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Abstract

Mediation analysis is routinely adopted by researchers from a wide range of applied
disciplines as a statistical tool to disentangle the causal pathways by which an exposure
or treatment affects an outcome. The counterfactual framework provides a language for
clearly defining path-specific effects of interest and has fostered a principled extension of
mediation analysis beyond the context of linear models. This paper describes medflex,
an R package that implements some recent developments in mediation analysis embedded
within the counterfactual framework. The medflex package offers a set of ready-made
functions for fitting natural effect models, a novel class of causal models which directly
parameterize the path-specific effects of interest, thereby adding flexibility to existing
software packages for mediation analysis, in particular with respect to hypothesis testing
and parsimony. In this paper, we give a comprehensive overview of the functionalities of
the medflex package.

Keywords: causal inference, mediation analysis, direct effect, indirect effect, natural effect
models, medflex, R.

1. Introduction

Empirical studies often aim at gaining insight into the underlying mechanisms by which an
exposure or treatment affects an outcome of interest. Mediation analysis, as popularized in
psychology and the social sciences by Judd and Kenny (1981) and Baron and Kenny (1986),
has been widely adopted as a statistical tool to shed light on these mechanisms, by enabling
the decomposition of total causal effects into an indirect effect through a hypothesized inter-
mediate variable or mediator and the remaining direct effect. Although its initial formulations
were restricted to the context of linear regression models, several attempts have been made to
extend the application of traditional estimators for indirect effects (i.e., product-of-coefficients
and difference-in-coefficients estimators) beyond linear settings (e.g., MacKinnon and Dwyer
1993; MacKinnon, Lockwood, Brown, Wang, and Hoffman 2007; Hayes and Preacher 2010;
Iacobucci 2012). However, these extensions lack formal justification and yield effect estimates
that are often difficult to interpret (e.g., Pearl 2012).

Recent advances from the causal inference literature (e.g., Albert 2008; Albert and Nelson
2011; Avin, Shpitser, and Pearl 2005; Imai, Keele, and Yamamoto 2010b; Pearl 2001, 2012;
Robins and Greenland 1992; VanderWeele and Vansteelandt 2009, 2010) have furthered these
developments and improved both inference and interpretability of direct and indirect effect
estimates in nonlinear settings by building on the central notion of counterfactual or potential
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outcomes. This notion provides a framework that has aided in (i) formally defining direct and
indirect effects (in a way that is not tied to a specific statistical model), (ii) describing the
conditions required for their identification (unveiling and formalizing often implicitly made
causal assumptions) and (iii) assessing the robustness of empirical findings against violations
of these identification conditions (i.e., sensitivity analysis).

For instance, Imai, Keele, and Tingley (2010a) proposed mediation analysis techniques that
can be applied within a larger class of nonlinear models. They implemented these in a user-
friendly R package, called mediation (Tingley, Yamamoto, Hirose, Keele, and Imai 2014; see
Hicks and Tingley 2011 for a version in Stata (StataCorp 2013) with more limited func-
tionality). More recently, Valeri and VanderWeele (2013) reviewed the latest developments
in mediation analysis for nonlinear models, focusing on exposure-mediator interactions, and
provided SAS (SAS Institute Inc. 2014) and SPSS (IBM Corporation 2013) macros, enabling
practitioners to easily conduct these methods using well-known commercial packages. Simi-
larly, Emsley and Liu (2013) and Muthén and Asparouhov (2015) described how direct and
indirect effects as defined in the counterfactual framework can be estimated in Stata and
via extended types of structural equation models in Mplus (Muthén and Muthén 1998-2012),
respectively.

In this paper, we introduce medflex (Steen, Loeys, Moerkerke, and Vansteelandt 2015), an R
package that enables flexible estimation of direct and indirect effects while accommodating
some of the limitations of other available packages. More specifically, we make use of novel so-
called natural effect models (Lange, Vansteelandt, and Bekaert 2012; Lange, Rasmussen, and
Thygesen 2014; Loeys, Moerkerke, De Smet, Buysse, Steen, and Vansteelandt 2013; Vanstee-
landt, Bekaert, and Lange 2012b), which directly parameterize the target causal estimands on
their most natural scale. This renders formal testing and interpretation more straightforward
compared to other approaches as implemented in the aforementioned software applications.
The medflex package is freely available from the Comprehensive R Archive Network (CRAN)
at http://CRAN.R-project.org/package=medflex (R Core Team 2015).

Throughout, the functionalities of the medflex package will be illustrated using data from
a survey study that was part of the Interdisciplinary Project for the Optimization of Sep-
aration trajectories (IPOS). This large-scale project involved the recruitment of individuals
who divorced between March 2008 and March 2009 in four major courts in Flanders. It
aimed to improve the quality of life in families during and after the divorce by translating
research findings into practical guidelines for separation specialists (such as lawyers, judges,
psychologists, welfare workers...) and by promoting evidence-based policy. The correspond-
ing dataset (UPBdata) is included in the package and involves a subsample of 385 individuals
who responded to a battery of questionnaires related to romantic relationship characteristics
(such as adult attachment style) and breakup characteristics (such as breakup initiator sta-
tus, experiencing negative affectivity and engaging in unwanted pursuit behaviors; UPB) (De
Smet, Loeys, and Buysse 2012). Respondents were asked to imagine their former partner
as well as possible and to remember how they generally felt in their relationship before the
breakup when completing the attachment style questionnaire. The mediation hypothesis of
interest concerned the question whether the level of emotional distress or negative affectivity
experienced during the breakup can be regarded as an intermediate mechanism (M ) through
which attachment style towards the ex-partner before the breakup (X ) exerts its influence on
displaying UPBs after the breakup (Y ) (Loeys et al. 2013).

In the next section, we briefly introduce the mediation formula (Pearl 2001, 2012; Petersen,
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Sinisi, and van der Laan 2006; Imai et al. 2010b), which is the predominant vehicle for effect
decomposition within the counterfactual framework. Advantages of natural effect models
over direct application of the mediation formula will also be discussed in more detail. We
then focus on two missing data techniques for fitting these models and demonstrate how
these approaches can be implemented in R using the medflex package (Section 3). Next,
we demonstrate how different types of exposure and mediator variables can be dealt with
(Section 4) and how to assess effect modification of natural effects (i.e., exposure-mediator
interactions and moderated mediation) (Section 5). Tools are provided for calculating and
visualizing different causal effects estimates (Section 6) and for estimating population-average
natural effects (Section 7) and natural indirect effects as defined through multiple intermediate
pathways jointly (Section 8). In Section 9, we further elaborate on modeling demands and
missing data, two aspects that may need to be taken into consideration by practitioners when
choosing between the two main estimation approaches offered by the package. Finally, we
conclude with some final remarks and list some extensions of the package which are planned
to be implemented in the near future (Section 10).

2. The mediation formula

2.1. Counterfactual outcomes and effect decomposition

A major appeal of the counterfactual framework is that it enables to decompose the total
causal effect into a so-called natural direct and natural indirect effect, irrespective of the data
distribution or scale of the effect. Readers familiar with counterfactual notation, definitions
and assumptions for natural direct and indirect effects may wish to skip to section 2.2.

Let Yi(x) denote the potential outcome for subject i that had been observed if, possibly
contrary to the fact, i had been assigned to treatment (or exposure level) x. For a binary
exposure (with X = 1 for the exposed and X = 0 for the unexposed), the individual-level
causal effect can then be expressed by comparing Yi(1) to Yi(0), whereas the population
average total causal effect can be expressed as E{Y (1)− Y (0)}. Similarly, direct and indirect
effects have been defined in terms of counterfactual outcomes. For instance, the definition
of the so-called controlled direct effect reflects the traditional notion of measuring the effect
of exposure while fixing the mediator M at the same value m for all subjects (Robins and
Greenland 1992). Using counterfactual notation, this effect can be expressed as

CDE(m) = E{Y (1,m)− Y (0,m)},

where Y (x,m) denotes the potential outcome that would have been observed under exposure
level x and mediator value m.

Robins and Greenland (1992) introduced an alternative definition that invokes so-called com-
posite or nested counterfactuals, Y (x,M(x∗)). For instance, the (pure) natural direct effect

NDE(0) = E{Y (1,M(0))− Y (0,M(0))}

expresses the expected exposure-induced change in outcome when keeping the mediator fixed
at the value that had naturally been observed if unexposed. By considering potential in-
termediate outcomes M(x∗) rather than a fixed mediator value m, these authors offered a
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definition of direct effect that both allows for natural variation in the mediator and provides
a complementary operational definition for the indirect effect (which the definition of the
controlled direct effect does not). That is, under the composition assumption, which states
that Y (x,M(x)) = Y (x) (VanderWeele and Vansteelandt 2009), the difference between the
average total effect E{Y (1)− Y (0)} and the (pure) natural direct effect yields an expression
for the (total) natural indirect effect

NIE(1) = E{Y (1,M(1))− Y (1,M(0))}.

This reflects the expected difference in outcome if all subjects were exposed but their mediator
value had changed to the value it would take if unexposed.

Adopting this counterfactual notation naturally leads to framing causal inference as a miss-
ing data problem (Holland 1986): for each subject i, only one counterfactual outcome, i.e.,
Yi = Yi(Xi,Mi(Xi)), is observed. Consequently, identification of natural effects relies on
rather strong causal assumptions. In the context of mediation analysis, the most commonly
invoked conditions for identification can be encoded in a causal diagram (such as Figure 2)
interpreted as a non-parametric structural equation model with independent error terms
(NPSEM-IE; Pearl 2001). More specifically, upon adjustment for a given set of observed
baseline covariates C, such model implies certain independencies among variables and poten-
tial outcomes (A1-A4) which have been proposed as sufficient conditions for non-parametric
or model-free identification of natural effects. However, this adjustment set C needs to be
carefully selected1, such that it is deemed sufficient to control for confounding (i) between
exposure and outcome, thereby satisfying

Y (x,m)⊥⊥X|C for all levels of x and m, (A1)

(ii) between exposure and mediator, thereby satisfying

M(x)⊥⊥X|C for all levels of x, (A2)

and (iii) between mediator and outcome (after adjustment for the exposure), thereby satisfying

Y (x,m)⊥⊥M |X = x,C for all levels of x and m. (A3)

In addition to these ‘no omitted variables’ assumptions (A1-A3), identification requires the
further ‘cross-worlds independence’ assumption (Pearl 2001)

Y (x,m)⊥⊥M(x∗)|C for all levels of x, x∗ and m, (A4)

which is satisfied under a NPSEM-IE when no confounders of the mediator-outcome relation-
ship (whether observed or unobserved) are affected by the exposure (i.e., no intermediate or
exposure-induced confounding).

