
Multispecies, trait-based and community size spectrum

ecological modelling in R (mizer)

Finlay Scott1,4, Julia L. Blanchard2 and Ken. H. Andersen3

1Cefas, Lowestoft, UK
2University of Sheffield, UK

3DTU Aqua, Copenhagen, DK
4Maritime Affairs Unit, IPSC, European Commission Joint Research Centre, IT

mizer version 0.2 , 2014-04-16

Contents

1 Summary 3

2 Package installation and getting help 3
2.1 Installing mizer . 3
2.2 Getting help . 4

3 Size spectrum modelling - concepts, processes and assumptions 5
3.1 Central concepts and assumptions . 5
3.2 Predator-prey encounter . 6
3.3 Consumption . 6
3.4 Growth . 6
3.5 Reproduction . 8
3.6 Recruitment . 8
3.7 Mortality . 9
3.8 Resource dynamics . 9
3.9 Parameters . 10

4 Introducing mizer 10

5 Implementing a community-type model 11
5.1 Introduction . 11
5.2 Setting up a community model . 11
5.3 Running the community model . 13
5.4 Example of a trophic cascade with the community model 14
5.5 The impact of changing σ . 19

6 Implementing a trait-based model 19
6.1 Introduction . 19
6.2 Setting up a trait-based model . 20
6.3 Running the trait-based model . 22

1

6.4 Example of a trophic cascade with the trait-based model 22
6.5 Setting up an industrial fishing gear . 27
6.6 The impact of industrial fishing . 29

7 Introducing multispecies models 32

8 Setting up a multispecies model 33
8.1 Overview . 33
8.2 The species parameters . 33
8.3 Fishing gears and selectivity . 35
8.4 The stock-recruitment relationship . 36
8.5 The interaction matrix . 36
8.6 The other MizerParams() arguments . 36
8.7 Examples of making a MizerParams objects . 37
8.8 Setting different gears . 41

9 Running a simulation 41
9.1 The time arguments . 42
9.2 Setting the fishing effort . 42
9.3 Setting the initial population abundance . 43
9.4 What do you get from running project()? . 43
9.5 Projection examples . 43

9.5.1 Projections with single, simple constant effort . 43
9.5.2 Setting constant effort for different gears . 46
9.5.3 An example of changing effort through time . 47

10 Exploring the simulation results 48
10.1 Directly accessing the slots of MizerSim objects . 49
10.2 Summary methods for MizerSim objects . 49

10.2.1 Examples of using the summary methods . 49
10.3 Methods for calculating indicators . 51

10.3.1 Examples of calculating indicators . 51
10.4 Plotting the results . 52

10.4.1 Plotting examples . 52

11 A multispecies model of the North Sea 54
11.1 Setting up the North Sea model . 54
11.2 Setting up and running the simulation . 57
11.3 Exploring the model outputs . 58
11.4 Future projections . 60

12 Acknowledgements 63

1This document is included as a vignette (a LATEX document created using the R function Sweave) of the pack-
age mizer. It is automatically downloaded together with the package and can be accessed through R typing vi-

gnette("mizer_vignette").

2

1 Summary

Size spectrum ecological models have emerged as a conceptually simple way to model a large com-
munity of individuals which grow and change trophic level during their lives. They are a subset of
physiologically structured models where growth (and thus maturation) is food dependent, and pro-
cesses are formulated in terms of individual level processes. A key feature is that of a size spectrum,
where the total abundance of individuals at size scales negatively with size: there are more small things
than big things.

mizer is a software package for implementing size spectrum ecological models using the R statistical
programming environment. The package has been developed to model marine ecosystems that are
subject to fishing.

Roughly speaking there are three versions of the size spectrum modelling framework of increasing
complexity: The community model, in which only one “species” is resolved; the trait-based model, in
which all the species-specific parameters are the same, except for the asymptotic size which determines
other life-history parameters such as the size at maturity; and the multispecies model in which multiple
“real” species are resolved, each of which can have differing species-specific traits. The community
and trait-based models can be considered as simplifications of the multispecies model. mizer is able
implement all three model versions using the same set of tools.

mizer contains routines and methods to allow users to set up the model community, and then project
it through time under different fishing strategies. The results of the simulations can then be explored
using a range of plots and summary methods, including plots of size spectra and the calculation of
community indicators such mean weight in the community and the the slope of the size spectrum.

The models created can be quite flexible and there are many options for setting up and running
simulations. For example, different stock-recruitment relationships can be implemented and fishing
gears with different selectivity patterns can be set up so that different species are caught by different
gears. However, mizer aims to make setting up the models relatively simple. For example, easy to
use “wrapper” functions are provided so users can set up community and trait-based models with the
minimum of R gymnastics. Additionally, most of the methods and functions in the package have
default options and assumptions. These can be changed by the user once they are familiar with the
models

This vignette starts by summarising the principles and assumptions of size spectrum models. The mizer
package is then introduced by showing how to set up the simplest types of size spectrum models: the
community and trait-based model. These sections give a basic overview of the classes and methods
used by mizer. Simple examples are given that demonstrate how trophic-cascades can be simulated.
There then follows a more detailed description of the mizer classes and methods using a multispecies
model of the North Sea as an example. Finally, there is a detailed example of a multispecies size
spectrum model of the North Sea, including running projections using historical fishing patterns.

