
Microbial pangenomics in R - A case study

Lars Snipen and Kristian Hovde Liland

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 This case study . 2
1.3 Organizing data and scripts . 2

2 Preparing data 2
2.1 Genome overview table . 2
2.2 The genome sequence data . 3
2.3 The protein sequence data . 4
2.4 Preparing protein sequence files 5

3 Comparing sequences 6
3.1 Direct comparison using BLAST 6
3.2 Indirect comparison using HMMER3 7

4 Clustering sequences 9
4.1 Clustering based on BLAST results 9

4.1.1 BLAST distances . 9
4.1.2 Hierarchical clustering . 10

4.2 Clustering based on Pfam domains 12
4.2.1 Domain sequences . 12
4.2.2 Clustering . 12

4.3 Direct or indirect comparison? 14

5 The pan-matrix 14

6 The pangenome tree 16

7 Pangenome size 18
7.1 Binomial mixture models . 19
7.2 Other analyses . 20

1

1 Introduction

1.1 Motivation

The best way of learning about a new R package is to use it. This case study
can serve as a template for later studies, or you can just step through parts of
it to see how we make use of some of the functions in the micropan package.
For more detailed explanation of the various functions, see the Help files. There
are also some external softwares we make use of here, see the package vignette
for how to install this.

1.2 This case study

In this case study we have chosen data from the species Mycoplasma penumo-
niae. The only reasons we have chosen this species is that the genomes are small
and at the time of writing this there are a few (4) complete and a few (3) draft
genomes publicly available. Since we have only 7 genomes, and these are pretty
small, computations will be fast.

We will focus on the workflow which is necessary to compute the pan-matrix,
which is the central data structure in a pangenome study. Then we show some
example of analyses based on a pan-matrix. We start out by the preparation of
data, i.e. how to download genomes and predict genes, and then how to prepare
the files for further computations. You may have your own genomes and protein
sequence data, and only the last step is of any real interest. Next, we consider
two ways of comparing sequences, using BLAST or HMMER3. Then we cluster
the sequences based on either the BLAST- or the HMMER3-approach. Then
pan-matrices can be computed, and finally we just show how this can be used
to create pangenome trees and estimate core- and pangenome sizes.

1.3 Organizing data and scripts

When working with microbial pangenomics you need to handle quite large
amounts of data, and a minimum of dicipline with respect to organization will
usually pay dividends. We prefer to organize each study in a separate folder,
with a similar set of subfolders each time. We name the root folder for this
study Mpneumoniae/.

2 Preparing data

Under the root folder we create a subfolder named data/. In this folder we will
store the sequence data for every genome in the study.

2.1 Genome overview table

In the data/ subfolder we like to have a small textfile containing a table listing
some information about each genome in the study. This file is typically created
in a spreadsheet and saved as a textfile, and can be read into R using the
read.table function. In Table 1 we show an example of such a table. It may of
course have many more columns, and we will come back to the data in this table

2

Table 1: A small table listing the genomes in the study. We recommend that all
studies have such a textfile containing a tabular listing of the genomes. The first
column lists the name of the FASTA-file where the genomes will be stored. The
second column holds the GenBank acession number. Only the first 4 genomes
are completed, and has a GenBank accession number. The third column is
the GenBank accession for the master-record of the WGS data for the 3 draft
genomes. The fourth column is named GID and contains just a unique integer
for each genome. The two last columns contain the strain short-name and some
colors we may use when displaying the genomes later. Many more columns may
of course be added, but these will be used below.
File Accession MasterRecord GID Strain Color
Mpneumoniae M129.fsa U00089.2 1 M129 cyan
Mpneumoniae 309.fsa AP012303.1 2 309 blue
Mpneumoniae FH.fsa CP002077.1 3 FH blue
Mpneumoniae M129-B7.fsa CP003913.1 4 M129-B7 cyan
Mpneumoniae PO1.fsa ANAA00000000 5 PO1 blue
Mpneumoniae PI 1428.fsa ANAB00000000 6 PI 1428 blue
Mpneumoniae 19294.fsa ANIQ00000000 7 19294 blue

below. In this case study we assume this table has been saved as tab-separated
columns in a file named Mpneumoniae.txt and put in the data/ subfolder.

We start R and set the Mpneumoniae/data/ as our working folder, and the
table is read into R by

library(micropan)

options(stringsAsFactors=FALSE)

genome.table <- read.table("Mpneumoniae.txt",sep="\t",header

=TRUE)

We will make use this table later.

2.2 The genome sequence data

In the data/ folder we create a subfolder named genomes/. Here we put the
FASTA-files containing the genome sequence data. If you have all the genome
or protein sequences you will need for your analysis you may skip the rest of
this subsection.

Whole-genome data can be collected from many public databases. In this
package we have a facility for downloading genomes from the National Centre
for Biotechnlogy Information [5]. The Genome database at NCBI is considered
one of the most comprehensive collections of public whole-genome data. At the
same time, NCBI also provides an interface for downloading, either manually
or by the use of the Entrez programming utilities (E-utilities, see http://www.

ncbi.nlm.nih.gov/books/NBK25501/). It is the latter we use here.
Let us start out with the 4 completed genomes listed first in Table 1. We have

a GenBank accession number for each genome, and have assigned a filename to
each of them. We can download them using the function entrezDownload:

3

for(i in 1:4){

out.file <- file.path("genomes",genome.table$File[i])

entrezDownload(genome.table$Accession[i],out.file)

}

The function entrezDownload will retrieve the data with the accession number
given in the first input, and store the result as a FASTA formatted file named
by the second input. Obviously, both you and the servers at NCBI need to be
online for this to succeed, you may occasionally have to retry at a later time to
retrieve all the data.