1Pearl (2001, 2014) offers a weaker set of conditions, which does not require a common set of baseline
covariates to deconfound each of the possibly confounded relations, but allows for separate adjustment sets for
the exposure-mediator relation on the one hand and the exposure-outcome and mediator-outcome relations
on the other hand. This set of conditions is considered weaker, since it allows for identification under certain
non-parametric structural equation models with unobserved confounders. Although, theoretically, the natural
effect model framework can be shown to easily accommodate separate adjustment sets, this has not been
implemented as such in the medflex package. However, as Imai, Keele, Tingley, and Yamamoto (2014) argue,
this weaker set of conditions might be of litte practical relevance since researchers in most settings lack sufficient
knowledge about the precise structure of confounding. Nonetheless, the estimation algorithms implemented in
the mediation package (Tingley et al. 2014), easily allow to specify separate adjustment sets (Imai et al. 2014).
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Whereas the first two assumptions by definition hold in randomized experiments, the other two
assumptions may not.2 Although Judd and Kenny (1981) initially pointed to its importance,
condition A3 since has largely been ignored in much of the social sciences literature, as
evidenced by many mediation studies not adjusting for confounders of the mediator-outcome
relationship. In recent years, however, this issue has been brought back to attention within
the social sciences (e.g., Bullock, Green, and Ha 2010; MacKinnon 2008; Mayer, Thoemmes,
Rose, Steyer, and West 2014).

Condition A4 is more difficult to grasp intuitively. It is a strong assumption because, in
contrast to the other three conditions, it is impossible to design a study that would be able
to validate it (Robins and Richardson 2010; although see Imai, Tingley, and Yamamoto 2013
for a notable attempt).

The interested reader can refer to VanderWeele and Vansteelandt (2009) for a more detailed
and intuitive account of these identification assumptions (or to Petersen et al. 2006 or Imai
et al. 2010b for alternative sets of assumptions).

2.2. The mediation formula

The language of counterfactuals has enabled to clearly define causal effects in a more generic,
non-parametric way, but has also promoted a more principled approach to estimating these
effects than the one offered by the traditional SEM literature from the social sciences, which
was mainly entrenched in parametric linear regression. The main identification result (Pearl
2001; Imai et al. 2010b), which Pearl (2012) referred to as the mediation formula, has played
a pivotal role in this regard. It prescribes estimating the expected value of nested counterfac-
tuals by standardizing predictions from the outcome model corresponding to exposure level
x under the mediator distribution corresponding to exposure level x∗:

E {Y (x,M(x∗))|C} =
∑
m

E(Y |X = x,M = m,C) Pr(M = m|X = x∗, C).

This weighted sum can be calculated based on any type of statistical model and has been
shown to yield closed-form expressions for the natural indirect effect that encompass the
traditional difference-in-coefficients and product-of-coefficient estimators when confined to
strictly linear models (e.g., VanderWeele and Vansteelandt 2009; Pearl 2012). However, as
soon as moving beyond linear settings, the latter estimators no longer coincide with their
corresponding mediation formula expressions and no longer yield readily interpretable causal
effect estimates (as formalized in the counterfactual framework).3

More recently, closed-form expressions for natural direct and indirect effects as defined on
both additive and ratio scales have been derived for a limited number of nonlinear scenarios
(VanderWeele and Vansteelandt 2009, 2010; Valeri and VanderWeele 2013).

2.3. Applying the mediation formula in practice

Software applications for obtaining closed-form solutions derived from the mediation formula,

2Note that A1 is sufficient for identifying total causal effects, whereas identification of controlled direct
effects can be obtained under assumptions A1 and A3.

3Muthén and Asparouhov (2015) give an intuitive account for SEM practitioners explaining why the
product-of-coefficient estimator fails when applied in nonlinear settings or settings involving exposure-mediator
interactions. Nonetheless, the product-of-coefficients method can still be useful for testing the null hypothesis
of no indirect effect (VanderWeele 2011; Vansteelandt et al. 2012b).
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as well as their corresponding Delta method (or bootstrap) standard errors, have been made
available as SPSS and SAS macros (Valeri and VanderWeele 2013) and as the Stata module
PARAMED (Emsley and Liu 2013). More recently, Muthén and Asparouhov (2015) demon-
strated how natural effect estimates can be obtained via extended types of structural equation
models in Mplus, even in the presence of latent variables. However, such closed-form expres-
sions can often not readily be obtained, for instance when combining a linear model for the
mediator and a logistic model for the outcome.

Imai et al. (2010b) addressed this issue and instead suggested a more generic approach based
on Monte-Carlo integration methods, which they implemented in the R package mediation
(Tingley et al. 2014). Whereas its lightweight version in Stata (Hicks and Tingley 2011)
and the Stata module gformula (Daniel, De Stavola, and Cousens 2011), which adopts a
similar simulation-based approach, are restricted to parametric models, this R package ad-
ditionally allows to specify semi-parametric models for the mediator and outcome. Despite
being computationally intensive, these offer more flexibility than the applications based on a
purely analytical approach. In addition, the mediation package offers useful extensions, such
as methods for dealing with multiple mediators and treatment noncompliance, while at the
same time enabling users to evaluate the robustness of their findings to potential unmeasured
confounding in a widely applicable sensitivity analysis.

A drawback of direct application of the mediation formula, however, is that combinations of
simple models for the mediator and for the outcome often result in complex expressions for
natural direct and indirect effects (Lange et al. 2012; Vansteelandt et al. 2012b). For instance,
when using logistic regression models

logit Pr(M = 1|X,C) = α0 + α1X + α2C

logit Pr(Y = 1|X,M,C) = β0 + β1X + β2M + β3C (0)

for binary mediators and outcomes, the mediation formula yields

Pr(Y (x,M(x∗)) = 1|C) = expit (β0 + β1x+ β2 + β3C) expit (α0 + α1x
∗ + α2C)

+ expit (β0 + β1x+ β3C) {1− expit (α0 + α1x
∗ + α2C)} ,

an expression which depends on exposure and covariate levels in a complicated way. Even
though none of the postulated models include interaction terms reflecting effect modification,
the corresponding direct and indirect effect estimates will vary with different exposure or
covariate levels. This is also illustrated in Figure 1, which depicts estimates for the natural
indirect effect odds ratio, as obtained by applying the mediation formula to these models fitted
to our example dataset (using a dichotomized version of the mediator and baseline covariates
C including gender, age and education level). As pointed out before by Lange et al. (2012)
and Vansteelandt et al. (2012b), these convoluted expressions render results difficult to report
and hypothesis testing (e.g., testing for moderated mediation) infeasible, as it may turn out
impossible to find plausible models for the mediator and outcome that combine into effect
expressions that do not depend on covariate levels. In certain cases, this complexity can pose
a major impediment to routine application of the mediation formula.

Moreover, the mediation package only provides natural effect estimates on the additive scale.
This may complicate estimation and inference in nonlinear outcome models, mainly when
dealing with continuous exposures or covariates, because of induced nonadditivity. Specif-
ically, because the indirect effect is not encoded by a single parameter, but may take on a
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Figure 1: Estimated (total) natural indirect effect odds ratios corresponding to a one-unit
change in anxious attachment level as a function of different reference levels for anxious
attachment level x (as obtained through direct application of the mediation formula). These
are conditional estimates for 43-year-old men (solid curve) and women (dashed curve) with
intermediate education levels.

different value for each level of x, the null hypothesis of no indirect effect over the entire range
of exposure levels becomes difficult to test. Similarly, although the mediation package enables
users to test for effect modification in nonlinear models (i.e., either treatment-mediator inter-
actions or moderated mediation), these hypothesis tests probe research questions in terms of
e.g., risk differences that are tied to pre-specified exposure or covariate levels. A concern is
that these levels might, at least in some applications, need to be chosen in a rather arbitrary
way (Loeys et al. 2013).

An approach that circumvents the aforementioned complexity but is closely related to applica-
tion of the mediation formula was recently proposed by Lange et al. (2012) and Vansteelandt
et al. (2012b). These authors proposed to directly model the natural effects and introduced
a novel class of mean models for nested counterfactuals, which they termed natural effect
models (also see van der Laan and Petersen 2008, for a similar approach). This approach is
implemented in the medflex package and provides a viable alternative to the aforementioned
software applications because

• it can handle a larger class of parametric models for the mediator and outcome than
the software applications that rely on closed-form expressions (refer to Section 4),

• estimates can be expressed on more natural effect scales (i.e., a scale that corresponds to
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the link-function of the outcome model), thereby avoiding potential induced dependency
on exposure or covariate levels characteristic for the additive scale,

• natural effect models simplify testing since the hypotheses of interest can always be
captured by a finite set of model parameters,

• for the most common types of parametric models robust standard errors (based on the
sandwich estimator) are available as an alternative to more computer-intensive boot-
strap standard errors.

In the next section, we describe this novel class of causal models together with two different
approaches that have been suggested in Lange et al. (2012) and Vansteelandt et al. (2012b).

3. Mediation analysis via natural effect models

Natural effect models are conditional mean models for nested counterfactuals Y (x,M(x∗)):

E{Y (x,M(x∗))|C} = g−1{β′W (x, x∗, C)}

with g(·) a known link function (e.g., the identity or logit link), W (x, x∗, C) a known vector
with components that may depend on x, x∗ and C, and β a vector including parameters that
encode the natural effects of interest. It can, for instance, easily be inferred that in model

E{Y (x,M(x∗))|C} = β0 + β1x+ β2x
∗ + β3C,

β1 captures the natural direct effect whereas β2 captures the natural indirect effect, both
corresponding to a one-unit increase in the exposure level. With g(·) the log-link function,
for example, the Poisson regression model

log E{Y (x,M(x∗))|C} = β0 + β1x+ β2x
∗ + β3C,

enables to quantify the natural direct and indirect effect for count outcomes on a more natural,
multiplicative scale. Specifically, in this model, exp(β1) captures the natural direct effect rate
ratio

E{Y (x+ 1,M(x))|C}
E{Y (x,M(x))|C}

whereas exp(β2) captures the natural indirect effect rate ratio

E{Y (x,M(x+ 1))|C}
E{Y (x,M(x))|C}

,

corresponding to a one-unit increase in exposure level. Since each of the effects or quantities
of interest are encoded by parameters indexing the natural effect model, the aforementioned
limitations related to direct application of the mediation formula can be overcome. As will
be illustrated, this facilitates interpretation and hypothesis testing in nonlinear settings.



Johan Steen, Tom Loeys, Beatrijs Moerkerke, Stijn Vansteelandt 9

3.1. Fitting natural effect models

Before describing the two main approaches for fitting natural effect methods, we first return
to our motivating example. The corresponding dataset will then be used to both illustrate
these approaches and to demonstrate how they can be implemented in R.

After loading the medflex package, displaying the first few rows of the example dataset
UPBdata provides some insight into the data:

R> library("medflex")

R> data("UPBdata")

R> head(UPBdata)

att attbin attcat negaff initiator gender educ age UPB

1 1.001 1 M 0.840 myself F M 41 1

2 -0.709 0 L -1.257 both M M 42 0

3 -0.709 0 L -1.202 both F H 43 0

4 0.606 1 M -0.374 ex-partner M H 52 1

5 0.212 1 M 1.945 ex-partner M M 32 1

6 2.052 1 H -0.816 ex-partner M H 47 0

De Smet et al. (2012) and Loeys et al. (2013) proposed emotional distress or the amount of
negative affectivity experienced during the breakup as a mediating variable for the effect of
attachment style towards the ex-partner before the breakup on displaying unwanted pursuit
behaviors after the breakup. Figure 2 depicts the causal diagram (Pearl 1995) that reflects
this mediation hypothesis along with its aforementioned identification assumptions.

As direct and indirect effects are most easily understood for a binary exposure, we will use a
dichotomized version of anxious attachment level (attbin) for didactive purposes. Moreover,
negative affectivity (negaff) has been standardized to allow for easily interpretable effect
estimates. The outcome variable unwanted pursuit behavior (UPB) indicates whether (=1) or
not (=0) the respondent has engaged in any unwanted pursuit behaviors.