2 Package installation and getting help

2.1 Installing mizer

mizer is a package for the R open-source statistical programming language. R is available from the
CRAN website, which is also an excellent source of documentation and tutorials.

The easiest way to install mizer (assuming you have an active internet connection) is to start an R
session and then type:

3

> install.packages("mizer")

After installing mizer, to actually use it you need to load the package using the library() function.
Note that whilst you only need to install the package once, it will need to be loaded every time you
start a new R session.

> library(mizer)

The source code for mizer is currently hosted at Github (https://github.com/drfinlayscott/
mizer). If you are feeling brave and wish to try out a development version of mizer you can in-
stall the package from here using the R package devtools (which was used extensively in putting
together mizer).

2.2 Getting help

As you probably know, to access documentation in R you can use the help() function. This can be
used to access package documentation in a range of ways. For example:

> help(package="mizer")

> help(mizer)

> help(project)

The first command gives a technical summary of the package, including the available functions. The
second command gives a brief introduction to mizer. The third gives the documentation page for the
method project().

Some methods are associated with several R classes. For example, the plot() method is generic and
can be used on a wide range of R objects. The plot() method has been overloaded in mizer to plot
MizerSim objects. To select the help page for the appropriate plotting method you can either just
use help(plot) and then select from a menu of packages or you can supply the package name in the
help() command:

> help(plot, package="mizer")

There are other ways of accessing package documentation that you may not be familiar with. To
access the the help page of a particular method you can use: method ? method-name. For example,
to access the help page of the getFeedingLevel() method you can use:

> method ? getFeedingLevel

This also works for getting information on a class. For example, to get the help page on the Mizer-
Params class you can use:

> class ? MizerParams

These two ways of getting help can be useful when a class and a method have the same name. For
example, MizerParams is a class and also the name of the method for creating MizerParams objects.

4

https://github.com/drfinlayscott/mizer
https://github.com/drfinlayscott/mizer

3 Size spectrum modelling - concepts, processes and assump-
tions

Size spectrum models have emerged as a conceptually simple way to model a large community of
individuals which grow and change trophic level during life. There is now a growing literature describing
different types of size spectrum models (e.g. Andersen and Beyer, 2006; Andersen et al., 2008; Benôıt
and Rochet, 2004; Hartvig, 2011; Hartvig et al., 2011; Law et al., 2009). The models can be used to
understand how marine communities are organised (Andersen and Beyer, 2006; Andersen et al., 2009a;
Blanchard et al., 2009) and how they respond to fishing (Andersen and Pedersen, 2010; Andersen
and Rice, 2010). This section introduces the central assumptions, concepts, processes, equations and
parameters of size spectrum models.

Roughly speaking there are three versions of the size spectrum modelling framework of increasing
complexity: The community size spectrum model (Benôıt and Rochet, 2004; Blanchard et al., 2009;
Law et al., 2009; Maury et al., 2007), the trait-based size spectrum model (Andersen and Beyer, 2006;
Andersen and Pedersen, 2010), and the multispecies spectrum model (Hartvig et al., 2011). The
community and trait-based models can be considered as simplifications of the multispecies model.
This section focuses on the multispecies model but is also applicable to the community and trait-based
models. mizer is able to implement all three types of model using similar commands.

3.1 Central concepts and assumptions

Size spectrum models are a subset of physiologically structured models (De Roos and Persson, 2001;
Metz and Diekmann, 1986) as growth (and thus maturation) is food dependent, and processes are
formulated in terms of individual level processes. All parameters in the size spectrum models are
related to individual weight which makes it possible to formulate the model with a small set of general
parameters (Table 1), which has prompted the label “charmingly simple” to the model framework
(Pope et al., 2006).

The model framework builds on two central assumption and a number of lesser standard assumption.

The first central assumption is that an individual can be characterized by its weight w and its species
number i only. The aim of the model is to calculate the size- and trait-spectrum Ni(w) which is the
density of individuals such that Ni(w)dw is the number of individuals in the interval [w : w + dw].
The dimensions of the size spectrum are numbers per weight per volume. Scaling from individual-level
processes of growth and mortality to the size spectrum of each trait group is achieved by means of the
McKendrik-von Foerster equation, which is simply a conservation equation:

∂Ni(w)

∂t
+
∂gi(w)Ni(w)

∂w
= −µi(w)Ni(w) (3.1)

where individual growth gi(w) and mortality µi(w) are both determined by the availability of food
from the other species plus a background resource, NR(w), and predation by the other species. The
conservation equation is supplemented by a boundary condition at the boundary at weight w0 where
the flux of individuals (numbers per time) gi(w0)Ni(w0) is determined by the reproduction of offspring
by mature individuals in the population Ri:

gi(w0)Ni(w0) = Ri. (3.2)

The second central assumption is that the preference of food is determined by individual weight com-
bined with a species preference. The preference for prey weight is described by the log-normal selection

5

model (Ursin, 1973) which prescribes prey preference in terms of the ratio between the weight of preda-
tors w and prey of weight wp:

φ(wp/w) = exp

[
−(ln(w/(wpβi)))

2

2σ2
i

]
, (3.3)

where βi is the preferred predator-prey mass ratio and σi the width of the weight selection function.

