
Smoothing discrete data (I)

– using the smooth.discrete() function in the mhsmm

package

Søren Højsgaard and Jared O’Connell

June 16, 2011

Contents

1 Introduction 1

2 Using smooth.discrete() 1

3 The arguments to smooth.discrete() 3

hsmm shared library loaded

1 Introduction

The smooth.discrete() function provides a simple smoothing of a time series of discrete values
measured at equidistant times. Under the hood of smooth.discrete() is a hidden Markov model.

More details – and an additional example – is provided in the vignette “Smoothing discrete data
(II)”

2 Using smooth.discrete()

For example consider the data:

> y1 <- c(1, 1, 1, 1, 2, 1, 1, NA, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1,
+ 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1,
+ 1, 1, 1, 2, 2, 2, 1, 1)

Calling smooth.discrete() on these data gives

> obj <- smooth.discrete(y1)

A 'smoothDiscrete' object
List of 4
$ s : num [1:45] 1 1 1 1 1 1 1 1 1 1 ...
$ model :List of 9
..- attr(*, "class")= chr "hmm"
$ data :List of 3
$ initial:List of 3
- attr(*, "class")= chr "smoothDiscrete"
NULL

1

The s slot of the object contains the smoothed values. We illustrate the results in Figure˜1.

> plot(y1, ylim = c(0.8, 2))
> addStates(obj$s)

● ● ● ●

●

● ● ● ●

●

● ● ●

●

● ● ● ● ●

● ● ● ●

●

● ● ●

●

● ● ●

● ● ● ● ● ● ● ●

● ● ●

● ●

0 10 20 30 40

0.8
1.0

1.2
1.4

1.6
1.8

2.0

Index

y1

Figure 1: Observed and smoothed discrete time time series.

The smoothed sequence of states is by default the jointly most likely sequence of states as obtained
by the Viterbi algorithm.

A smooth of a new time series is produced as

> y2 <- c(1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1,
+ 1, 2, 2, 2, NA, 1, 1, 1, 2, 2, 1, 2, 2, 2)
> predict(obj, x = y2)

$s
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

$x
[1] 1 1 1 1 2 2 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 NA 1 1
[26] 1 2 2 1 2 2 2

$N
[1] 32

$loglik
[1] -24.53755

attr(,"class")
[1] "hsmm.data"

Here the smoothed values are in the s slot. Again, the sequence is by default the jointly most
likely sequence of states.

The estimated parameters are:

> summary(obj)

init:
1 0

transition:
[,1] [,2]

[1,] 0.920 0.080
[2,] 0.136 0.864

emission:
$pmf

[,1] [,2]
[1,] 0.7925235 0.2147958
[2,] 0.3418576 0.6443388

2

3 The arguments to smooth.discrete()

The arguments of smooth.discrete() are

> args(smooth.discrete)

function (y, init = NULL, trans = NULL, parms.emission = 0.5,
method = "viterbi", details = 0, ...)

NULL

• init is a vector of initial probabilities for the Markov chain. If init=NULL then the initial
distribution is taken to be the relative frequencies in data, that is

> table(y1)/sum(table(y1))

y1
1 2

0.6363636 0.3636364

• trans is the transition matrix for the Markov chain. If trans=NULL then the transition
matrix is derived from data as:

> ttt <- table(y1[-length(y1)], y1[-1])
> ttt

1 2
1 19 7
2 7 9

> sweep(ttt, 1, rowSums(ttt), "/")

1 2
1 0.7307692 0.2692308
2 0.4375000 0.5625000

If trans is a vector (of numbers smaller than 1) then these are taken to be the diagonal
of the transition matrix and the off–diagonal elements are then, within each row, taken to
be identical so that the rows sum to 1. Elements of trans are recycled so as to make the
dimensions match. Under the hood, the matrix is created as, for example:

> createTransition(c(0.8, 0.9), 2)

[,1] [,2]
[1,] 0.8 0.2
[2,] 0.1 0.9

• parms.emission is a matrix describing the conditional probabilities of the observed states
given the latent states. If parms.emission is a vector then the matrix is created following
the same scheme as for the transition matrix described above.

• The method argument is either "viterbi" (which produces the jointly most likely sequence
of states). The alternative method is smoothed which produces the individually most likely
states.

• The dotted arguments are passed on the the hmmfit function. For example, one may specify
lock.transition=TRUE in which case the transition matrix is not estimated from data.

3