A relatively simple natural effect model is the logistic model

logit Pr {Y (x,M(x∗)) = 1|C} = β0 + β1x+ β2x
∗ + β3C, (1)

with x and x∗ corresponding to hypothetical levels of the dichotomized version of the anxious
attachment variable (i.e., 0 for lower than average or 1 otherwise), M(x∗) to the level of

anxious attachment (X)

negative affectivity (M)

unwanted pursuit (Y )

gender, education, age (C)

Figure 2: Causal diagram reflecting the mediation hypothesis.
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negative affectivity that would have been reported if anxious attachment level were set to x∗,
and Y (x,M(x∗)) to the UPB perpetration status that would have been observed if anxious
attachment level were set to x and negative affectivity were set to the level that would have
been reported if anxious attachment style were set to x∗. To control for confounding, we
condition on a set of baseline covariates C: age (in years), gender and education level (educ;
with H or ‘high’ indicating having obtained at least a bachelor’s degree, M or ‘intermediate’
indicating having finished secondary school and L or ‘low’ otherwise). As emphasized earlier,
the selection of such an adjustment set needs careful consideration in order to meet identifica-
tion conditions A1-A4. For illustrative purposes, the current set of baseline covariates C will,
possibly contrary to the fact, be considered sufficient to control for confounding throughout
the remainder of the paper.

As an illustration, we schematically display the first two observations in Table 1. For each in-
dividual or observation unit i, only the counterfactual outcome Yi(Xi,Mi(Xi)), corresponding
to Yi(x,Mi(x

∗)) with x and x∗ equal to the observed exposure level Xi, is observed.

i Xi x x∗ Yi(x,Mi(x
∗))

1 1 1 1 Y1
2 0 0 0 Y2
...

...
...

...
...

Table 1: Schematic display of the original dataset.

Postulating a model for nested counterfactuals that encodes both natural direct and indirect
effects requires data in which either x or x∗ can be kept fixed within each individual while
allowing the other variable to vary. Such a procedure amounts to expanding the data along
unobserved (x, x∗) combinations, as illustrated in Table 2. Although, for the data at hand,
three (x, x∗) combinations are unobserved for each individual, to disentangle natural direct
and indirect effects, it is sufficient to introduce only one additional observation corresponding
to an unobserved combination for which x does not equal x∗.

i Xi x x∗ Yi(x,Mi(x
∗))

1 1 1 1 Y1
1 1 1 0 .
2 0 0 0 Y2
2 0 0 1 .
...

...
...

...
...

Table 2: Schematic display of the expanded dataset with missing counterfactual outcomes.

Fitting natural effect models then entails using well-established methods to deal with miss-
ingness in the outcome, which results from expanding the data. Throughout, we will describe
a weighting- and an imputation-based approach, which, as outlined below, differ mainly in
terms of the statistical working models on which they rely (Vansteelandt 2012).

Data expansion is identical for both approaches, but subsequent algorithms for data prepa-
ration differ depending on the type of working model. In the medflex package, these two
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neWeight()

mediator model

neImpute()

outcome model

neModel()

natural effect model

neLht()

linear hypotheses

weighting-
based approach

imputation-
based approach

Figure 3: Workflow of the medflex package.

steps are implemented in the functions neWeight and neImpute. Both return an expanded
dataset to which the natural effect model can be fitted using the central function neModel

(see Figure 3). In the next two sections, we explain both approaches and give example code
in R.

3.2. Weighting-based approach

One way to account for missingness in the expanded data is to standardize observed outcomes
to the mediator distribution of the hypothetical exposure level x∗. Building on Hong’s (2010)
ratio-of-mediator-probability weighting (RMPW) method, Lange et al. (2012) proposed to
weight each observation in the expanded dataset by

wi =
pi(x

∗)

pi(x)
=

Pr(M = Mi|X = x∗, C = Ci)

Pr(M = Mi|X = x,C = Ci)
.

For a binary exposure, E{Y (0,M(0))|C} and E{Y (1,M(1))|C} can readily be estimated from
the observed data (under assumption A1) without weighting (i.e., as x = x∗ the corresponding
weights equal 1). To enable estimation of E{Y (1,M(0))|C} and E{Y (0,M(1))|C} RMPW
aims to construct a ‘parallel’ pseudo-population for each exposure group x (within each stra-
tum of C) with mediator values that would have been observed if each subject had been a
member of the opposite exposure group x∗ = 1−x. Intuitively, this is done by up-weighting in-
dividuals whose observed mediator value is more typical for the opposite exposure group than
the exposure group to which they originally belong. Similarly, individuals whose observed
mediator value is relatively more typical for the original exposure group are down-weighted.4

Estimates for natural direct and indirect effects can then be obtained by regressing the ob-
served outcome on x, x∗ and baseline covariates C, weighting each observation in the ex-
panded dataset by its corresponding ratio-of-mediator-probability weight. This procedure is

4Hong, Deutsch, and Hill (2015) gives a more detailed example which may provide more intuition into
RMPW. Other weighting methods based on inverse odds (ratio) weighting (Huber 2013; Tchetgen Tchetgen
2013) have been proposed recently. In contrast to RMPW these weighting methods rely on models for the
exposure distribution (conditional on mediator and baseline covariates). Although these could easily be adopted
within the natural effect model framework, these are currently not implemented in the medflex package.
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illustrated in Table 3 and easily extends to continuous exposures (see Section 4.2) and/or
mediators (provided probabilities are replaced by densities). The interested reader is referred
to Appendix A.1, where a more technical account is given on the link between the weighting-
based approach and the mediation formula.

i Xi x x∗ Yi(x,Mi(x
∗)) wi

1 1 1 1 Y1 1
1 1 1 0 Y1 p̂1(0)/p̂1(1)
2 0 0 0 Y2 1
2 0 0 1 Y2 p̂2(1)/p̂2(0)
...

...
...

...
...

...

Table 3: Schematic display of the weighting-based approach.

Expanding the data and computing weights for the natural effect model

Using the medflex package, expanding the dataset and calculating weights can be done in a
single run, using the neWeight function. To calculate the weights, a model for the mediator
needs to be fitted. For instance, in R, the simple linear model

E(M |X,C) = α0 + α1X + α2C,

can be fitted using the glm function:

R> medFit <- glm(negaff ~ factor(attbin) + gender + educ + age,

+ family = gaussian, data = UPBdata)

Next, this fitted object needs to be specified as the first argument in neWeight, which in turn
codes the first predictor variable in the formula argument as the exposure and then expands
the data along hypothetical values of this variable. It is important to note here that, for
successful data expansion, categorical exposures should be explicitly coded as factors in the
formula if they are not yet coded as such in the dataset.

R> expData <- neWeight(medFit)

Inspecting the first rows of the resulting expanded dataset shows that for each individual two
replications have been created:

R> head(expData, 4)

id attbin0 attbin1 att attcat negaff initiator gender educ age UPB

1 1 1 1 1.001 M 0.84 myself F M 41 1

2 1 1 0 1.001 M 0.84 myself F M 41 1

3 2 0 0 -0.709 L -1.26 both M M 42 0

4 2 0 1 -0.709 L -1.26 both M M 42 0
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The new variables attbin0 and attbin1 correspond to hypothetical exposure values x and x∗,
respectively. By convention, the index ‘0’ is used for parameters (and corresponding auxiliary
variables) indexing natural direct effects, whereas the index ‘1’ is used for parameters indexing
natural indirect effects in the natural effect model.

To shorten code, one can instead choose to directly specify the formula, family and data

arguments in neWeight.

R> expData <- neWeight(negaff ~ factor(attbin) + gender + educ + age,

+ data = UPBdata)

By default, glm is used as internal model-fitting function. However, other model-fitting func-
tions can be specified in the FUN argument (e.g., vglm from the VGAM package; Yee and
Wild 1996).5

Finally, the weights are stored as an attribute of the expanded dataset and can easily be
retrieved using the generic weights function, e.g., for further inspection of their empirical
distribution:

R> w <- weights(expData)

R> head(w, 10)

[1] 1.000 0.640 1.000 0.494 1.000 0.475 1.000 1.211 1.000 0.326

Fitting the natural effect model on the expanded data

After expanding the data and calculating regression weights for each of the replicates, the
natural effect model can be fitted using the neModel function. Argument specification for
this function is similar to that of the glm function, which is called internally. However, the
formula argument now must be specified in function of the variables from the expanded
dataset. The latter, in turn, needs to be specified via the expData argument. neModel

automatically extracts the regression weights from this expanded dataset and applies them
for model fitting.

Default glm standard errors tend to be downwardly biased as the uncertainty inherent to pre-
diction of the weights based on the estimated mediator model is not taken into account. For
this reason, neModel returns bootstrapped standard errors. In order to approximate the sam-
pling distribution of each of the natural effect model parameters, the applied non-parametric
bootstrap procedure repeatedly resamples the original data with replacement. For each repli-
cation, all aforementioned steps are repeated and estimates of the natural effect model pa-
rameters are obtained. The resulting bootstrap distribution can then be used for statistical
inference. By refitting the same model for the mediator distribution to each bootstrap sam-
ple and recalculating ratio-of-mediator-probability weights for the (subsequently) expanded
bootstrap samples, uncertainty related to estimation of the mediator model is incorporated
into the bootstrapped standard errors. The number of bootstrap replications defaults to 1000
and can be set in the nBoot argument:

5In the current version of the package also vglm and vgam from the VGAM package and gam from the
gam package (Hastie 2015) are supported. When specifying model-fitting functions other than glm in the FUN

argument, one might need to specify the family argument differently. That is, in a way that is consistent with
argument specification of that specific model-fitting function.
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R> neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age,

+ family = binomial("logit"), expData = expData)

The summary table of the resulting natural effect model object provides these bootstrap stan-
dard errors along with corresponding Wald-type z statistics and p values.

R> summary(neMod1)

Natural effect model

with standard errors based on the non-parametric bootstrap

---

Exposure: attbin

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.925206 0.955118 -0.969 0.332704

attbin01 0.395924 0.224899 1.760 0.078331 .

attbin11 0.351969 0.091480 3.847 0.000119 ***

genderM 0.275968 0.247549 1.115 0.264936

educM 0.167009 0.768958 0.217 0.828061

educH 0.423350 0.780908 0.542 0.587732

age -0.009449 0.013178 -0.717 0.473354

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As an alternative, robust standard errors based on the sandwich estimator (Liang and Zeger
1986) can be requested by setting se = "robust". Calculation of these standard errors is
less computer-intensive and is available for natural effect models with working models fitted
via the glm function.

R> neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age,

+ family = binomial("logit"), expData = expData, se = "robust")

R> summary(neMod1)

Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: attbin

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.92521 0.71463 -1.29 0.195

attbin01 0.39592 0.21761 1.82 0.069 .

attbin11 0.35197 0.08939 3.94 8.2e-05 ***

genderM 0.27597 0.23370 1.18 0.238
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educM 0.16701 0.50065 0.33 0.739

educH 0.42335 0.50917 0.83 0.406

age -0.00945 0.01227 -0.77 0.441

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpreting model parameters

Exponentiating the model parameter estimates provides estimates that can be interpreted as
odds ratios. For instance, for a subject with baseline covariate levels C, altering the level
of anxious attachment from low (=0) to high (=1), while controlling negative affectivity at
levels as naturally observed at any given level of anxious attachment x, increases the odds of
displaying unwanted pursuit behaviors with a factor

ÔR
NDE

1,0|C =
odds {Y (1,M(x)) = 1|C}
odds {Y (0,M(x)) = 1|C}

= exp(β̂1) = exp(0.3959) = 1.49.