The rest of the formulation of the model rests on a number of “standard” assumptions from ecology
and fisheries science about how encounters between predators and prey leads to growth gi(w) and
recruitment Ri of the predators, and mortality of the prey µi(w). The remainder of this section looks
in detail at these assumptions.

3.2 Predator-prey encounter

The encounter of food is based on the “Andersen-Ursin” encounter model which was developed as part
of a North-Sea ecosystem model (see also Andersen and Beyer, 2006; Andersen and Ursin, 1977).

The available food (mass per volume) for a predator of weight w is determined by integrating over all
species and the background resource weighted by the size selection function (Equation 3.3):

Ea.i(w) =

∫ NR(w) +
∑
j

θijNj(w)

φ(wp/w)wp dwp. (3.4)

where θij is the preference of species i for species j. The food actually encountered Ee.i (mass per
time) depends on the search rate (volume per time) which is assumed to scale with individual weight
as γiw

q:

Ee.i(w) = γiw
qEa.i. (3.5)

3.3 Consumption

The encountered food is consumed subjected to a standard Holling functional response type II to
represent satiation. This determines the feeding level, fi(w), which is a dimensionless number between
0 (no food) and 1 (fully satiated):

fi(w) =
Ee.i

Ee.i + hiwn
, (3.6)

where hiw
n is the maximum consumption rate.

3.4 Growth

The consumed food fi(w)hiw
n is assimilated by an efficiency α and used to fuel the needs for standard

metabolism and activity ks.iw
p. The remaining available energy, αfi(w)hiw

n − ks.iw
p, is divided

between growth and reproduction by a function of weight changing between zero around the weight of
maturation to one at the asymptotic weight where all available energy is used for reproduction:

ψi(w) =

[
1 +

(
w

wm.i

)−10]−1(
w

Wi

)1−n

, (3.7)

6

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Time (scaled with W
−0.25

)

 B
o
d
y
 s

iz
e
 (

s
c
a
le

d
 w

it
h
 W

)

Figure 1: The growth curve of an individual found by solving (Equation 3.8) with a constant feeding
level f0 = 0.6 (solid line), compared to a von Bertalanffy growth curve with the von Bertalanffy growth
parameter K = (αf0hw

n − kswn)Wn−1/3 (dashed line) (Andersen et al., 2009b).

where wm.i is the weight at maturation and Wi is the asymptotic (maximum) size. The term in the
square bracket is a function which varies smoothly from 0 to 1 around the weight at maturation. The
last term describes how the relative amount of energy invested in reproduction increases as the weight
approaches the asymptotic weight. The somatic growth function therefore becomes:

gi(w) = (αfi(w)hiw
n − ks.iwp)(1− ψ(w)). (3.8)

The form of the allocation function (3.7) is chosen such that the growth curve approximates a von
Bertalanffy growth curve if the feeding level is constant (see Figure 1 and Hartvig et al. (2011) for
details about the derivation). The actual emerging growth curves from the model will depend on the
feeding level, and may even result in stunted growth curves if the feeding level drops below the critical
feeding level where the assimilated food is just enough to satisfy standard metabolism:

fc.i(w) = ks.iw
p/(αhiw

n). (3.9)

If n = p (which is the case for the set of default parameters chosen here), fc is independent of w.

7

0 1 2 3 4
Rp/Rmax

0.5

1.0

1.5

2.0

2.5

R/Rmax

Maximum recruitmentP
hy

si
ol
og

ic
al
 re

cr
ui
tm

en
t

Egg production

R
e

c
ru

it
m

e
n

t

Figure 2: The Beverton-Holt recruitment function (thick line) which determines the recruitment R as
a function of the egg production (the “physiological recruitment”) Rp via (Equation 3.11).

3.5 Reproduction

The total production of eggs Rp.i (numbers per time) is found by integrating the energy allocated to
reproduction over all individuals:

Rp.i =
ε

2w0

∫
Ni(w)(αfi(w)hiw

n − ks.iwp)ψi(w) dw, (3.10)

where w0 is the egg weight, ε is the efficiency of reproduction, and the factor 1/2 takes into account
that only females reproduce.

3.6 Recruitment

One of the fundamental assumptions in fisheries science is that marine fish populations experience
significant density dependence early in life (Ricker, 1954). This assumption has some empirical backing
for selected, well-studied stocks (Myers and Cadigan, 1993) and is also supported by the general
observation that marine fish do not experience strong, food-dependent growth. This is in contrast to
fish in lakes where stunted growth is not uncommon. From a technical point of view, additional density
dependence is needed to stabilize the model community to avoid some of the trait classes going extinct
(Hartvig, 2011). An alternative way to ensure coexistence of many species is to introduce a random

8

food web matrix describing species-specific food preference (Hartvig et al., 2011) or an abstract notion
of space (Hartvig, 2011).