Draft genomes are stored as a set of (many) contigs, each having its own
accession number. If you have the accession number of the WGS master record,
the function getAccessions can be used to retrieve the list of accession numbers
for all contigs. In our table genome.table the three last genomes are draft
genomes, and each of them has a master record accession number. We download
them as follows:

for(i in 5:7){

contig.acc <- getAccessions(genome.table$MasterRecord[i])

out.file <- file.path("genomes",genome.table$File[i])

entrezDownload(contig.acc ,out.file)

}

The master record accessions will these days typically consist of 4 uppercase
letters and then 8 zeros. If you scan the NCBI Genome table of prokaryotic
projects, you will find accessions like ANAA01. Then, just replace the last 1 with
0 and add 6 more 0’s. This system will not last forever, they never do.

If you inspect the variable contig.acc after you run the code above you
will see it is a text containing many accession numbers separated by comma. In
some cases the completed genomes also have more than one accession number,
e.g. there are plasmids or more than one chromosome. In all cases you list
multiple accession numbers as a single text where the accessions are separated
by comma. There is, however, one exception. The Entrez programming utility
at NCBI dislikes a query containing a huge number of accessions. For some
draft genomes there are hundreds, sometimes thousands, of contigs. We have
found that splitting these into chunks of 500 accession numbers is a solution,
and the getAccessions function will automatically do this.

2.3 The protein sequence data

In pangenomics we focus on the protein coding genes. In the data/ folder we
create another subfolder named proteins/. If you have all the protein sequences
you will need for your analysis you may skip the rest of this subsection.

For completed genomes there are always some protein sequences available
for download somewhere. For draft genomes this is far from always the case.
Anyway, even if annotations are available they have been made by different
people at different labs at different times and using different types of software.
For these reasons it may be preferable to predict genes from scratch in all
genomes using the same approach in all cases.

4

There are several tools for prokaryotic gene prediction, and we have chosen
the Prodigal software [3] as an option here. We are not suggesting this is perfect
or universally best, but it gives fairly good results compared to all other tools we
know of and is extremely fast and easy to use. The function prodigalPredict

will invoke the Prodigal software directly from R. You need to provide as input
the (full) name of the FASTA-file containing the genome sequence(s) and the
(full) name of the file where you want the predicted proteins to be stored. You
may also supply a third filename, and prodigalPredict will fill this file with
the DNA-version of every coding gene. All output files are FASTA-files.

For each file in the genomes/ subfolder we want to predict proteins and store
these in a file with identical name, but in the proteins/ subfolder:

for(i in 1:dim(genome.table)[1]){

cat("Predicting genes in", genome.table$File[i], "...\n")

in.file <- file.path("genomes",genome.table$File[i])

out.file <- file.path("proteins",genome.table$File[i])

prodigalPredict(in.file ,out.file)

}

It is nice to have a short print-out inside the loop to monitor the progress, hence
the cat statement. Upon completeion of this code we should now have 7 FASTA-
files in the proteins/ subfolder, all containing valid amino acid sequences.

2.4 Preparing protein sequence files

This subsection is important, and should not be skipped!
Before we start to compare protein sequences we should make certain the

sequence data files contain all the relevant information, and nothing more. The
function panPrep will check all sequences in a FASTA-file to

• Convert all symbol to upper-case

• Discard protein sequences shorter than 10 amino acids long

• Replace any symbol not among the 20 single-letter amino acid alphabet
symbols by X

We may also filter out sequences having a specified text/regular expression in
their header, see ?panPrep for details.

In Table 1 there is a column named GID. GID is short for Genome IDentifier,
and is an integer which is unique for each genome in the study. By pasting the
text "GID" and the integer we get a tag which is uniquely associated with every
genome. This GID-tag must be present in the header of every sequence from the
respective genome, and also in the name of the files associated with the genome.
Whenever we start to compare sequences, it is imperative that each sequence
has a name or description that immediately and without any redundancy links
it to its genome.

In the data/ folder we create another subfolder named prepped/. We want
to read each file in the proteins/ subfolder, prepare them, and write the results
to a file with identical name in the prepped/ subfolder:

5

for(i in 1:dim(genome.table)[1]){

cat("Preparing", genome.table$File[i], "...\n")

in.file <- file.path("proteins",genome.table$File[i])

gid <- genome.table$GID[i]

out.file <- file.path("prepped",genome.table$File[i])

panPrep(in.file ,gid ,out.file)

}

The prepped/ subfolder should now have files with identical names to those
of the proteins/ subfolder, except for the added GID-tag. If we open these
FASTA-files we will also see that the header of the first sequence in the file
with GID-tag GID1 starts with the token >GID1 seq1, the second header starts
with >GID1 seq2 and so on. Hence, each sequence has a tag that links it to the
genome (the GID part) and is also unique for each sequence in the genome (the
seq part).

The GID-tag in the filenames and in the header of every sequences is abso-
lutely essential for the later computations. The GID can be any integer, as long
as it is unique to each genome in the study. It must be an integer such that the
GID-tag matches the regular expression GID[0-9]+ in R (e.g. GID1, GID123,
GID1000 are valid GID-tags).