Altering levels of negative affectivity as observed at low anxious attachment scores to levels
that would have been observed at high anxious attachment scores, while controlling their
anxious attachment score at any given level x, increases the odds of displaying unwanted
pursuit behaviors with a factor

ÔR
NIE

1,0|C =
odds {Y (x,M(1)) = 1|C}
odds {Y (x,M(0)) = 1|C}

= exp(β̂2) = exp(0.352) = 1.42.

Wald-type confidence intervals can be obtained by applying the confint function to the
natural effect model object. The confidence level defaults to 95%, but can be changed via
the level argument. By exponentiating the intervals on the logit scale, we can obtain the
corresponding 95% confidence intervals (based on the robust standard errors) on the odds
ratio scale:

R> exp(confint(neMod1)[c("attbin01", "attbin11"), ])

95% LCL 95% UCL

attbin01 0.97 2.28

attbin11 1.19 1.69

If standard errors are obtained via the bootstrap procedure, bootstrap confidence intervals
are returned. The default type is calculated based on a first order normal approximation
(type = "norm"), but other types of bootstrap confidence intervals (such as basic bootstrap,
bootstrap percentile and bias-corrected and accelerated confidence intervals) can be obtained
by setting the type argument to the desired type.6

6The type argument in confint corresponds to that of the boot.ci function from the boot package (Canty
and Ripley 2015), which is called internally.
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3.3. Imputation-based approach

The second approach avoids reliance on a model for the mediator distribution and instead
requires fitting a working model for the outcome mean (Vansteelandt et al. 2012b). By setting
x∗ (rather than x) equal to the observed exposure X, unobserved nested counterfactuals
can be imputed using any appropriate model for the outcome mean. That is, since the
potential intermediate outcome M(x∗) equals the observed mediator M within the subgroup
with exposure X = x∗, Y (x,M(x∗)) equals Y (x,M) for all individuals in that exposure
group. The latter can then be imputed using fitted values Ê(Y |X = x,M,C) based on an
appropriate model for the outcome mean, henceforth referred to as the imputation model, with
exposure X set to x and with mediator M and baseline covariates C set to their observed
values. This approach easily accommodates missing outcomes in the original dataset, as the
corresponding nested counterfactuals can likewise be imputed. Finally, natural direct and
indirect effect estimates can be obtained upon fitting a natural effect model to the imputed
dataset. This procedure is illustrated in Table 4. For ease of implementation, observed
nested counterfactuals are imputed as well in the medflex package.7 In Appendix A.2, we
demonstrate the link between the mediation formula and the imputation-based approach by
showing how the former can be rewritten as an expression that prescribes estimating nested
counterfactuals by calculating the mean of imputed nested counterfactuals, conditional on x,
x∗ and C.

i Xi x x∗ Yi(x,Mi(x
∗))

1 1 1 1 Y1
1 1 0 1 Ŷ1(0,M1)
2 0 0 0 Y2
2 0 1 0 Ŷ2(1,M2)
...

...
...

...
...

Table 4: Schematic display of the imputation-based approach. Ŷi(x,Mi) represent the im-
puted counterfactual outcomes.

Expanding the data and imputing nested counterfactuals

Although application of the imputation-based approach is similar to that of the weighting-
based approach, it differs in some key respects. These differences are mainly captured by
differences between the functions neWeight and neImpute. Argument specification of this
function is identical to that of neWeight, unless indicated otherwise.

As for the weighted-based approach, the first step amounts to fitting a working model. Instead
of a model for the mediator, the imputation-based approach requires fitting a mean model
for the outcome. Moreover, this model should at least reflect the structure of natural effect
model (1) (i.e., it should at least contain all terms of the natural effect model with x∗ replaced
by M). For instance, a simple logistic regression model

logit Pr(Y = 1|X,M,C) = γ0 + γ1X + γ2M + γ3C,

7Simulation studies (not shown here) have shown that this procedure does not lead to bias or loss of
efficiency.
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can be fitted in R using the glm function:

R> impFit <- glm(UPB ~ factor(attbin) + negaff + gender + educ + age,

+ family = binomial("logit"), data = UPBdata)

In order for neImpute to identify the predictor variables in the formula argument correctly
as either exposure, mediator(s) or baseline covariates, they need to be entered in a particular
order. That is, the first predictor variable again needs to point to the exposure and the second
to the mediator. All other predictors are automatically coded as baseline covariates. It is
important to adhere to this prespecified order to enable neImpute to create valid pointers to
these different types of predictor variables. This requirement extends to the use of operators
different from the + operator, such as the : and * operators (when e.g., adding interaction
terms). For instance, the formula expressions Y ~ X + M + C1 + C2 + X:C1 + M:C1, Y ~

X + M + X:C1 + M:C1 + C1 + C2, Y ~ (X + M) * C1 + C2 and Y ~ X * C1 + M * C1 +

C2 all impose the same structural form for the imputation model. However, only for the
former three expressions, correct pointers to exposure, mediator and baseline covariates will
be created, as the order of occurence of each of the unique predictor variables is identical in
all three specifications, but not in the latter.

This fitted object then needs to be entered as the first argument in neImpute:

R> expData <- neImpute(impFit)

Alternatively, the formula, family and data arguments can be directly specified in neImpute:

R> expData <- neImpute(UPB ~ factor(attbin) + negaff + gender + educ + age,

+ family = binomial("logit"), data = UPBdata)

Similar to neWeight, neImpute first expands the data along hypothetical exposure values.
Instead of calculating weights for these new observations, neImpute then imputes the nested
counterfactual outcomes by fitted values based on the imputation model. As illustrated below,
the resulting expanded dataset includes two imputed nested counterfactual outcomes for each
subject. The outcomes are no longer binary, but correspond to conditional mean imputations.

R> head(expData, 4)

id attbin0 attbin1 att attcat negaff initiator gender educ age UPB

1 1 1 1 1.001 M 0.84 myself F M 41 0.492

2 1 0 1 1.001 M 0.84 myself F M 41 0.384

3 2 0 0 -0.709 L -1.26 both M M 42 0.187

4 2 1 0 -0.709 L -1.26 both M M 42 0.263

Fitting the natural effect model on the imputed data

After expanding and imputing the data, specifying the natural effect model can be done as
for the weighting-based approach:

R> neMod1 <- neModel(UPB ~ attbin0 + attbin1 + gender + educ + age,

+ family = binomial("logit"), expData = expData, se = "robust")
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Again, bootstrap or robust standard errors are reported in the output of the summary function,
in order to account for the uncertainty inherent to the working model (i.e., in this case, the
imputation model):

R> summary(neMod1)

Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: attbin

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9216 0.6892 -1.34 0.18

attbin01 0.4015 0.2134 1.88 0.06 .

attbin11 0.3407 0.0805 4.23 2.3e-05 ***

genderM 0.2940 0.2250 1.31 0.19

educM 0.3462 0.4817 0.72 0.47

educH 0.5143 0.4878 1.05 0.29

age -0.0122 0.0119 -1.02 0.31

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Natural direct and indirect effect odds ratio estimates and their confidence intervals can be
obtained as before.

4. Dealing with different types of variables

In the previous section, we used a dichotomized version of the continuous exposure vari-
able att. However, the natural effect model framework easily extends to different types of
exposure, mediator or outcome variables. In the following two sections, we give a detailed
description on how to fit natural effect models with multicategorical (i.e., ordinal or nominal)
and continuous exposures. In these sections, as well as throughout the remainder of this
paper, we will focus on the imputation-based approach when introducing new features of the
medflex package. Unless indicated otherwise, the weighting-based approach can be applied
analogously.

An overview of the types of mediators and outcomes the medflex package can currently handle,
is given in Table 5. When using the weighting-based approach, models for binary, count and
continuous mediators can be fitted using the glm function or the vglm function from the
VGAM package. Models for nominal mediators, on the other hand, can only be fitted using
the vglm function (setting family = multinomial).8 Although models for ordinal mediators

8In the current version of the package, when using working models for weighting (either when adopting the
weighting-based approach or when fitting population-average natural effect models), robust standard errors
are only available if these working models are fitted using glm and their outcomes (i.e., either an exposure or
a mediator) follow either a normal, binomial or Poisson distribution.
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Outcome type

Binary Count Continuous

Mediator type neWeight neImpute neWeight neImpute neWeight neImpute

Binary 3 3 3 3 3 3

Count 3 3 3 3 3 3

Continuous 3 3 3 3 3 3

Ordinal 3 3 3

Nominal 3∗ 3 3∗ 3 3∗ 3

Table 5: Types of variables that can be dealt with in the medflex package. Natural effect
models are currently restricted to models that can be fitted with the glm function. ‘*’ indicates
that robust standard errors are not available.

are not compatible with the neWeight function, ordered factors can easily be treated as
nominal variables. Finally, the imputation-based approach can deal with virtually any type
of mediator as it does not require the specification of a mediator model.

4.1. Multicategorical exposures

Methods for dealing with multicategorical treatments or exposures, as encountered in e.g.,
multiple intervention studies, in which multiple experimental conditions are compared to a
control condition, have rarely been described within the mediation literature (although see
Hayes and Preacher 2014; Tingley et al. 2014, for some notable exceptions).

In this section, we illustrate how to expand the dataset and fit natural effect models when
using a multicategorical exposure. In this example, instead of using the binary exposure
variable attbin, we use a discretized version of anxious attachment style, named attcat

(with L indicating low, M indicating intermediate and H indicating high anxious attachment
levels).

Inspecting the first rows of the expanded dataset shows that the number of replications for
each subject again corresponds to the number of unique levels of the categorical exposure
variable. That is, the auxiliary variable x∗ (attcat1) is fixed to the observed exposure,
whereas the other, x (attcat0), enumerates all potential exposure levels.

R> expData <- neImpute(UPB ~ attcat + negaff + gender + educ + age,

+ family = binomial, data = UPBdata)

R> head(expData)

id attcat0 attcat1 att attbin negaff initiator gender educ age UPB

1 1 M M 1.001 1 0.84 myself F M 41 0.468

2 1 H M 1.001 1 0.84 myself F M 41 0.558

3 1 L M 1.001 1 0.84 myself F M 41 0.366

4 2 L L -0.709 0 -1.26 both M M 42 0.182

5 2 M L -0.709 0 -1.26 both M M 42 0.253

6 2 H L -0.709 0 -1.26 both M M 42 0.327

The summary table returns estimates for the natural direct and indirect effect log odds ratios



20 Medflex: flexible mediation analysis in R

comparing intermediate and high anxious attachment levels to low levels of anxious attach-
ment (i.e., the reference level).

