACT_s =

+ convert_graph_to_edgeList(graph_complex_INTACT_s)

> reconstructed_edgeList_complex_INTACT_sdir =

+ convert_graph_to_edgeList(graph_complex_INTACT_sdir,

+ "directed")

In this exercise, we have reconstructed four of the edgeLists from their cor-
responding directed or undirected graphs. After comparing the reconstructed
lists to the original ones, it can be observed that the format conversions have
been succesful.

> setequal(dim(edgeList_binary_INTACT),

+

+ dim(reconstructed_edgeList_binary_INTACT))

23

[1] TRUE

> setequal(dim(edgeList_binary_INTACT_dir),

+

+ dim(reconstructed_edgeList_binary_INTACT_dir))

[1] TRUE

> setequal(dim(edgeList_complex_INTACT_s),

+

+ dim(reconstructed_edgeList_complex_INTACT_s))

[1] TRUE

> setequal(dim(edgeList_complex_INTACT_sdir),

+

+ dim(reconstructed_edgeList_complex_INTACT_sdir))

[1] TRUE

All four tests give TRUE when using igraph while give FALSE when using
graph due to the fact that polymer information (loop edges) is not supported
in the iRefR/graph option. The example can take 2 seconds for E.coli and up
to 8’ for human.

7.4 summary graph

> summary = summary_graph(graph_all_INTACT, "igraph")

Vertices: 542

Edges: 951

Directed: FALSE

No graph attributes.

Vertex attributes: name.

Edge attributes: weight.

The function generates a list with information on nodes and edges, degree
distribution and connected components. Histograms of degree distribution and
nodes per connected component are generated, together with a plot of the graph.

summary$nodes_and_edges

table(summary$degree_distribution)

x11(); hist(summary$degree_distribution)

table(summary$nodes_per_connected_component)

x11(); barplot(summary$nodes_per_connected_component,

xlab="Size Components", ylab="Number Components")

title(main="Distribution of Connected Components")

summary$graph_per_module[[1]]

The previous information can also be obtained using the graph package,
with exception of the graph plots, which would need installation and use of the
Rgraphviz package.

24

8 Bugs and Suggestions

Have you found any bug? Is there any particular analysis you would like to
perform using this package? Please send your comments to: i.m.donaldson@

biotek.uio.no

25

i.m.donaldson@biotek.uio.no
i.m.donaldson@biotek.uio.no

A Software needed to install packages from source

using Windows

The easiest way to do it is the following:

1. Go to http://www.murdoch-sutherland.com/Rtools/ and install Rtools213.exe
(this contains R toolset, Cygwin DLLs, MinGW compilers and tools, and
some extras).

2. Go to http://www.miktex.org/, download and install the MiKTeX LATEX
generator.

3. Go to http://msdn.microsoft.com/en-us/library/ms669985.aspx, down-
load and install the Microsoft HTML Help Workshop.

4. Go to http://www.jrsoftware.org/, download and install the Inno Setup
self-installing package.

5. Check your environmental variables (right click on ”My PC”, then system
properties, set environmental variables): There must be a path to the
R-2.13.0/bin directory and a new variable R_LIBS must be set to the
R-2.13.0/library directory.

26

http://www.murdoch-sutherland.com/Rtools/
http://www.miktex.org/
http://msdn.microsoft.com/en-us/library/ms669985.aspx
http://www.jrsoftware.org/

B Code for selecting only human-human or E.coli-

E.coli interactions

Currently, the easiest way to do it is the following:

> human_human_list = data.frame(irefindex_curr_human$taxa,

+ irefindex_curr_human$taxb)

> tmp = do.call(`paste`, c(unname(human_human_list),

+ list(sep=".")))

> irefindex_curr_human = irefindex_curr_human[

+ tmp == "taxid:9606(Homo sapiens).taxid:9606(Homo sapiens)" |

+ tmp == "-.taxid:9606(Homo sapiens)",]

27

	Installing and Running
	Getting iRefIndex
	ID Conversion
	create_id_conversion_table
	convert_protein_ID

	Browsing the Database
	select_interaction_type
	select_protein
	select_database
	select_confidence

	Table format conversion
	convert_MITAB_to_edgeList
	convert_edgeList_to_MITAB
	convert_MITAB_to_complexList
	convert_complexList_to_MITAB
	merge_complexes_lists

	Statistical functions
	summary_protein
	summary_table

	Graphical functions
	convert_edgeList_to_graph
	convert_edgeList_to_graph -Alternative Exercise
	convert_graph_to_edgeList
	summary_graph

	Bugs and Suggestions
	Software needed to install packages from source using Windows
	Code for selecting only human-human or E.coli-E.coli interactions