In this case study we now have 3 subfolders under Mpneumoniae/data/

(genomes/, proteins/ and prepped/), all containing 7 FASTA-files. In all
downstream analyses we will use the files in the prepped/ folder.

3 Comparing sequences

Pangenomics involves the grouping of sequences into clusters, often referred to
as gene families. We will prefer the term clusters here, since a gene family may
have more specific interpretations (group of orthologs).

3.1 Direct comparison using BLAST

One way of comparing sequences is to look at pariwise alignments between all
possible sequence pairs. This may sound like a daunting exercise, and cannot
in general be pursued for a larger data set. However, for a small to medium set
of genomes it is a useful approach.

The BLAST software (http://blast.ncbi.nlm.nih.gov) is a standard tool
for computing pairwise local alignments. Due to its heuristics it runs extremely
fast. The main reason for this speed is that BLAST does not compute alignment
between all pairs, only between those with a minimum similarity. However, this
is good enough for our purpose, since we are only interested in the cases where
sequences are fairly similar (the distinction between ”very poor” and ”extremely
poor” similarity is without interest).

We prefer to take all proteins from one genome and turn it into a BLAST
database. Then we scan all proteins from each genome against this database and
store the results on a file. Next, another genome is converted to a database, and
the scanning is repeated until all genomes have been scanned against all. From
each result file we collect the largest score involving each listed pair of sequences.
Those sequence pairs who are not listed in the results are too dissimilar to have

6

a BLAST alignment. These will implicitly get the score 0.0. It should be noted
that we need to scan both genome A versus genome B and then genome B versus
genome A since the heuristics of BLAST may give slightly different results for
these two cases. We also need to scan genome A versus genome A, since different
proteins within the same genome may also belong to the same cluster (paralogs).
Thus, if we have G genomes, we will have to make G2 BLAST-scans.

Before we start the heavy computations we create a subfolder blast/ under
the Mpneumoniae/ root folder. This is where we will store the results of the
BLAST-scans. We set Mpneumoniae/ as our R working folder.

The function blastAllAll will perform the all-against-all BLAST-scans of
the genomes. Its first input must be a vector of filenames listing the (full) name
of all the prepped protein files to consider. The second input must be the (full)
path to the folder where we want the results to end up. It looks like this in our
case:

in.files <- file.path("data/prepped",dir("data/prepped"))

out.folder <- "blast"

blastAllAll(in.files ,out.folder)

From each protein file a BLAST database is constructed, and then all protein
files are scanned against this database. The function gives a small output to
monitor the progress. Depending on the number of proteins in the genomes, each
scan takes from some seconds to some minutes on an average laptop computer.

The result files are plain text files. The names of these files have the format
GIDx vs GIDy.txt, where x and y are integers. In our case study, having 7
genomes, there are 49 result files when blastAllAll is done. You can read a
result file into R using the readBlastTable function.

If you have a look at the Help-file for blastAllAll you will see how you can
speed up the computations by running several scans in parallel on a computer
with multiple cores/processors. To accomplish this blastAllAll will never over-
write an existing result file in the out.folder. Thus, if you want to re-compute
all results you must always remember to first delete the existing result files, or
simply choose another out.folder.

3.2 Indirect comparison using HMMER3

Instead of comparing sequences directly by pairwise alignment, we can compare
the sequences to a common set of references, and then compute their similarity
based on how they match this reference. The advantages of this approach can
be several, but an obvious one is that the workload scales linearily in the number
of genomes, not quadratically as for the direct comparisons.

The reference we focus on here is a set of profile Hidden Markov Mod-
els (pHMM) each describing a family of sequences. We will use the Pfam-A
database (http://pfam.janelia.org/) as reference, and each pHMM describes
a conserved and functional part of a protein. We will call them domains, even
if this is not strictly correct in all cases.

It is worth mentioning that the reference set could in principle be any collec-
tion of sequences or sequence models. For the comparisons to be of good value,
we need to choose a reference set which is comprehensive and relevant for the
proteins we are investigating. The Pfam-A database is relevant for all types of

7

proteins, since it is a collection of protein domains found in all branches of the
tree of life. At present it contains around 13 000 pHMMs. You should, however,
be aware that not all proteins listed for a genome will contain domains listed
in Pfam-A (or any other domain database). There are several reasons for this.
First, not all domains have been discovered, or they have been described too
badly to be recognized in a given sequence. Second, a predicted protein in your
genome may be a false positive and not a real protein at all. In the cases where
a protein in your genome has no similarity to any of the reference sequences/-
models, this sequence must be discarded from the downstream analysis since it
will be incomparable to any other sequence. Whether this is a problem or an
advantage depends on the reason for the lack of similarity as listed above. If
your protein is actually a false positive, it should be discarded.

The scanning of sequences against a pHMM is done by the HMMER3 soft-
ware (http://hmmer.janelia.org/). Even if this software has been opti-
mized for speed, it still takes quite some time to scan all proteins in a genome
against the full Pfam-A database. Reducing the size of the reference, e.g. us-
ing a selection of pHMMs from Pfam-A, will speed up the scan, but for this
study we will scan against the full Pfam-A database. In order to repeat the
steps below on your computer you need to install the Pfam-A database, see
http://pfam.janelia.org for how to do this. (In the micropan package we
have enclosed a miniature version of Pfam-A, see ?hmmerScan for details).