R> neMod <- neModel(UPB ~ attcat0 + attcat1 + gender + educ + age,

+ family = binomial, expData = expData, se = "robust")

R> summary(neMod)

Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: attcat

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9616 0.6976 -1.38 0.16807

attcat0M 0.3921 0.2365 1.66 0.09729 .

attcat0H 0.7239 0.3105 2.33 0.01975 *

attcat1M 0.3012 0.0797 3.78 0.00016 ***

attcat1H 0.5218 0.1314 3.97 7.2e-05 ***

genderM 0.2700 0.2266 1.19 0.23336

educM 0.3279 0.4817 0.68 0.49601

educH 0.4826 0.4877 0.99 0.32239

age -0.0127 0.0121 -1.05 0.29510

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Overall assessment of natural effects (i.e., a joint comparison of all levels of the exposure)
cannot be based on the default summary output, but instead requires an Anova table for the
natural effect model, which can be obtained using the Anova function from the car package
(Fox and Weisberg 2011):

R> library("car")

R> Anova(neMod)

Analysis of Deviance Table (Type II tests)

Response: UPB

Df Chisq Pr(>Chisq)

attcat0 2 5.98 0.05 .

attcat1 2 19.11 7.1e-05 ***

gender 1 1.42 0.23

educ 2 1.17 0.56

age 1 1.10 0.30

Residuals 1146

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Both type-II (the default) and type-III Anova tables can be requested by specifying the desired
type via the type argument. This table includes corresponding Wald χ2 tests for multivariate
hypotheses which account for the uncertainty inherent to the working model. The output
suggests that the natural direct and indirect effect odds differ significantly between the three
exposure levels.

4.2. Continuous exposures

In contrast to the mediation package, hypothesis testing for natural direct and indirect effects
along the entire support of continuous exposures is facilitated by defining causal effects on
their most natural scale. In this section, we use the continuous variable att, a standardized
version of the original anxious attachment variable.

For continuous variables, expanding the dataset along unobserved (x, x∗) combinations re-
quires a slightly adapted approach than for categorical exposures. Instead of enumerating all
exposure levels to construct auxiliary variables x and x∗ for each subject, Vansteelandt et al.
(2012b) proposed to draw specific quantiles from the conditional density of the exposure given
baseline covariates. By default, these hypothetical exposure levels are drawn from a linear
model for the exposure, conditional on a linear combination of all covariates specified in the
working model.9

Both neWeight and neImpute allow to choose the number of draws to sample from this
conditional density via the nRep argument (which defaults to 5).10

R> expData <- neImpute(UPB ~ att + negaff + gender + educ + age,

+ family = binomial("logit"), data = UPBdata, nRep = 3)

R> head(expData)

id att0 att1 attbin attcat negaff initiator gender educ age UPB

1 1 -1.64e+00 1.001 1 M 0.84 myself F M 41 0.309

2 1 8.02e-06 1.001 1 M 0.84 myself F M 41 0.429

3 1 1.64e+00 1.001 1 M 0.84 myself F M 41 0.557

4 2 -1.66e+00 -0.709 0 L -1.26 both M M 42 0.149

5 2 -1.82e-02 -0.709 0 L -1.26 both M M 42 0.227

6 2 1.63e+00 -0.709 0 L -1.26 both M M 42 0.330

Specification of the natural effect model via neModel can be done as described before:

R> neMod1 <- neModel(UPB ~ att0 + att1 + gender + educ + age,

+ family = binomial("logit"), expData = expData, se = "robust")

R> summary(neMod1)

Natural effect model

with robust standard errors based on the sandwich estimator

9If one wishes to use another model for the exposure, this default model specification can be overruled by
referring to a fitted model object in the xFit argument. Misspecification of this sampling model does not
induce bias in the estimated coefficients and standard errors of the natural effect model.

10We recommend to use a minimum of 3 draws. Although finite sample bias and sampling variability can be
reduced to some extent by choosing a larger number of draws, simulations have shown this gain to be ignorable
when choosing more than 5 draws (Vansteelandt et al. 2012b).
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---

Exposure: att

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4873 0.6862 -0.71 0.4776

att0 0.2923 0.1091 2.68 0.0074 **

att1 0.2018 0.0470 4.29 1.8e-05 ***

genderM 0.2671 0.2274 1.17 0.2402

educM 0.2679 0.4894 0.55 0.5841

educH 0.4103 0.4959 0.83 0.4080

age -0.0120 0.0122 -0.99 0.3236

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output illustrates that defining natural effects on the (log) odds ratio scale allows to
capture each of these effects along the entire support of the exposure by a single parameter.
For instance, for a subject with baseline covariate levels C, the direct and indirect effects of
one standard deviation increase in anxious attachment level (i.e., from x to x+ 1) correspond
to an increase in the odds of displaying unwanted pursuit behaviors by a factor

ÔR
NDE

x+1,x|C =
odds {Y (x+ 1,M(x)) = 1|C}

odds {Y (x,M(x)) = 1|C}
= exp(β̂1) = exp(0.29) = 1.34,

and

ÔR
NIE

x+1,x|C =
odds {Y (x,M(x+ 1)) = 1|C}

odds {Y (x,M(x)) = 1|C}
= exp(β̂2) = exp(0.2) = 1.22,

respectively, regardless of the initial level x. Defining natural effects on the risk difference
scale (as in the mediation package) would not have enabled to capture these by a single
parameter along the entire support of the exposure, because of induced non-additivity (an
artificial example illustrating this induced non-additivity is given in Figure 4 of Loeys et al.
2013).

Throughout the remainder of the paper, we will continue to use the original continuous
exposure variable, att.

5. Effect modification of natural effects

5.1. Exposure-mediator interactions

So far, the considered natural effect models reflected the assumption that exposure and medi-
ator do not interact in their effect on the outcome (on the scale defined by the link function).
In particular, the natural direct effect odds ratio

ORNDE
1,0|C(x∗) =

odds {Y (1,M(x∗)) = 1|C}
odds {Y (0,M(x∗)) = 1|C}
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was postulated to be the same for each choice of mediator level M(x∗), and hence for each
choice of reference exposure level x∗, at which the mediator is evaluated. Similarly, the natural
indirect effect odds ratio

ORNIE
1,0|C(x) =

odds {Y (x,M(1)) = 1|C}
odds {Y (x,M(0)) = 1|C}

was postulated to be constant across different choices of x at which the outcome is evaluated.
In other words, the effects Robins and Greenland (1992) referred to as the pure direct effect,
ORNDE

1,0|C(0), and total direct effect, ORNDE
1,0|C(1), were assumed to be equal. Likewise, the pure

indirect effect, ORNIE
1,0|C(0), and total indirect effect, ORNIE

1,0|C(1), were assumed to be equal.
However, in many studies, these assumptions may not be plausible.

As pointed out by VanderWeele (2013), total causal effects can be decomposed into a pure
direct effect, a pure indirect effect and a mediated interactive effect. On an additive scale,
the latter can be described as either the difference between total direct and pure direct effects
or as the difference between total indirect and pure indirect effects. Similarly, the total effect
odds ratio

OR1,0|C =
odds {Y (1,M(1)) = 1|C}
odds {Y (0,M(0)) = 1|C}

can be expressed as the product

ORNDE
1,0|C(0)×ORNIE

1,0|C(0)×
ORNDE

1,0|C(1)

ORNDE
1,0|C(0)

= ORNDE
1,0|C(0)×ORNIE

1,0|C(0)×
ORNIE

1,0|C(1)

ORNIE
1,0|C(0)

of the pure direct and pure indirect effect odds ratios and the mediated interaction odds
ratio. Rather than reflecting the difference between total and pure direct or indirect effects,
the mediated interaction odds ratio corresponds to the ratio of total and pure direct or indirect
effect odds ratios.

In a logistic natural effect model, testing for exposure-mediator interaction amounts to testing
whether the mediated interaction odds ratio differs from 1, or equivalently, on the scale of the
linear predictor, whether the corresponding log odds ratio, β′3 in natural effect model

logit Pr {Y (x,M(x∗)) = 1|C} = β′0 + β′1x+ β′2x
∗ + β′3xx

∗ + β′4C, (2)

differs from 0. When including this interaction term in the outcome model, β′1 and β′2 encode
the pure direct and indirect effect log odds ratios, respectively.

When applying the imputation-based approach, the working model needs to at least reflect
the structure of the final natural effect model (as has been pointed out in Section 3.3). This
requires the user to first (re)fit the imputation model accordingly. For instance, a minimal
imputation model for natural effect model (2) would be the logistic regression model

logit Pr(Y = 1|X,M,C) = γ′0 + γ′1X + γ′2M + γ′3XM + γ′4C.

The output of the corresponding natural effect model object suggests there is no evidence for
mediated interaction at the 5% significance level (p = .0541).



24 Medflex: flexible mediation analysis in R

R> expData <- neImpute(UPB ~ att * negaff + gender + educ + age,

+ family = binomial("logit"), data = UPBdata)

R> neMod2 <- neModel(UPB ~ att0 * att1 + gender + educ + age,

+ family = binomial("logit"), expData = expData, se = "robust")

R> summary(neMod2)

Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: att

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3949 0.6800 -0.58 0.5614

att0 0.2950 0.1102 2.68 0.0074 **

att1 0.1817 0.0467 3.90 9.8e-05 ***

genderM 0.2815 0.2263 1.24 0.2135

educM 0.1798 0.4857 0.37 0.7113

educH 0.3105 0.4929 0.63 0.5287

age -0.0139 0.0122 -1.14 0.2545

att0:att1 0.0698 0.0363 1.93 0.0541 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.2. Effect modification by baseline covariates

One might additionally wish to determine whether direct or indirect effects generalize across
different strata of the population and across different conditions.

In our example, researchers might for instance investigate whether the extent to which the
effect of anxious attachment level on engaging in UPBs is mediated through the experience of
negative affectivity differs between men and women or between people with different education
levels (Muller, Judd, and Yzerbyt 2005; Preacher, Rucker, and Hayes 2007). This moderated
mediation hypothesis can be probed by allowing the conditional indirect effect, as indexed by
β2 in model (1), to depend on gender, C1, as expressed in model (3):

logit Pr {Y (x,M(x∗)) = 1|C} = β′′0 + β′′1x+ β′′2x
∗ + β′′3x

∗C1 + β′′4C. (3)

The amount of effect modification by gender in this model is then simply captured by β′′3 .

R> impData <- neImpute(UPB ~ (att + negaff) * gender + educ + age,

+ family = binomial("logit"), data = UPBdata)

R> neMod3 <- neModel(UPB ~ att0 + att1 * gender + educ + age,

+ family = binomial("logit"), expData = impData, se = "robust")

R> summary(neMod3)
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Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: att

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4731 0.6860 -0.69 0.4904

att0 0.2850 0.1069 2.67 0.0077 **

att1 0.1441 0.0583 2.47 0.0134 *

genderM 0.2591 0.2278 1.14 0.2553

educM 0.2718 0.4903 0.55 0.5793

educH 0.4166 0.4975 0.84 0.4024

age -0.0123 0.0122 -1.00 0.3153

att1:genderM 0.1598 0.1016 1.57 0.1156

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output suggests that the natural indirect effect does not differ significantly between men
and women (p = 0.1156).

In a similar way, researchers can gauge effect modification by education level. Suppose, for
instance, that one wishes to test whether education level moderates both the direct and
indirect effect. This can be done by fitting the natural effect model

logit Pr {Y (x,M(x∗)) = 1|C} = β?0 + β?1x+ β?2x
∗ + β?3xC2,1 + β?4xC2,2

+ β?5x
∗C2,1 + β?6x

∗C2,2 + β?7C, (4)

with C2,1 and C2,2 dummy variables encoding the three education levels. Effect modification
of the natural indirect (direct) effect by education level in model (4) is then captured by β?5
and β?6 (β?3 and β?4).