In mizer, density dependence is modelled as a compensation on the egg production. This can be
considered as the stock-recruitment relationship (SRR). The default functional form is such that the
recruitment flux Ri (numbers per time) approaches a maximum recruitment as the egg production
increases, modelled mathematically analogous to the Holling type II function response as a “Beverton-
Holt” type of SRR:

Ri = Rmax .i
Rp.i

Rp.i +Rmax .i
, (3.11)

where Rmax .i is the maximum recruitment flux of each trait class (Figure 2).

The “Beverton-Holt” type of SRR is not the only density dependence model that mizer can use. Users
are able to write their own model so it is possible to set a range of SRRs, e.g. fixed recruitment (as
used in the community-type model) or “hockey-stick”. This is explored in more detail in Section 8.4.

3.7 Mortality

The mortality rate of an individual µi(w) has three sources: predation mortality µp.i(w) , starvation
mortality µs.i(w), and a constant background mortality µb.i(w). The background mortality is needed
to ensure that the largest individuals in the community also experience mortality as they are not
predated upon by any individuals from the community spectrum. Predation mortality is calculated
such that all that is eaten translates into corresponding predation mortalities on the ingested prey
individuals (see Hartvig et al. (2011, Appendix A) for derivation):

µp.i(wp) =
∑
j

∫
φ(wp/w)(1− fj(w))γjw

qθjiNj(w) dw. (3.12)

When food supply does not cover metabolic requirements ks.iw
p, growth stops, i.e. there is no negative

growth, and the individual is subjected to a starvation mortality. Starvation mortality is assumed pro-
portional to the energy deficiency ks.iw

p−αfi(w)hiw
n, and is inversely proportional to lipid reserves,

which are assumed proportional to body weight:

µs.i(w) =

{
0 αfi(w)hiw

n > ks.iw
p

ks.iw
p−αfi(w)hiw

n

ξw otherwise
. (3.13)

Starvation is usually not an important process in the multispecies model with Beverton-Holt recruit-
ment.

Mortality from sources other than predation and starvation is assumed to be constant within a species
and inversely proportional to generation time (Peters, 1986):

µb.i = µ0W
n−1
i . (3.14)

3.8 Resource dynamics

The background resource spectrum NR(w) represents food items for the smallest individuals (smaller
than βw0). The temporal evolution of each size group in the resource spectrum is described using
semi-chemostatic growth:

∂NR(w, t)

∂t
= r0w

p−1
[
κRw

−λ −NR(w, t)
]
− µp(w)NR(w, t), (3.15)

9

where r0w
p−1 is the population regeneration rate (Fenchel, 1974; Savage et al., 2004) and κw−λ =

κw−2−q+n the carrying capacity.

3.9 Parameters

The default parameter values for the model have been derived on the basis of meta-analyses of data
on marine fish (Table 1). Two parameters deserving special mention are the initial and critical feeding
levels. These are used as physiological measures characterizing the productivity of the system and the
metabolic requirements of the individuals.

The system is driven by the production of the resource. The ratio between the production and the
maximum consumption will determine the feeding level f0 of small individuals feeding mainly on
the background resource. If f0 is close to 1 the individuals are satiated, and growth will be largely
independent of changes in food availability. If f0 is in the linear range of the functional response,
growth will be dependent on available food. If f0 is close to the critical feeding level fc, where the
available food is only sufficient to cover standard metabolism, growth will be stunted. The initial
feeding level f0, calculated as the feeding level of an individual feeding on the resource at carrying
capacity, is used as the control parameter for the resource productivity. The initial feeding level is
then used to calculate the search rate parameter γ:

γi(f0) =
f0hiβ

2−λ
i

(1− f0)
√

2πκσi
. (3.16)

Similar to the way the initial feeding level f0 is used to describe the relation between the production
and the maximum consumption, the critical feeding level fc (Equation 3.9) is used to describe the
relation between the factors for standard metabolism ks and maximum consumption h. A critical
feeding level of fc ≈ 0.2 seems to be reasonable (Hartvig et al., 2011).

The free parameter κ may in principle be determined analytically, based on an assumption that all
species have maximum recruitment, Ri = Rmax.i. However, the depletion of resources makes it difficult
to find an analytical approximation of κ and until that has been achieved, κ has to be adjusted manually
such that the resulting community spectrum forms a continuation of the resource spectrum.

4 Introducing mizer

With mizer is is possible to implement the three types of model mentioned above (with increasing
complexity): community, trait-based and multispecies, using the same basic tools and methods. For
the remainder of this vignette we present examples of how to set up, project and analyse all three
types of model.

Using the package is relatively simple. There are three main stages to implementing a model:

• Setting the model parameters. This is done by creating an object of class MizerParams. This
includes model parameters such as the life history parameters of each species, and the fishing
gears. It is possible to create a MizerParams object directly using the class constructor or by
using one of the convenient wrapper functions provided in the package.