Under the Mpneumoniae folder we create the subfolder pfam/, where we will
put the results of the HMMER3-scan. The function hmmerScan will take as first
input a vector of (full) filenames of the protein files to scan. The second input
is the (full) name of the database and the third input is the (full) name of the
folder where the results should be stored:

in.files <- file.path("data/prepped",dir("data/prepped"))

db <- "/usr/share/pfam/Pfam -A.hmm" # edit this path

out.folder <- "pfam"

hmmerScan(in.files ,db ,out.folder)

where the exact name and location (/usr/share/pfam/Pfam-A.hmm) of the
Pfam-A database will of course vary from system to system. The function
hmmerScan gives a small output to monitor the progress. When running this
example on a laptop it took around 5 minutes per genome.

The result files are plain text files, and they are stored in the pfam/ folder.
The names of these files have the format GIDx vs Pfam-A.hmm.txt, where x is
an integer. In our case study, having 7 genomes, there are 7 result files when
hmmerScan is done. You can read a result file into R using the readHmmer

function.
If you have a look at the Help-file for hmmerScan you will see how you can

speed up the computations by running several scans in parallel on a computer
with multiple cores/processors. To accomplish this hmmerScan will never over-
write an existing result file in the out.folder. Thus, if you want to re-compute
all results you must always remember to first delete the existing result files, or
simply choose another out.folder.

8

4 Clustering sequences

Depending on how the sequences have been compared, we can now cluster them.

4.1 Clustering based on BLAST results

4.1.1 BLAST distances

Based on the results from the all-versus-all BLASTing, we can compute dis-
tances between sequences. Let S(i; j) be the score of the alignment between
sequence i and j, where j was the database sequence. If there is no BLAST hit
between these two sequences, this score is 0.0. The maximum value this score
can take is S(j; j), i.e. the alignment between sequence j and itself. The ratio
S(i; j)/S(j; j) must always be a number between 0.0 and 1.0. Due to the heuris-
tics of BLAST we also made the reciprocal scan, and can compute S(j; i)/S(i; i)
as well. The distance between sequence i and j we define as

D(i, j) =
1

2
[2− S(i; j)/S(j; j)− S(j; i)/S(i; i)] (1)

This distance is 0.0 if and only if sequence i and j are identical. The maximum
possible distance is 1.0 indicating the sequences have no detectable similarity.

The function bDist will take as input a vector of filenames listing all the
result files from the BLAST-scan (see above), read these files and compute
distances according to (1). It will return a data.frame where each row cor-
responds to a sequence pair. The two first columns contain the sequence tags
and the third column is the distance between them. Only sequence pairs having
BLAST alignments are listed, i.e. all those pairs not listed in this data.frame

have distance 1.0 between them. This is how we use this function in our case
study:

blast.files <- file.path("blast",dir("blast"))

blast.distances <- bDist(blast.files)

save(blast.distances ,file="res/blast_distances.RData")

Notice that all BLAST result files (in the blast subfolder) must be given as
input to bDist. Notice also that we save the results in a subfolder named res.
In cases where we have many genomes, and thus many result files, the reading
of results takes some time, and it is convenient to store the results instead of
repeating the whole procedure in a later session.

The variable blast.distances is now a data.frame with 3 columns and
139543 rows. The third column contains the distances, and it is always a good
idea to make a histogram of these distances to verify that it looks reasonable:

hist(blast.distances [,3],breaks =50,col="tan4",

xlab="BLAST distance",ylab="Number of distances")

The resulting histogram is shown in Figure 1. Notice there is a large number
of sequence pairs having distance close to 0.0. Actually, even more pairs have
distance 1.0 but these are never listed in this data.frame. The shape of this
histogram will vary somewhat from study to study, but there should always be a

9

BLAST distance

N
um

be
r

of
 d

is
ta

nc
es

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

25
00

0

Figure 1: The histogram shows the BLAST distances computed for this case
study.

large number of very small distances. If not, it means all proteins in all genomes
are quite different, which is really strange for a pangenome.

4.1.2 Hierarchical clustering

The function bClust will cluster the sequences based on the data.frame pro-
duced above by bDist. It performs a hierarchical clustering of the sequences,
assuming all pairs not listed have distance 1.0 between them. Central to any
hierarchical clustering is the linkage function and the threshold we choose for
grouping the sequences. The linkage specifies how to compute the distance
between clusters, the threshold specifies the maximum distances we tolerate in-
side the cluster. Notice that the threshold is here a BLAST distance, always a
number between 0.0 and 1.0.

The default linkage is the single linkage. In this case the distance between
group A and B is the shortest distance between any member from A to any
member in B. The threshold T means that sequence s can belong to group A if
there is at least one member in A with distance smaller than T to s. The single
linkage grouping is the fastest to compute, but has a tendency of producing
large and heterogenous clusters. Two very different sequence can belong to the
same cluster simply because one of them looks like something, that looks like
something,...,that looks like something, thats looks like the other. If no distance

10

in this chain is above T it could create a cluster. The default input to bClust

is to use single linkage and a threshold at 1.0, which will produce the largest
(and fewest) clusters possible for the given data.

The average linkage means that the distance between group A and B is
the distance between the center of each group. Also, a sequence s can belong
to group A if its distance to the center of A is less than the threshold T . In
some sense, the threshold now specifies the ’radius’ of the group, and there is
a limit to how dissimilar two sequences of the same group can be. A potential
problem with this linkage can occur if some of the genomes in the study are
extremely closely related. Then the members (proteins) from these genomes are
very similar, and will make the center of every group be biased towards their
’corner’ of the pangenome. Then some proteins who should have been member
of a group may fall outside.