R> impData <- neImpute(UPB ~ (att + negaff) * educ + gender + age,

+ family = binomial("logit"), data = UPBdata)

R> neMod4 <- neModel(UPB ~ (att0 + att1) * educ + gender + age,

+ family = binomial("logit"), expData = impData, se = "robust")

Testing for moderation by a multicategorical variable calls for a multivariate test, which can
again be obtained by requesting an Anova table for the natural effect model.

6. Tools for calculating and visualizing causal effect estimates

In this section, we highlight tools that can aid in calculating and visualizing specific causal
effect estimates of interest. These tools might prove useful for gaining insight, especially for
more complex models including interaction terms involving natural effect parameters.
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6.1. Linear combinations of parameter estimates

Although effect estimates for e.g., the total causal effect can easily be obtained from the
summary table of a natural effect model, its standard error and confidence interval cannot. To
this end, the function neLht, which exploits the functionality of the glht function from the
multcomp package (Hothorn, Bretz, and Westfall 2008) can be of use. This function enables
the calculation of linear combinations of parameter estimates as well as their corresponding
standard errors and confidence intervals based on the bootstrap or robust variance-covariance
matrix of the natural effect model.

For instance, in model (2), the total direct and indirect effect can be expressed on the log
odds scale as β′1 +β′3 and β′2 +β′3, respectively. Similarly, the total causal effect log odds ratio
is captured by β′1 + β′2 + β′3. As the argument for the linear function, linfct, needs to be
specified in terms of one or more linear hypotheses, these effects can be specified as illustrated
below:

R> lht <- neLht(neMod2, linfct = c("att0 + att0:att1 = 0",

+ "att1 + att0:att1 = 0", "att0 + att1 + att0:att1 = 0"))

The corresponding odds ratios and their confidence intervals can be requested by exponenti-
ating the coefficients and confidence intervals of the resulting object:

R> exp(cbind(coef(lht), confint(lht)))

95% LCL 95% UCL

att0 + att0:att1 1.44 1.15 1.80

att1 + att0:att1 1.29 1.15 1.43

att0 + att1 + att0:att1 1.73 1.39 2.15

Separate univariate tests for linear hypothesis objects can be requested using the summary

function:

R> summary(lht)

Linear hypotheses for natural effect models

with standard errors based on the sandwich estimator

---

Estimate Std. Error z value Pr(>|z|)

att0 + att0:att1 0.3648 0.1145 3.19 0.0014 **

att1 + att0:att1 0.2515 0.0553 4.55 5.4e-06 ***

att0 + att1 + att0:att1 0.5465 0.1118 4.89 1.0e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p-values reported)

In contrast to the summary table for glht objects, which yields p values that are adjusted for
multiple testing, tests returned by the summary function applied to neLht objects report un-
adjusted univariate tests. Adjusted tests can be obtained by setting test = adjusted() (for
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more details consult the help page of the adjusted() function from the multcomp package;
Hothorn et al. 2008).

6.2. Effect decomposition

If interest is mainly focused on the natural effect parameters, the convenience function
neEffdecomp can be used instead of neLht. This function automatically retains the nat-
ural effect estimates and generates a linear hypothesis object that reflects the most suitable
effect decomposition:

R> effdecomp <- neEffdecomp(neMod2)

R> summary(effdecomp)

Effect decomposition on the scale of the linear predictor

with standard errors based on the sandwich estimator

---

conditional on: gender, educ, age

with x* = 0, x = 1

---

Estimate Std. Error z value Pr(>|z|)

pure direct effect 0.2950 0.1102 2.68 0.0074 **

total direct effect 0.3648 0.1145 3.19 0.0014 **

pure indirect effect 0.1817 0.0467 3.90 9.8e-05 ***

total indirect effect 0.2515 0.0553 4.55 5.4e-06 ***

total effect 0.5465 0.1118 4.89 1.0e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p-values reported)

By default, reference levels for the exposure, x and x∗, are chosen to be 1 and 0, respectively.
If one wishes to evaluate causal effects at different reference levels (e.g., if the natural effect
model allows for mediated interaction or if it includes quadratic or higher-order polynomial
terms for the exposure), these can be specified as a vector of the form c(x*,x) via the xRef

argument.

The output indicates that, for a subject with baseline covariate levels C, a standard deviation
increase from the average level of anxious attachment (=0), increases the odds of displaying
unwanted pursuit behaviors with a factor

ÔR
NDE

1,0|C(0) =
odds {Y (1,M(0)) = 1|C}
odds {Y (0,M(0)) = 1|C}

= exp(β̂′1) = 1.34

when controlling negative affectivity at levels as naturally observed at average anxious at-
tachment levels, or with a factor

ÔR
NDE

1,0|C(1) =
odds {Y (1,M(1)) = 1|C}
odds {Y (0,M(1)) = 1|C}

= exp(β̂′1 + β̂′3) = 1.44

when controlling negative affectivity at levels as naturally observed at anxious attachment
levels one standard deviation above the average level.
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On the other hand, altering negative affectivity from levels that would have been observed at
average levels of anxious attachment to levels that would have been observed at attachment
scores of one standard deviation higher, increases the odds of displaying unwanted pursuit
behaviors with a factor

ÔR
NIE

1,0|C(0) =
odds {Y (0,M(1)) = 1|C}
odds {Y (0,M(0)) = 1|C}

= exp(β̂′2) = 1.20

when controlling their anxious attachment level at the average, or with a factor

ÔR
NIE

1,0|C(1) =
odds {Y (1,M(1)) = 1|C}
odds {Y (1,M(0)) = 1|C}

= exp(β̂′2 + β̂′3) = 1.29

when controlling their anxious attachment level one standard deviation above the average.

The total causal effect odds ratio can be expressed as the product of the pure direct and
indirect effect odds ratios and the mediated interaction odds ratio: a standard deviation
increase from the average level of anxious attachment approximately doubles the odds of
displaying unwanted pursuit behaviors.

ÔR1,0|C =
odds {Y (1,M(1)) = 1|C}
odds {Y (0,M(0)) = 1|C}

= exp(β̂′1 + β̂′2 + β̂′3) = 1.73.

If the model includes terms reflecting effect modification by baseline covariates (e.g., as in
model (3)), effect decomposition is by default evaluated at covariate levels that correspond
to 0 for continuous covariates and to the reference level for categorical covariates coded as
factors. However, for this type of models, it might often be insightful to evaluate natural
effect components at different covariate levels than the default levels. This can be done via
the covLev argument, which requires a vector including valid levels for modifier covariates
specified in the natural effect model. An example of effect decomposition for women (gender
= "F", the default covariate level) and men (gender = "M") in model (3) is given in the R
code below.

R> neEffdecomp(neMod3)

Effect decomposition on the scale of the linear predictor

---

conditional on: gender = F, educ, age

with x* = 0, x = 1

---

Estimate

natural direct effect 0.285

natural indirect effect 0.144

total effect 0.429

R> neEffdecomp(neMod3, covLev = c(gender = "M"))

Effect decomposition on the scale of the linear predictor

---
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conditional on: gender = M, educ, age

with x* = 0, x = 1

---

Estimate

natural direct effect 0.285

natural indirect effect 0.304

total effect 0.589

R> par(mfrow = c(1, 2))

R> plot(neMod2, xlab = "log odds ratio")

R> plot(neMod2, xlab = "odds ratio", transf = exp)

6.3. Global hypothesis tests

Wald tests considering all specified linear hypotheses jointly can be requested by specifying
test = Chisqtest(). For instance, in model (4), instead of using the Anova function, one
could also test for moderated mediation by the multicategorical baseline covariate education
level via a global hypothesis test involving the relevant parameters β?5 and β?6 .

R> modmed <- neLht(neMod4, linfct = c("att1:educM = 0", "att1:educH = 0"))

R> summary(modmed, test = Chisqtest())

Global linear hypothesis test for natural effect models

with standard errors based on the sandwich estimator

---

Chisq DF Pr(>Chisq)

1 5.2 2 0.0742

6.4. Visualizing effect estimates and their uncertainty

Finally, the generic plot function can be applied to linear hypothesis objects to visualize
(linear combinations of) effect estimates and their uncertainty by means of confidence interval

95% sandwich CIs

log odds ratio

0.0 0.2 0.4 0.6 0.8

total effect

total indirect effect
pure indirect effect

total direct effect
pure direct effect

95% sandwich CIs

odds ratio

1.0 1.4 1.8 2.2

total effect

total indirect effect
pure indirect effect

total direct effect
pure direct effect

Figure 4: Effect decomposition on the log odds ratio and odds ratio scales.
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plots. To obtain estimates and confidence intervals on the odds ratio scale, one can specify
transf = exp in order to exponentiate the original parameter estimates (on the log odds
ratio scale).

Applying the plot function to a natural effect model object automatically retains the causal
effect estimates of interest, generates a linear hypothesis object using neEffdecomp and then
plots its corresponding estimates and confidence intervals, as shown in Figure 4.

The default exposure reference and covariate levels for these plots are the same as for the
neEffdecomp function, but can again be altered via the corresponding arguments xRef and
covLev.

7. Population-average natural effects

In all previous sections, we defined natural effects as conditional or stratum-specific effects
(i.e., conditional on baseline covariates). However, the medflex package additionally allows
to estimate population-average natural effects. As demonstrated in Appendix A.3 and A.4,
rewriting the mediation formula reveals that estimation of these population-average effects
requires weighting by the reciprocal of the conditional exposure density in order to adjust for
confounding (also see Albert 2012; Vansteelandt 2012).

As a consequence, a model for the exposure density needs to be fitted and specified as an
additional working model, e.g.,

R> expFit <- glm(att ~ gender + educ + age, data = UPBdata)

Since specifying population-average natural effect models using the neModel is equivalent for
the weighting- and imputation-based approaches, in the remainder of this section, we demon-
strate how to proceed when adhering to the imputation-based approach. Moreover, when
estimating population-average natural effects, incoherence between imputation and natural
effect models is less of a concern as the latter does not require modeling the relation be-
tween outcome and covariates. The (first) working model can again be fitted using the same
commands as before:

R> impData <- neImpute(UPB ~ att + negaff + gender + educ + age,

+ family = binomial("logit"), data = UPBdata)

Each observation in the expanded dataset to which the marginal natural effect model

logit Pr {Y (x,M(x∗)) = 1} = θ0 + θ1x+ θ2x
∗ (5)

is fitted, needs to be weighted by the reciprocal of the exposure probability density, Pr(X|C),
evaluated at the observed exposure. The fitted model object that is used to calculate regres-
sion weights needs to be specified in the xFit argument of the neModel function:

R> neMod5 <- neModel(UPB ~ att0 + att1, family = binomial("logit"),

+ expData = impData, xFit = expFit, se = "robust")

R> summary(neMod5)
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Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: att

Mediator(s): negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.5793 0.1112 -5.21 1.9e-07 ***

att0 0.2967 0.1082 2.74 0.0061 **

att1 0.2294 0.0578 3.97 7.2e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both the marginal natural direct and indirect effect odds ratios again seem to be significantly
different from 1: increasing the anxious attachment level from average to one standard error
above average, while keeping negative affectivity fixed at levels corresponding to anxious
attachment level x∗, increases the odds of displaying unwanted pursuit behaviors with a
factor

ÔR
NDE

1,0 =
odds {Y (1,M(x∗)) = 1}
odds {Y (0,M(x∗)) = 1}

= exp(θ̂1) = 1.35.