• Running a simulation. This is done by calling the project() method on the model parameters.
This produces an object of MizerSim which contains the results of the simulation. The project()
method controls the length and time-step of the simulation, as well as the levels of fishing effort.

10

• Exploring the results. After a simulation has been run, the results can be examined using a range
of plots and summaries.

These stages and the accompanying classes and methods are explained in detail in the rest of the
document.

It is probably easier to learn the basics of mizer through examples. We start by looking at the simplest
type of size spectrum model, the community model. We then move on to a more complex type of model,
the trait-based model. Finally we look at the most complex type of model, the multispecies model.

5 Implementing a community-type model

5.1 Introduction

The simplest version of the size spectrum model is the community model, originally introduced by
(Benôıt and Rochet, 2004). In this model only one“species” is resolved. Reproduction is not considered,
so ψ(w) = 0 and the recruitment flux R is set to be constant. The resource spectrum only extends to
the start of the community spectrum. Standard metabolism is turned off by setting ks to 0. Growth
is therefore given by the simpler equation:

g(w) = αf(w)hwn (5.1)

where f(w)hwn is the consumed food and α is the efficiency with which the consumed food is trans-
formed into growth. The growth rate can also be written as:

g(w) = εIEa (5.2)

where εI is the average growth efficiency which can be derived from the full model (see Andersen et al.,
2009a; Zhang et al., 2013).

In this section we describe how a community model can be set up and projected through time. We
then use a community model to illustrate the idea of a ’trophic cascade’. Due to the relative simplicity
of this type of model they are useful for gently introducing some of the concepts behind the mizer

package. Consequently, this section should hopefully serve as an introduction to using mizer and some
of the main classes and methods.

5.2 Setting up a community model

As mentioned above, the first stage in implementing a model using mizer is to create an object of
class MizerParams. This class contains the model parameters including the life-history parameters of
the species in the model, the stock-recruitment relationships, the fishing selectivity functions and the
parameters of the resource spectrum. The class is fully described in Section 8.

To avoid having to make a MizerParams object directly, a wrapper function, set_community_model(),
has been provided that conveniently creates a MizerParams object specifically for a community model.
The documentation for the function can be seen by entering:

> ?set_community_model

As can be seen in the help page, the function can take many arguments. These are passed on to the
MizerParams constructor when the function is called. We can ignore most of these arguments for the

11

moment as they almost all come with default values. Full details of those arguments can be seen in
Section 8.

The arguments that you should pay attention to are: z0 (the level of background mortality), alpha
(the assimilation efficiency of the community), f0 (the average feeding level of the community which
is used to calculate γ in equation 3.16) and recruitment (the level of constant recruitment).

Although default values for these parameters are provided, you are encouraged to explore how changing
the values affects the simulated community. For example, the default value of z0 is 0.1. Increasing this
value effectively ’shortens’ the length of the community spectrum. The value of the constant recruit-
ment should be set so that the community spectrum is a continuation of the background spectrum.
This can be done with trial and error. A reasonable value for alpha is 0.2 (Andersen et al., 2008).

The set_community_model() function is called by passing in the arguments by name. Any parameter
that is not passed in is set to the default value. For example, the following line sets up the parameters
with z0 = 1, f0 = 0.7, alpha = 0.2 and recruitment = 4e7. All other parameters will have their
default value:

> params <- set_community_model(z0 = 0.1, f0 = 0.7, alpha = 0.2, recruitment = 4e7)

Calling the function creates and returns an object of type MizerParams. We can check this using the
class() function.

> class(params)

[1] "MizerParams"

attr(,"package")

[1] "mizer"

If you are going through this vignette for the first time, it is likely that you have no idea what a
MizerParams object actually is. In “R-speak” it is an S4 object, which means it is an object made up
of “slots”. Slots are essentially containers that store the object data. The names of these slots can be
seen by calling the slotNames() method on the object:

> slotNames(params)

[1] "w" "dw" "w_full" "dw_full"

[5] "psi" "intake_max" "search_vol" "activity"

[9] "std_metab" "pred_kernel" "rr_pp" "cc_pp"

[13] "species_params" "interaction" "srr" "selectivity"

[17] "catchability"

As you can see, the params object is made up of lots of slots. They are discussed in detail in Section 8.
A quick description can be found in the MizerParams help page (run class ? MizerParams. The
slots of an object are accessed by using the @ operator. For example, to access the w slot (which
contains a vector of the size bins in the model) you would use:

> params@w

Rather than picking through the slots to find out what is in a particular MizerParams object, a
summary of the object can be seen by calling the summary() method on it:

12

> summary(params)

An object of class "MizerParams"

Community size spectrum:

minimum size: 0.001

maximum size: 1e+06

no. size bins: 100

Background size spectrum:

minimum size: 1e-10

maximum size: 1e+06

no. size bins: 130

Species details:

species w_inf w_mat beta sigma

1 Community 9e+05 NA 100 2

Fishing gear details:

Gear Target species

Community Community

In the summary you can see that the size range of the community spectrum has been set from 0.001
to 1e+06 and these are spread over 100 size bins. Similar information is available for the background
resource spectrum. Additionally, the community is made up of only one species, called “Community”,
which has an asymptotic size of 9e+05 and a preferred predator prey mass ratio of 100. The w_mat

parameter has been set to NA as it is not used when running a community model. These values have all
been set by default using the set_community_model() function. If you want to set different values for
these, you will need to call the set_community_model() function and pass in the the desired argument
values.