The complete linkage means that the distance between group A and B is the
largest possible distance between a member from A and a member from B. A
sequence s can belong to group A if and only if its distance to all other members
of the group is below T . This means the threshold T directly specifies the
maximum ’diameter’ of the groups. It also means all groups will be homogenous,
no sequence in a cluster is very different from any other. The problem with this
strict regime is of course that some sequences always fall outside all clusters, and
we get a larger number of ORFan (singleton) clusters. Choosing the complete
linkage with a strict (small) threshold is the oppsite strategy of the default, and
produces many small clusters instead of a few large.

Here we have chosen to use a complete linkage and the rather liberal thresh-
old of T = 0.75 to cluster the sequences:

cluster.blast <- bClust(blast.distances ,linkage="complete",

threshold =0.75)

The output, named cluster.blast here, is simply a vector of integers, with one
element for each sequence in the data set. The name of each element identifies
the sequence, and two sequences having the same integer belongs to the same
cluster. In this case study cluster.blast has 9573 elements since this is the
total number of protein sequences in the seven genomes. We can quickly see
how many clusters we got:

> length(unique(cluster.blast))

[1] 1210

If we look at the first seven elements they are

11

> cluster.blast [1:7]

GID1_seq1 GID2_seq1 GID3_seq1 GID4_seq1 GID5_seq407

2000 2000 2000 2000 2000

GID6_seq1164 GID7_seq1174

2000 2000

All have the value 2000 indicating they belong to the same cluster. From the
name above each integer we see there is exactly one member from each of the
seven genomes, i.e. this is a perfect example of a core cluster with one ortholog
from each genome. Notice it is sequence number 1 in the first four (completed)
genomes, indicating it is just downstream of the replication start. In the draft
genomes the contigs are un-ordered and the sequence number is pretty random.
The actual number that indicates the clustering (the value 2000 above) has no
meaning at all, it is just a marker.

4.2 Clustering based on Pfam domains

An alternative to the clusters produced by the direct comparison BLASTing
approach, is a clustering based on the Pfam-A domains. This approach has
been used for pangenomics by [8], and we describe a similar procedure here.

4.2.1 Domain sequences

In the previous section we scanned all proteins of every genome against the
Pfam-A database using the HMMER3 software and the hmmerScan function.
Every protein with at least one hit in the Pfam-A database can be described
by the sequence of domains occurring along its length. We can think of this
as a high-level alternative to the amino acid sequence. Instead of listing the
sequential occurrence of amino acids, we list the sequential occurrence of Pfam-
A domains. We call this the domain sequence of the protein. Many proteins will
have only one single domain, but still we call it a domain sequence. In the cases
where we have multiple domains in a protein, we only list those who are non-
overlapping, and their order of appearance is essential. A number of proteins
will have no Pfam-A hits. These sequences are discarded from this analysis.
This may sound like a loss of information, but on the other hand, some of these
sequences are likely to be false positive gene predictions anyway.

4.2.2 Clustering

We cluster the proteins by their domain sequence, i.e. only proteins having
identical domain sequence belong to the same cluster. This may seem like a
strict rule, but in fact it is not. The reason is that the pHMMs describing
the domains allow a considerable degree of variation in the protein sequence
matching the model, and two protein may appear quite different and still share
the same domains.

To compute the domain sequence clusters we first have to read the results
of the HMMER3 scan against the Pfam-A database:

12

pfam.files <- file.path("pfam",dir("pfam"))

pfam.table <- NULL

for(i in 1: length(pfam.files)){

tab <- readHmmer(pfam.files[i])

tab <- hmmerCleanOverlap(tab)

pfam.table <- rbind(pfam.table ,tab)

}

The function readHmmer reads the result file and returns it as a data.frame.
The function hmmerCleanOverlap is used here to filter out overlapping hits from
this table. If two hits overlap on the same protein, the poorest hit (smallest
score) is discarded. You may omit this step, but we prefer to include it. Notice
that we read the results for each genome and store everything in one large
data.frame. This can be saved for later. If we want to add more genomes to
this analysis, we scan their proteins against Pfam-A, read the results, and just
add these to the existing data.frame without repeating any of the previous
work.

Once we have the table of results, the clustering is straightforward:

cluster.pfam <- dClust(pfam.table)

where the dClust function produces the domain sequence clustering. The result
cluster.pfam is a vector of integers similar to the one we get from bClust. Each
integer corresponds to a sequence identified by its name, and those sequences
having the same integer belong to the same cluster. The number of clusters is

> length(unique(cluster.pfam))

[1] 445

which is down to almost one third of what we got with the BLAST approach.
Again we can look at the first entries:

> cluster.pfam [1:7]

GID1_seq1126 GID2_seq1108 GID3_seq1110 GID4_seq1119

1 1 1 1

GID5_seq110 GID6_seq526 GID7_seq934

1 1 1

and we notice this cluster, with 7 members, has one member from each genome,
i.e. it is a core cluster.