A similar interpretation can again be made for the natural indirect effect.

8. Intermediate confounding: A joint mediation approach

In many settings multiple mediators may be of interest. In our example, one could ar-
gue that being anxiously attached to one’s partner makes respondents more hesitant to end
their relationship and that, in turn, not having initiated the break-up causes them to en-
gage in unwanted pursuit behaviors more often. Initiator status (initiator: either "both",
"ex-partner", or "myself") can thus also be considered a mediator, which we denote L.

If hypothesized mediators are conditionally independent (given exposure and baseline co-
variates), separate natural effect models can be fitted (each with a different working model
involving only one of the mediators) to assess the mediated effects through each of the media-
tors one at a time. Specifically, if the aforementioned ignorability conditions A1-A4 hold with
respect to each mediator separately11, natural indirect effects, as defined as causal pathways
through single mediators, are identified since these conditions imply that the given mediators
are independent given exposure and baseline covariates (Imai and Yamamoto 2013; Vander-
Weele and Vansteelandt 2013). Recently, Lange et al. (2014) demonstrated how independent
intermediate pathways can be assessed in a single natural effect model using the weighting-
based approach. Additionally, these authors proposed a regression-based approach for testing
conditional dependence between mediators (also see Loeys et al. 2013; Imai and Yamamoto
2013).

11In addition to the assumptions expressed in A1-A4, we additionally assume that Y (x, l)⊥⊥X|C (for all levels
of x and l), L(x)⊥⊥X|C (for all levels of x), Y (x, l)⊥⊥L|X = x,C (for all levels of x and l) and Y (x, l)⊥⊥L(x∗)|C
(for all levels of x, x∗ and l).
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anxious attachment (X)

initiator status (L)

negative affectivity (M)

unwanted pursuit (Y )

gender, education, age (C)

Figure 5: Causal diagram reflecting exposure-induced confounding.

Often, however, mediators are interdependent and can be thought of as being linked in a
sequential causal chain. For instance, not having initiated the break-up could have made
respondents more prone to feeling sad, jealous, angry, frustrated or hurt, as reflected in the
causal diagram of Figure 5. Under this diagram, initiator status confounds the relation be-
tween the mediator and outcome (given that negative affectivity is the mediator of interest),
while at the same time being affected by the exposure, hence violating identification assump-
tion A4. As a consequence, the natural indirect effect via negative affectivity is no longer
identified under the NPSEM-IE depicted in Figure 5 (although see Robins 2003; Tchetgen
Tchetgen and VanderWeele 2014; Vansteelandt and VanderWeele 2012, for additional (para-
metric) restrictions which enable identification). This non-identification can intuitively be
appreciated by the fact that, in the presence of an intermediate confounder L, the natural
indirect effect via M can be rewritten as

odds {Y (x, L(x),M(1, L(1))) = 1|C}
odds {Y (x, L(x),M(0, L(0))) = 1|C}

,

which involves blocking the causal path through L only (X → L → Y ), while at the same
time assessing the effect transmitted through L and M (X → L→M → Y ) (Didelez, Dawid,
and Geneletti 2006).

Alternatively, the total causal effect can be decomposed into the effect transmitted through L
andM simultaneously and the effect not mediated by any of the given mediators (VanderWeele
and Vansteelandt 2013; VanderWeele, Vansteelandt, and Robins 2014). Although such a
joint mediation approach might not target the initial mediation hypothesis, it may still shed
some light on the underlying causal mechanisms if there are reasons (either theoretical or
empirical) to question the validity of condition A4 (with respect to a single mediator)12,
since this decomposition relies on a weaker set of ignorability assumptions. Specifically, if,
as under the NPSEM-IE depicted in Figure 5, we assume that a set of baseline covariates C

12In particular, it can be interesting to assess if the two mediators in combination lead to a null direct effect
as this may signal that all important components in the causal chain from exposure to outcome have been
identified.
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satisfies ‘no omitted variables’ assumptions A1-A3 with respect to L and M jointly (rather
than separately) and that no measured or unmeasured confounders of the (L,M)−Y relation
are affected by the exposure13, the joint mediated effect and corresponding direct effect are
identified. The appeal of this joint mediation approach is that by defining a natural indirect
effect with respect to a set or vector of mediators (rather than a single mediator) assumption
A4 can be made more plausible by simply including mediator-outcome confounders that are
deemed likely to be affected by the exposure in the joint set of mediators (VanderWeele and
Vansteelandt 2013).

For example, exp(β??1 ) in model (6)

logit Pr {Y (x, L(x∗),M(x∗, L(x∗))) = 1|C} = β??0 + β??1 x+ β??2 x
∗ + β??3 C, (6)

captures the (newly defined) natural direct effect odds ratio

ORNDE
1,0|C =

odds {Y (1, L(x∗),M(x∗, L(x∗))) = 1|C}
odds {Y (0, L(x∗),M(x∗, L(x∗))) = 1|C}

,

whereas exp(β??2 ) captures the natural indirect effect odds ratio

ORNIE
1,0|C =

odds {Y (x, L(1),M(1, L(1))) = 1|C}
odds {Y (x, L(0),M(0, L(0))) = 1|C}

through L and M jointly.

Fitting this natural effect model, however, requires both mediators to be taken into account
in the working model(s). When applying the weighting-based approach, dealing with multiple
mediators entails fitting a model for each of the mediators separately to calculate ratio-of-
mediator probability weights, as in Lange et al. (2014). The imputation-based approach, on
the other hand, is less demanding as it only requires one working model for the outcome. For
this reason, estimation of joint mediated effects is implemented only for the imputation-based
approach in the current version of the medflex package.

Hence, after expanding the data, nested counterfactual outcomes need to be imputed by fitted
values from an imputation model conditional on both L and M . For instance, in the R code
below, a logistic model

logit Pr(Y = 1|X,L,M,C) = γ??0 + γ??1 X + γ??2 L+ γ??3 M + γ??4 LM + γ??5 C

is fitted that allows the mediators to interact in their effect on the outcome.

R> impData <- neImpute(UPB ~ att + initiator * negaff + gender + educ + age,

+ family = binomial("logit"), nMed = 2, data = UPBdata)

The number of mediators to be considered jointly should be set via the nMed argument in the
neImpute function. If nMed = 2, not only the second predictor variable, but the two predictor
variables declared after the exposure variable are internally coded as mediators. Subsequently,
natural effect model (6) can be fitted to the imputed dataset using the neModel function.

13I.e., assuming that Y (x, l,m)⊥⊥X|C (for all levels of x, l and m), {M(x), L(x)}⊥⊥X|C (for all levels of x),
Y (x, l,m)⊥⊥{L,M}|X = x,C (for all levels of x, l and m) and Y (x, l,m)⊥⊥{L(x∗),M(x∗)}|C (for all levels of
x, x∗, l and m).
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R> neMod6 <- neModel(UPB ~ att0 + att1 + gender + educ + age,

+ family = binomial("logit"), expData = impData, se = "robust")

R> summary(neMod6)

Natural effect model

with robust standard errors based on the sandwich estimator

---

Exposure: att

Mediator(s): initiator, negaff

---

Parameter estimates:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4919 0.6854 -0.72 0.473

att0 0.2444 0.1114 2.19 0.028 *

att1 0.2476 0.0538 4.60 4.2e-06 ***

genderM 0.2629 0.2274 1.16 0.248

educM 0.2780 0.4912 0.57 0.571

educH 0.4223 0.4979 0.85 0.396

age -0.0121 0.0122 -0.99 0.320

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correct specification of the (number of) mediators can easily be checked in the summary output
of the natural effect model object, which lists the names of the exposure and all mediators.

Although we have hypothesized that initiator status affects the level of experienced negative
affectivity, this joint mediator approach does not necessarily require knowing the ordering
of the mediators. VanderWeele and Vansteelandt (2013) and VanderWeele et al. (2014) de-
scribed how additional insight into the causal mechanisms can be gained when the ordering
is (assumed to be) known. These authors advocated a sequential approach which enables
further effect decomposition of the total causal effect into multiple path-specific effects (Avin
et al. 2005; also see Huber 2013 for an inverse-probability weighting approach and Albert
and Nelson 2011 and Daniel, De Stavola, Cousens, and Vansteelandt 2015 for a parametric
g-computation approach for estimating some of these path-specific effects). Such sequential
approach can easily be embedded in the natural effect model framework and is planned to be
implemented in an upcoming version of the medflex package.

9. Weighting or imputing?

For both the weighting- and imputation-based approach, valid estimation of natural effects
hinges on adequate specification of their corresponding nuisance working models and the
natural effect model. In this section, we highlight the impact of model misspecification for
each of the two proposed estimation approaches. The resulting trade-off in terms of modeling
demands may serve as a guideline as to which of the two approaches is to be preferred in which
particular setting. Moreover, certain missing data patterns might also favor one approach over
the other, as discussed in more detail below.
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9.1. Modeling demands

The proposed weighting-based approach yields consistent natural effects estimates if both the
natural effect model and the conditional distribution of the mediator are correctly specified.
The latter needs careful consideration, especially when exposure or baseline covariates are
highly predictive of the mediator, for then even minor misspecifications in its conditional
expectation can have a major impact on the weights and lead to heavily biased estimation of
the target natural effects parameters. However, residual plots with scatterplot smoothers are
often helpful to diagnose model inadequacy and can be requested, for instance, by passing
the expData-class object to the residualPlots function from the car package. When dealing
with continuous mediators, correct modeling not only demands adequate specification of the
mediator’s expectation, but also requires additional parametric assumptions on the mediator’s
conditional density (i.e., the distribution of the error terms).14 Moreover, even under proper
model specification, weights for continuous mediators typically tend to be unstable, leading to
less precise natural effect estimates and considerable finite sample bias. In particular, when
the outcome is linear in the mediator, it might be sensible to avoid unnecessary parametric
assumptions, since then the mediation formula prescribes only correct specification of the
mediator’s expectation.

In the light of these considerations, Vansteelandt et al. (2012b) recommended routine appli-
cation of the imputation-based approach, especially when dealing with continuous mediators,
since it avoids reliance on a model for the mediator. Despite this attraction, the imputation
estimator does not come without limitations.

As in other imputation settings, one must pay due attention to coherent (or ‘congenial’) spec-
ification of the imputer’s model and the analyst’s model (i.e., in this case, the natural effect
model) (Meng 1994). This might be particularly challenging for nonlinear outcome models.
For instance, when using logistic regression to model binary outcomes, the imputation model
may be difficult or impossible to match with the natural effect model (VanderWeele and
Vansteelandt 2010; Tchetgen Tchetgen 2014). To limit the impact of potential model uncon-
geniality in terms of misspecification bias, Vansteelandt et al. (2012b) and Loeys et al. (2013)
advocated the use of a sufficiently rich imputation model.15 To this end, the medflex package
allows users to fit an imputation model using generalized additive models or machine learning
techniques, such as the ensemble learner as implemented in the SuperLearner package (Pol-
ley and van der Laan 2014).16 Moreover, issues of uncongeniality can be avoided altogether
by resorting to saturated natural effect models. In practice, models for conditional natural
effects will rarely be saturated as either (some) baseline covariates or the exposure variable
are continuous (or both). If the exposure is categorical, saturated models can be fitted for
estimating population-average rather than stratum-specific natural effects (see Section 7).