5.3 Running the community model

By using the set_community_model() method we now have a MizerParams object that contains all the
information we need about the model community. We can use this to perform a simulation and project
the community through time. In the mizer package, projections are performed using the project()

method. You can see the help page for project() for more details and it is described fully in Section 9.
We will ignore the details for the moment and just use project() to run some simple projections. The
arguments for project() that we need to be concerned with are effort, which determines the fishing
effort (and therefore fishing mortality) through time, and t_max, which is the length of the simulation.
Initial population abundances are set automatically by the get_initial_n() function. It is possible
to set your own initial abundances but we will not do this here.

To run a projection for 50 time steps, with no fishing effort (i.e. we want to model an unexploited
community) we run:

> sim <- project(params, t_max=50, effort = 0)

The resulting object, sim, is of type MizerSim. This class holds the results of the simulation, including
the community and background resource abundances at size through time, as well as the original model
parameters. It is explained in detail in Section 9.

After running the projection, it is possible to explore the results using a range of plots and analyses.
These are described fully in Section 10. To quickly look at the results of the projection you can call
the generic plot() method. This plots the feeding level, predation mortality, fishing mortality and

13

abundance by size in the last time step of the simulation, and the biomass through time (Figure 3)
Each of the plots can be show individually if desired.

> plot(sim)

In Figure 3 there are several things going on that are worth talking about. Looking at the total biomass
of the community against time, you can see that the biomass quickly reaches a stable equilibrium. The
other panels show what is happening at the last time step in the simulation, which in this case is when
the community is at equilibrium. Fishing mortality is 0 because we set the effort argument to 0
when running the simulation. The predation mortality rate (M2) is clearly a function of size, with the
smallest sizes experiencing the highest levels of predation. The feeding level describes how satiated an
individual is, with 0 being unfed, and 1 being full satiated. The feeding level at size will be strongly
affected by the values of the f0 and alpha arguments passed to the set_community_model() function.
The background resource and community spectra are shown in the bottom panel of the plot (the
plotted background resource spectrum has been truncated to make for a better plot, but really extends
all the way back to 1e-10 g). You can see that the community spectrum forms a continuum with
the resource spectrum. This is strongly affected by the level of fixed recruitment (the recruitment

argument passed to set_community_model()).

Note the “hump” in the biomass at the largest end of the community spectrum. This is because the
size spectrum model can be broadly described as ’big things eating little things’. Given this, what is
eating the very biggest things? Without fishing pressure, the mortality of the largest individuals is only
from the background mortality (determined by the z0 argument) and the mortality from predation is
almost 0. This is difficult to see in the plot due to the M2 being so high for the smaller individuals.

We can see this more clearly by extracting the predation mortality information from the MizerSim
object, sim, that we created above. This is easily done by using the getM2() method (see the help
page for more details). There are several methods that can be used for extracting information from
a MizerSim object, e.g. getFeedingLevel() and getFMort(). For more information see Section 10.
Here we just call getM2() using the sim object:

> m2 <- getM2(sim)

This m2 object is a array that contains the predation mortality at time by species by size. Here we
only have one species so the species dimension is dropped, leaving us with a two dimensional array of
time by size. We projected the model for 50 time steps but the length of the time dimension is 51 as
the initial population is also included as a time step.

To pull out the predation mortality at size in the final time step we use:

> m2[51,]

If you plot this predation mortality on a log-log scale you can see how the predation mortality declines
to almost zero for the largest sizes (Figure 4).

5.4 Example of a trophic cascade with the community model

It is possible to use the community model to simulate a trophic cascade, similar to those seen in
Andersen and Pedersen (2010). To do this we need to perform two simulations, one with fishing and
one without.

This means we need to consider how fishing is handled in mizer. The set_community_model() function
automatically sets the fishing selectivity to have a knife-edge shape, with only individuals larger than

14

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1

100

10000

0 10 20 30 40 50
Time

B
io

m
as

s

0

5

10

15

1e−01 1e+02 1e+05
Size

M
2

−0.50

−0.25

0.00

0.25

0.50

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e−05

1e+00

1e+05

1e−03 1e+00 1e+03 1e+06
Size

B
io

m
as

s

Species
Community
Background

Figure 3: Example plot of the community model.

15

1e−03 1e−01 1e+01 1e+03 1e+05

1e
−

09
1e

−
03

Size

P
re

da
tio

n
m

or
ta

lit
y

Figure 4: Predation mortality without fishing in the community model (note the log scales for both
axes).

1 kg selected (the size at the knife-edge can be changed by setting the knife_edge_size argument).
Although it is possible to change the selectivity function, here we will use the default knife-edge
selectivity. Here we set up the parameter object exactly as before, but now we are explicitly setting
the size at which individuals are selected by the fishing gear.