The clustering vector also contains an attribute named "cluster.info".
This holds the actual Pfam-A domains behind each group. The cluster above
has the marker value 1. If we look at element number 1 in this vector we get:

> attr(cluster.pfam ,"cluster.info")[1]

[1] "PF00004 .24"

13

Only one Pfam-A accession number is listed. This means that the core cluster
above contains the 7 proteins all sharing one single domain. If the domain
sequence contains several domains, they are listed in their order of appearence
separated by comma. If we look up the Pfam-A accession number PF00004.24,
it is described as ATPase family associated with various cellular activities. In
this way we can get some kind of description of each cluster, not only its content.

4.3 Direct or indirect comparison?

We have seen two ways of clustering sequences. Which one is better? There are
pros and cons of both.

The direct approach tend to give smaller clusters, but this depends on the
choice of linkage and threshold. With a complete linkage and a reasonable
threshold many of the groups will be very close to a gene family in the sense
that it contains a group of orthologs. The problem is to choose the proper
threshold. It is also the same threshold for all clusters. We can easily imag-
ine that some gene families are more divergent than others, and that different
thresholds should ideally be used. Also, all false positive gene predictions will
tend to produce many small clusters, usually singletons (ORFans). A problem
with the direct comparison is that it scales quadratically. It is suitable for 50
genomes, possibly for 100, but horrible for 1000 genomes.

The indirect approach using the Pfam-A database produces fewer and larger
groups. Many of these groups are much larger than just a group of orthologs.
In this case study the largest group contains 167 proteins, i.e. on average more
than 20 in each genome! These proteins share a single domain described only as
Lipoprotein in the Pfam-A database. Still, with this in mind this clustering says
something important about the pangenome. Each domain sequence is associated
with some potential function, and the number of such groups and their sizes has
biological interest. It is a decriptor of functional diversity. Another point is that
each pHMM in Pfam-A describes a tolerated variation around the consensus
pattern. This means that different clusters actually have different ’spread’ and
in many ways the problem of different divergence in different protein families
is solved by this approach. The indirect comparison also scales linearily, and
adding a genome to the analysis will take the same computational effort each
time, regardless of how many you have collected before.

5 The pan-matrix

Having the clustering (in one way or another) we can construct the pan-matrix,
which is the central data structure in a pangenome study.

The pan-matrix is a matrix with one row for each genome and one column for
each cluster. Cell (i, j) in this matrix contains an integer indicating the number
members that cluster j has in genome i. The function panMatrix computes the
pan-matrix from a clustering vector. We compute two pan-matrices, based on
both clustering procedures described above:

pm.blast <- panMatrix(cluster.blast)

pm.pfam <- panMatrix(cluster.pfam)

14

1 2 3 4 5 6 7

Number of genomes

N
um

be
r

of
 c

lu
st

er
s

0
60

0

1 2 3 4 5 6 7

Number of genomes

N
um

be
r

of
 c

lu
st

er
s

0
30

0

Figure 2: The pan-matrices plotted by their generic plotting function. The
upper panel shows pm.blast and the lower panel pm.pfam. The sum of bar-
heights is 1210 in the upper panel and 445 in the lower panel.

Both will have 7 rows, but pm.blast has 1210 columns while pm.pfam has 445.
The panMatrix function returns a Panmat object, which is a small extension

to a matrix. It has a generic plotting function. This will produce a bar-plot of
how many clusters are found present in 1,2,...,all genomes in the data set. The
code:

par(mfrow=c(2,1))

plot(pm.blast)

plot(pm.pfam)

produces a figure like the one shown in Figure 2. We observe that in both cases
the core clusters dominate, i.e. those who have members in all 7 genomes. These
7 genomes must be very similar, and only a small number of clusters have an
ability to separate the genomes. The actual numbers behind the barplots are

15

given by the generic summary function:

> summary(pm.blast)

33 clusters found in 1 genomes

10 clusters found in 2 genomes

13 clusters found in 3 genomes

16 clusters found in 4 genomes

22 clusters found in 5 genomes

16 clusters found in 6 genomes

1100 clusters found in 7 genomes

> summary(pm.pfam)

5 clusters found in 1 genomes

0 clusters found in 2 genomes

2 clusters found in 3 genomes

1 clusters found in 4 genomes

2 clusters found in 5 genomes

5 clusters found in 6 genomes

430 clusters found in 7 genomes

6 The pangenome tree

Based on the pan-matrix we can make a pangenome tree as described in [7].
First we compute the distance between genomes using the distManhattan

function. This takes a pan-matrix as input, and produces a dist object, see
?distManhattan for details.

par(mfrow=c(1,2))

D <- distManhattan(pm.blast)

panTree(D)

D <- distManhattan(pm.pfam)

panTree(D)

The panTree function will perform an average linkage hierarchical clustering
based on the input distances, and draw a simple dendrogram tree. In Figure 3
we show the result of this code. The horizontal axes is a Manhattan distance
(since we used distManhattan). In this case it is simply the number of clusters
in which the genomes differ in present/absent status, i.e. if a distance between
two genomes is 0 it means they contain the exact same clusters. Note that the
distance between groups (branches) is an average linkage distance, i.e. distance
to the ’average’ member of the branch.

From these trees we see that genomes GID1 and GID4 are very similar, for
the domain sequence tree in the right panel they are actually identical. Also,
GID6 is the genome which is most different from the rest.