14By default, the density function will correspond to the error distribution specified in the family argument
for the mediator model (in turn specified via neWeight). QQ plots of the residuals can in this case be informative
as to whether this parametric assumption is warranted for continuous mediators and can be obtained using
the qqnorm function. The residuals can easily be obtained directly from the expanded dataset (as the working
model is stored as an attribute in the expanded dataset object) by the command residuals(expData).

15A ‘minimal’ imputation model should thus at least reflect the structure of the natural effect model (e.g.,
also including exposure-mediator interactions when these are postulated in the natural effect model as an
interaction term between x and x∗) to avoid attenuation of the estimates of effects that were precluded from
the imputation model.

16An example is given in the help files of the package and can be consulted via ?neImpute.default. Only
bootstrap standard errors are available when fitting the imputation model using the SuperLearner function.
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However, for observational data, as opposed to data from experiments where the exposure is
randomly assigned, adjustment for confounding in population-average natural effect models
requires inverse weighting for the exposure.17

Second, as opposed to the weighting-based estimator, estimation by imputation requires mod-
eling the mediator-outcome relation, which can be far from trivial whenever the exposure or
baseline covariates are strongly associated with the mediator. In these scenarios, information
about the effect of the mediator on the outcome may be sparse within certain strata defined
by the exposure and covariates and, as a result, model misspecification may be difficult to di-
agnose and extrapolation bias becomes more likely (Vansteelandt 2012). Whenever increased
concerns of model extrapolation arise, the weighting-based approach may be indicated, as ex-
trapolation uncertainty will typically be more honestly reflected in the corresponding standard
errors (Vansteelandt, Bekaert, and Claeskens 2012a).18

Finally, it can be argued that, for both estimation approaches, if the working model is cor-
rectly specified (either via generalized linear models or via more advanced techniques), a par-
simonious (and possibly misspecified) natural effect model will still provide some summary
result tailored to answer the practitioner’s main research questions (Vansteelandt et al. 2012b;
Loeys et al. 2013). Suppose, for instance, that the logistic regression models in equation (0)
are correctly specified. Fitting a natural effect model of the form

logit Pr(Y = 1|X,M,C) = β0 + β1x+ β2x
∗ + β3C

to the expanded dataset using the imputation-based approach will then yield an estimated
conditional natural indirect effect odds ratio of 1.143, which can be roughly considered as the
mean conditional odds ratio across potential exposure levels (as depicted in Figure 1). If such
an approach turns out to be unsatisfactory, users can again request residual plots to guide
further model building and improve goodness-of-fit (by calling the residualPlots function).
These diagnostics can be particularly helpful in the presence of certain non-linearities. For
instance, when a continuous mediator is quadratic in the exposure, residual plots will indicate
the need for a quadratic term for the indirect effect in the natural effect model, which will
usually go unnoticed when fitting an imputation model for the outcome.

9.2. Missing data

As previously stated, when missingness occurs in the outcome, this is naturally dealt with
when choosing the imputation-based approach, as missing outcomes in the original dataset
are (by default) imputed in the expanded dataset, under the assumption that these outcomes
are MAR (missing at random) given exposure, mediator(s) and baseline covariates.19

The weighting-based approach, on the other hand, is restricted to the analysis of complete
cases and hence requires the more stringent MCAR (missing completely at random) assump-

17Note that in both settings all baseline confounders still need to be adjusted for in the imputation model.
Moreover, although the use of population-average natural effect models can, in some settings, avoid issues
concerning potential model uncongeniality, it is up to the researcher to decide whether stratum-specific or
population-average effects are the target of the study.

18Extrapolation might also affect estimation in the natural effect model, primarily when baseline covariates
and exposure are highly correlated. This concern holds for both the weighting- and imputation-based estimator,
since both require regression adjustment for covariates to estimate conditional natural effects.

19It might be necessary to include additional covariates (that are both predictive of the outcome and miss-
ingness in the outcome, but are not included in the set of baseline covariates, C, that is chosen to meet
assumptions A1-A4 to the imputation model to make the MAR assumption more plausible.
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tion to hold in order to obtain unbiased estimation of the natural effect parameters. When-
ever missingness occurs only in the outcome, we therefore advise to use the imputation-based
approach. Alternatively, one might resort to multiple imputation, as also recommended if
missingness occurs in either the exposure, mediator(s) or baseline covariates.

For instance, the mice function from the mice package (van Buuren and Groothuis-Oudshoorn
2011) can be used to obtain multiply imputed datasets (stored in a mids-class object). The
working model can in turn be fitted to each of these datasets by passing them (or rather the
object containing these datasets) to the with.mids function, which also processes the function
(i.e., either neWeight or neImpute) and expression that needs to be evaluated via the second
argument. These steps are illustrated in the code below, in which missdat is a copy of the
UPB dataset with artificially introduced missingness in each of the original variables.

R> library("mice")

R> library("mitools")

R>

R> missdat <- UPBdata

R> for (i in 1:ncol(missdat)) {

+ missdat[sample(nrow(missdat))[1:10], i] <- NA

+ }

R>

R> multImp <- mice(missdat, m = 10)

R> expData <- with(multImp, neWeight(negaff ~ factor(attbin) + gender

+ + educ + age))

Next, we use some functionalities from the mitools package (Lumley 2014) to fit natural effect
model (1) to each of the expanded multiply imputed datasets (stored in expData$analyses).
The function imputationList can be used to transform the output containing these expanded
datasets into a format that can be further passed to the with.imputationList function.

R> expData <- imputationList(expData$analyses)

R> neMod1 <- with(expData, neModel(UPB ~ attbin0 + attbin1 + gender

+ + educ + age, family = binomial("logit"), se = "robust"))

Finally, the results can be pooled by using the MIcombine function.

R> MIcombine(neMod1)

Multiple imputation results:

with(expData, neModel(UPB ~ attbin0 + attbin1 + gender + educ +

age, family = binomial("logit"), se = "robust"))

MIcombine.default(neMod1)

results se

(Intercept) -0.84709412 0.73366115

attbin01 0.37963076 0.21874683

attbin11 0.34933687 0.08987945

gender2 0.34072605 0.24124907

educ2 0.14410803 0.49349023

educ3 0.39779433 0.50418124

age -0.01097623 0.01299724
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10. Concluding remarks

In this paper, we provided some theoretical background on the counterfactual framework, in
particular on mediation analysis and natural direct and indirect effects, and described the
functionalities of the R package medflex.

This package combines some important strengths of other (software) applications for me-
diation analysis that build on the mediation formula, while accommodating some of their
respective weaknesses. The major appeal of this package is its flexibility in dealing with non-
linear parametric models and the functionalities it offers for hypothesis testing by resorting
to natural effect models, which allow for direct parameterization of the target causal esti-
mands on their most natural scale. Furthermore, for the most common parametric models,
robust standard errors can be obtained, so the computer-intensive bootstrap can be avoided.
A limitation of this package is that, at present, it does not offer any tools for assessing the
sensitivity of one’s results to possible violations of the identification assumptions of the causal
estimands.

As mentioned in section 8, additional functionalities for dealing with exposure-induced con-
founding and multiple mediators are intended to be added to the package in the future, as
well as extensions for survival models. Future developments within the realm of natural effect
models (such as a generic framework for conducting sensitivity analyses) will be added in
updates of the package.

A. Link between estimators and the mediation formula

In this section we illustrate in more detail how natural effect models can be regarded as
alternative formulations of the mediation formula.

A.1. Weighting-based estimator (Lange et al. 2012)

Fitting a stratum-specific natural effect model using the weighting-based approach requires a
model for the mediator distribution Pr(M |X,C) as a working model.

E {Y (x,M(x∗))|C} =
∑
m

E(Y |X = x,M = m,C) Pr(M = m|X = x∗, C)

=
∑
y

∑
m

yPr(Y = y|X = x,M = m,C) Pr(M = m|X = x∗, C)

=
∑
y

∑
m

y
Pr(Y = y,M = m|X = x,C)

Pr(M = m|X = x,C)
Pr(M = m|X = x∗, C)

= E

[
Y

Pr(M = m|X = x∗, C)

Pr(M = m|X = x,C)

∣∣∣∣ X = x,C

]

A.2. Imputation-based estimator (Vansteelandt et al. 2012b)

Fitting a stratum-specific natural effect model using the imputation-based approach requires
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an imputation model for the mean outcome E(Y |X,M,C) as a working model.

E {Y (x,M(x∗))|C} =
∑
m

E(Y |X = x,M = m,C) Pr(M = m|X = x∗, C)

= E
[
E(Y |X = x,M,C)

∣∣∣ X = x∗, C
]

A.3. Weighted weighting-based estimator (Lange et al. 2012)

Fitting a marginal or population-averaged natural effect model requires a propensity score
model for the exposure Pr(X|C) as additional working model.

E{Y (x,M(x∗))} =
∑
c

∑
m

E(Y |X = x,M = m,C = c) Pr(M = m|X = x∗, C = c) Pr(C = c)

=
∑
y

∑
c

∑
m

yPr(Y = y|X = x,M = m,C = c)

× Pr(M = m|X = x∗, C = c)
Pr(C = c,X = x)

Pr(X = x|C = c)

=
∑
y

∑
c

∑
m

y
Pr(Y = y,M = m|X = x,C = c)

Pr(M = m|X = x,C = c)

× Pr(M = m|X = x∗, C = c)
Pr(C = c,X = x)

Pr(X = x|C = c)

=
∑
y

∑
c

∑
m

y
Pr(Y = y,M = m,C = c,X = x)

Pr(X = x|C = c)

Pr(M = m|X = x∗, C = c)

Pr(M = m|X = x,C = c)

=
∑
y

∑
c

∑
m

y
Pr(Y = y,M = m,C = c|X = x)

Pr(X = x|C = c)
Pr(X = x)

× Pr(M = m|X = x∗, C = c)

Pr(M = m|X = x,C = c)

= E

[
Y

Pr(X = x|C)

Pr(M |X = x∗, C)

Pr(M |X = x,C)

∣∣∣∣ X = x

]
Pr(X = x)

= E

[
Y I(X = x)

Pr(X = x|C)

Pr(M |X = x∗, C)

Pr(M |X = x,C)

]

A.4. Weighted imputation-based estimator (related to Albert 2012)

E{Y (x,M(x∗))} =
∑
c

∑
m

E(Y |X = x,M = m,C = c) Pr(M = m|X = x∗, C = c) Pr(C = c)

=
∑
c

∑
m

E(Y |X = x,M = m,C = c)

Pr(X = x∗|C = c)
Pr(M = m,C = c,X = x∗)

=
∑
c

∑
m

E(Y |X = x,M = m,C = c)

Pr(X = x∗|C = c)
Pr(M = m,C = c|X = x∗) Pr(X = x∗)
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= E

[
E(Y |X = x,M,C)

Pr(X = x∗|C)

∣∣∣∣ X = x∗
]

Pr(X = x∗)

= E

[
E(Y |X = x,M,C)

Pr(X = x∗|C)
I(X = x∗)

]
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