> params_knife <- set_community_model(z0 = 0.1, recruitment = 4e7,

+ alpha = 0.2, f0 = 0.7, knife_edge_size = 1000)

First we perform a simulation without fishing in the same way we did above by setting the effort

argument to 0:

> sim0 <- project(params_knife, effort = 0, t_max = 50)

Now we want to simulate again, this time with fishing. In the simulations, fishing mortality is calculated
as the product of the fishing selectivity, effort and catchability (see Section 8.3 for more details). By
default catchability is set to 1. This means that a fishing effort of 1 will result in a fishing mortality of
1 for fully selected sizes. Here we run a simulation with fishing effort set to 1 for the duration of the
simulation:

> sim1 <- project(params_knife, effort = 1, t_max = 50)

You can compare the difference between these scenarios by using the plot() method as before (Fig-
ure 5). Of particular interest is the fishing mortality at size. The knife-edge selectivity at 1000 g can
be clearly seen and an effort of 1 has resulted in a fishing mortality of 1 for the fully selected sizes.

> plot(sim1)

16

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1

100

10000

0 10 20 30 40 50
Time

B
io

m
as

s

0

5

10

15

1e−01 1e+02 1e+05
Size

M
2

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e−17

1e−09

1e−01

1e+07

1e−03 1e+00 1e+03 1e+06
Size

B
io

m
as

s

Species
Community
Background

Figure 5: Summary plot for the community model when fishing with knife-edge selectivity at size =
1000 g.

17

1e−03 1e−01 1e+01 1e+03 1e+05

0.
0

1.
0

2.
0

3.
0

Size (g)

R
el

at
iv

e
ab

un
da

nc
e

Figure 6: Relative abundances from the unfished (dashed line) and fished (solid line) community model.

To explore the presence of a trophic cascade, we are interested in looking at the relative change in
abundance when the community is fished compared to when it is not fished. To do this we need to
get the abundances at size from the simulation objects. The abundances are store in the n slot of the
MizerSim objects. The n slot contains a three dimensional array with dimensions time x species x
size. Here we have 51 time steps (50 from the simulation plus one which stores the initial population),
1 species and 100 sizes:

> dim(sim0@n)

[1] 51 1 100

We want the abundances in the final time step, and we can use these to calculate the relative abun-
dances:

> relative_abundance <- sim1@n[51,,] / sim0@n[51,,]

This can then be plotted (Figure 10) using basic R plotting commands. The sizes are stored in the
params@w slot (a slot of a slot!).

> plot(x=sim0@params@w, y=relative_abundance, log="x", type="n",

+ xlab = "Size (g)", ylab="Relative abundance")

> lines(x=sim0@params@w, y=relative_abundance)

> lines(x=c(min(sim0@params@w),max(sim0@params@w)), y=c(1,1),lty=2)

The impact of fishing on species larger than 1000g can be clearly seen. As described in (Andersen
and Pedersen, 2010), the fishing pressure lowers the abundance of large fish (the decrease in relative

18

abundance at 1000 g). This then relieves the predation pressure on their smaller prey (the preferred
predator-prey size ratio is given by the β parameter, which is set to 100 by default), leading to an
increase in their abundance. This in turn increases the predation mortality on their smaller prey, which
reduces their abundance and so on.

5.5 The impact of changing σ

As described above, the σ parameter determines the width of the predator prey size preference. Here
we take a look at how changing the value of σ can affect the dynamics of the community. In the
examples above, σ is set in the set_community_model() function by default to a value of 2. When
projected through time, the community abundances converge to a stable equilibrium. What happens
if we reduce the value of σ, for example by setting it to 1.0? We can do this by passing in the new
value of σ into set_community_model().

> params_sigma1 <- set_community_model(z0 = 0.1,

+ f0 = 0.7, alpha = 0.2, recruitment = 4e7, sigma = 1)

We want to project this new model through time using the project() method. Note that we have
introduced a new argument: dt. This is the step size of the solver. It does not have anything to
do with the biology in the model. It only affects the internal engine of project() that performs
the projection. As you can see in the underlying model equations in Section 3, the model runs in
continuous time. Therefore, to project it forward, project() must solve the system of equations using
numerical methods. The quality of these methods is strongly affected by dt. The default value of dt
is 0.1, which will be fine for most of the projections we run in this Vignette. Here it is necessary to
reduce the value to 0.01 to avoid introducing any artefacts into the projected values. Decreasing dt
increases the time it takes to run a projection. Here we project the new parameters object for 50 time
steps without fishing:

> sim_sigma1 <- project(params_sigma1, effort = 0, t_max = 50, dt=0.01)

Let’s take a look at how the abundances change through time. We can do this with the plotBiomass()
method:

> plotBiomass(sim_sigma1)

Figure 7 shows that abundances of the community no longer converge to a stable equilibrium and
the dynamics appear to be chaotic. The ecological significance of the change in dynamics, and of the
ability of simple community models to show chaotic behaviour, is still being debated. It can be argued
that the size of the oscillations are too large to be ’true’. Additionally, when a trait-based model (see
Section 6) is implemented, the magnitude of the oscillations are much smaller.