The GID-tag is not a very informative label to have in the tree, and we
may also want to add some coloring of the genomes depending on our prior
knowledge of them. In the genome.table that we created in the very beginning
of this case study, we have such information linked to the GID-tags. Here is
some code that produces a nicer version of the BLAST-based pangenome tree
from above:

16

50 40 30 20 10 0

GID1

GID4

GID3

GID2

GID5

GID6

GID7

8 6 4 2 0

GID6

GID3

GID7

GID5

GID2

GID1

GID4

Figure 3: The pangenome trees based on the pan-matrices. The left panel shows
the tree based on pm.blast and in the right panel it is based on pm.pfam. The
horizontal axes are the Manhattan distances between (groups of) genomes.

17

50 40 30 20 10 0

Pangeome tree for Mycoplasma pneumoniae

Manhattan distances

M129

M129−B7

FH

309

PO1

PI_1428

19294

Figure 4: The BLAST-based pangenome tree with more informative labels and
colors.

D <- distManhattan(pm.blast)

idx <- match(rownames(pm.blast),paste("GID",genome.table$GID

,sep=""))

panTree(D,genome.names=genome.table$Strain[idx],genome.col=

genome.table$Color[idx],xlab="Manhattan distances",main="

Pangenome tree for Mycoplasma pneumoniae")

The result is shown in Figure 4. Notice that we computed the index vector
idx and used it to order the strain names and colors in the call to panTree.
The genomes are listed in a specific order in the pan-matrix and the corre-
sponding dist object named D. Never expect this ordering to be the same as
in genome.table! The rownames of the pan-matrix contains the GID-tags, and
this is used to map into the genome.table.

7 Pangenome size

The pangenome size is the number of clusters to be found in the population if
all strains were sequenced. This number will never be observed, and we have to
try to estimate it from the present data. With only 7 genomes as in this case
study, this estimate is bound to be highly uncertain, but we can still show the
procedure. The core size is the number of core clusters in the population, i.e.
the number of clusters found in every single strain, and must also be estimated.

18

7.1 Binomial mixture models

Both quantities can be estimated by a probabilistic approach using binomial
mixture models as described in [2, 6]:

binomix <- binomixEstimate(pm.blast ,K.range =2:7)

The binomixEstimate function takes as input a pan-matrix and a vector of
integers, K.range, specifying the number of components to try out. A binomial
mixture model is fitted for each number in K.range. For each model is also
computed the BIC-criterion, and the model producing the smallest BIC-value is
in theory the one that describes the data best without overfitting. The function
returns a Binomix object, which is s small extension to a list of two elements.
First we only focus on the one called BIC.table:

> binomix$BIC.table

Core.size Pan.size BIC

2 components 1099 1211 1227.697

3 components 1096 1267 1151.008

4 components 1092 1281 1164.656

5 components 1094 1340 1178.482

6 components 1020 1339 1192.698

7 components 1090 1303 1206.967

This table lists some results for each fitted model. The last column is the BIC-
value, and we notice that the 3-component model in the second row is optimal,
having the smallest BIC-value (1151.008). Thus, we focus only on this row.
The Core.size column give us the estimate of the core size as 1096 and the
Pan.size estimate is 1267. We used the BLAST-based pan-matrix as input,
and this contained 1210 clusters already observed. The estimate of pangenome
size indicates that only a small number of additional clusters (57) is expected
to be found if more genomes of this population is sequenced.

We can get a summary of the Binomix object:

> summary(binomix)

Minimum BIC model at 3 components

For this model:

8% of the gene clusters have detection probability 0.074

6% of the gene clusters have detection probability 0.665

86% of the gene clusters have detection probability 1

The percentages and probabilities listed here are found in binomix$Mix.list[[2]].
The Mix.list is a list of fitted mixture models (one for each component), and
since the minimum BIC is achieved for the second model, this is the one listed
by summary.

The optimal model has 3 components, i.e. it describes the observed data as a
combination of 3 binomial densities each having a distinct detection probability.
The detection probability of a gene cluster is the probability that it occurs in
a genome. Gene clusters having detection probability 1.0 will always occur in
all genomes. These are the core gene clusters. In the fitted model above these

19

0.074

0.665

1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

Figure 5: A fitted binomial mixture model can be displayed as a pie chart.
Each sector corresponds to a binomial density. Its color indicates its detection
probability. Its size indicates how large fraction of the pangenome will have this
detection probability. The colors have been been chosen to illustrate core genes
(dark blue), shell genes (greenish) and cloud genes (orange/pink).

make up 86% of all gene clusters. In addition to the core there is a smaller
fraction (6%) of gene clusters occurring frequently, but not always, having a
probability of 0.665 of being observed. This is what we typically denote shell
genes. Finally, there is also a small percentage (8%) of gene clusters with a very
small detection probability (0.074), usually denoted cloud genes. These are the
clusters that are more or less unique to each genome, and the majority of the
new clusters we expect to see in the future will be of this type.

We can also plot the Binomix object:

> plot(binomix)

The result is shown in Figure 5.

7.2 Other analyses

It is not uncommon to plot the number of gene clusters as a rarefaction curve,
i.e. the cumulative number of unique clusters as we consider more and more
genomes. The function rarefaction will produce a corresponding object, and
the generic summary and plot functions for these objects produce text and
graphical output. Here we make a plot:

> r <- rarefaction(pm.blast ,n.perm =100)

> plot(r)

20

●

●

●

●

●

●

●

1 2 3 4 5 6 7

11
60

11
80

12
00

Genomes

N
um

be
r

of
 u

ni
qu

e
ge

ne
 c

lu
st

er
s

Figure 6: A rarefaction curve for the seven genomes in this case study.

and the result is shown in Figure 6. Notice that we specified n.perm=100 above.
The shape of the curve in Figure 6 depends on the ordering of the genomes, and
here we average over 100 random permutations. If you specify n.perm=1 the
ordering will be as in the pan-matrix (row 1 to row N).

It was suggested by [9] that a pangenome can be classified as open or closed
depending on the shape of the rarefaction curve. They used a heaps-law type of
model that we can fit to the data. One of the parameters in this model, named
alpha, is the indicator we look at. If its value is below 1.0 the pangenome
is classified as open. This means regardless of how many new genomes we
sequence, there will always be new unique gene clusters, i.e. the rarefaction
curve will never level out. If alpha is larger than 1.0 the pangenome is closed
and the shape of the rarefaction curve indicates it will reach a plateau. The
function heaps fits a heaps-law model to the data:

> h <- heaps(pm.blast ,n.perm =100)

> h

Intercept alpha

64.323844 1.479499

Only alpha is of interest here, and as we can see this is clearly above 1.0
indicating a closed pangenome. Notice that we again used 100 permutations
of the genome-ordering. This is a minimum, to obtain stable estimates use as

21

many as possible, limited by a reasonable computing time.
The size of the pangenome was estimated by a binomial mixture model

above. As an alternative, we can use the Chao lower bound [1] estimator:

> pan.size <- chao(pm.blast)

> pan.size

[1] 1264

Compared to the estimate of the binomial mixture model (1267) it is slightly
lower, which is quite typical since this is a lower bound estimator.

If we turn the focus away from the gene clusters and to the genomes, a
pangenome tree as displayed in Figure 3 is an illustration of the relations. In
[4] it was suggested that genomic fluidity is a quantity that characterizes the
population. This can be computed as:

> f <- fluidity(pm.blast ,n.sim =100)

> f

$Mean

[1] 0.0183972

$Std

[1] 0.00680975

where both the mean value and its standard deviation is computed. The fluidity
is always a value between 0.0 and 1.0. A large fluidity means a larger diversity
between the genomes. This measure only looks at presence/absence of unique
gene clusters. It is computed from many random pairs of genomes, and n.sim

is the number of pairs to consider. A smallish number suffice, and n.sim=100

is enough in most cases.
For genomes A and B, let A and B symbolize the sets of gene clusters in the

two genomes, respectively. Then genomic fluidity between A and B is defined
as

F (A,B) =
|A

⋃
B| − |A

⋂
B|

|A|+ |B|
(2)

where the numerator is the number of gene clusters found in A but not in B
plus those found in B but not in A. The denominator is simply the sum of the
size of each set. The classical Jaccard distance is defined as

J(A,B) = 1− |A
⋂
B|

|A
⋃
B|

=
|A

⋃
B| − |A

⋂
B|

|A
⋃

B|
(3)

which means the only difference to the fluidity is the slightly different denomi-
nator. Hence, computing Jaccard distances and investigating their distribution
may be a good alternative to the genomic fluidity:

> J <- distJaccard(pm.blast)

> mean(J)

[1] 0.03896226

22

Histogram of J

J

F
re

qu
en

cy

0.01 0.02 0.03 0.04 0.05 0.06

0
1

2
3

4
5

Figure 7: A histogram of the Jaccard distances between the genomes.

The mean Jaccard distance of around 4% means that out of the total number
of unique gene clusters two ’average’ genomes have (|A

⋃
B|), around 4% is

unique to one of them, the remaining 96% is shared by both. A histogram of
these distances:

> hist(J,breaks =10,col="tan")

tells us that the variation in distances is fairly small, and even the largest
pairwise distance is not very different from the average, see Figure 7.

References

[1] Chao, A. (1987). Estimating the population size for capture-recapture data
with unequal catchability, Biometrics, 43, pp783-791.

[2] Hogg, J.S., Hu, F.Z., Janto, B., Boissy, R., Hayes, J., Keefe, R., Post,
J.C., Erlich, G.D. (2007). Characterization and modelling of the Haemophilus
influenzae core- and supra-genomes based on the complete genomic sequences
of Rd and 12 clinical nontypeable strains. Genome Biology, 8.

[3] Hyatt, D., Chen, G., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser,
L.J. (2009). Prodigal: prokaryotic gene recognition and translation initiation
site identification. BMC Bioinformatics, 11:119.

[4] Kislyuk, A.O., Haegeman, B., Bergman, N.H., Weitz, J.S. (2011). Genomic
fluidity: an integrative view of gene diversity within microbial populations.
BMC Genomics, 12:32.

23

[5] http://www.ncbi.nlm.nih.gov/genome

[6] Snipen, L., Almœy, T., Ussery, D.W. (2009). Microbial comparative pan-
genomics using binomial mixture models. BMC Genomics, 10:385.

[7] Snipen, L., Ussery, D.W. (2010). Standard operating procedure for comput-
ing pangenome trees. Standards in Genomic Sciences, 2, pp135-141.

[8] Snipen, L. Ussery, D.W. (2012). A domain sequence approach to pange-
nomics: Applications to Escherichia coli. F1000 Research, 1:19.

[9] Tettelin, H., Riley, D., Cattuto, C., Medini, D. (2008). Comparative ge-
nomics: the bacterial pan-genome. Current Opinions in Microbiology, 12,
pp472-477.

24