6 Implementing a trait-based model

6.1 Introduction

As mentioned above,the trait-based size spectrum model can be derived as a simplification of the
general model outline in Section 3. It is more complicated than a community model and the most
significant difference between the two is that while the community model only resolves a single“species”,

19

> plotBiomass(sim_sigma1)

1

100

10000

0 10 20 30 40 50
Time

B
io

m
as

s

Species

Community

Figure 7: Biomass of the community model when σ is reduced to a value of 1.0.

the trait-based model resolves many species. In a trait-based model the asymptotic size is considered
to be the most important “trait” characterizing a species. All of the species-specific parameters, such
as β and σ, are the same for all species. Other model parameters are determined by the asymptotic
size. For example, the weight at maturation, wm = ηmW , where ηm = 0.25. The number of species
is not important and does not affect the general dynamics of the model. The asymptotic sizes of the
species are spread evenly over the size range of the community. For applications of the trait-based
model see Andersen and Pedersen (2010) and Andersen and Rice (2010).

6.2 Setting up a trait-based model

To help set up a trait-based model, there is a wrapper function, set_trait_model(). Like the
set_community_model() function described above, this function can take many arguments. Most
of them have default values so you don’t need to worry about them for the moment. See the help page
for more details.

> ?set_trait_model

The main parameters of interest are the number of the species in the model (no_sp) and the minimum
and maximum asymptotic sizes (min_w_inf and max_w_inf respectively, the asymptotic sizes are
spread evenly on a logarithmic scale).

One of the key differences between the community type model described above and the trait-based
model is that reproduction and egg production are considered. In the community model, recruitment
is constant and there is no relationship between the abundance in the community and egg production.
In the trait-based model, the egg production is modeled using a “Beverton-Holt” type function (the
default in mizer, see Section 3.6) where the recruitment flux Ri (numbers per time) approaches a

20

maximum recruitment as the egg production increases. The maximum recruitment flux is calculated
using equilibrium theory and a recruitment multiplier (see Andersen and Pedersen, 2010), κ (see
Equation 3.16), which can be passed in as an argument (k0) to the set_trait_model() function. k0

has a default value of 50.

Here we set up the model to have 10 species, with asymptotic sizes ranging from 10 g to 100 kg. All
the other parameters have default values.

> params <- set_trait_model(no_sp = 10, min_w_inf = 10, max_w_inf = 1e5)

This function returns an object of type MizerParams, which holds all the model information, including
species parameters.

> class(params)

[1] "MizerParams"

attr(,"package")

[1] "mizer"

This object can therefore be interrogated in the same way as described in Section 5 above, either by
inspecting the individual slots or by using the summary() function.

> summary(params)

An object of class "MizerParams"

Community size spectrum:

minimum size: 0.001

maximum size: 110000

no. size bins: 100

Background size spectrum:

minimum size: 1e-10

maximum size: 110000

no. size bins: 130

Species details:

species w_inf w_mat beta sigma

1 1 10.00000 2.500000 100 1.3

2 2 27.82559 6.956399 100 1.3

3 3 77.42637 19.356592 100 1.3

4 4 215.44347 53.860867 100 1.3

5 5 599.48425 149.871063 100 1.3

6 6 1668.10054 417.025134 100 1.3

7 7 4641.58883 1160.397208 100 1.3

8 8 12915.49665 3228.874163 100 1.3

9 9 35938.13664 8984.534160 100 1.3

10 10 100000.00000 25000.000000 100 1.3

Fishing gear details:

Gear Target species

knife_edge_gear 1 2 3 4 5 6 7 8 9 10

The summary shows us that now we have 10 species in the model, with asymptotic sizes ranging from
10 to 1e+05. The size at maturity (w_mat) is linearly related to the asymptotic size. Each species

21

has the same preferred predator-prey mass ratio parameter values (beta and sigma, see Equation
3.3). There are 100 size bins in the community and 130 size bins including the background resource
spectrum. Ignore the summary section on fishing gear for the moment. This is explained later.

6.3 Running the trait-based model

As with the community model described above, we can project the model through time using the
project() method. Here we project the model for 75 time steps and without any fishing (the effort

argument is set to 0). We use the default initial population abundances given by the get_initial_n()
function so there is no need to pass in any initial population values (see Section 9.3).

> sim <- project(params, t_max=75, effort = 0)

This results in a MizerSim object which contains the abundances of the community and background
resource spectra through time, as well as the original MizerParams object. As with the community
model, we can get a quick overview of the results of the simulation by calling the generic plot()

method:

> plot(sim)

The summary plot has the same panels as the one generated by the community model, but here you
can see that all the species in the community are plotted (Figure 8). The panels show the situation in
the final time step of the simulation, apart from the biomass through time plot. As this is a trait-based
model where all species fully interact with each other, the predation mortality (M2) and feeding level
by size is the same for each species. The biomasses quickly settle down to equilibria. In this simulation
we turned fishing off so the fishing mortality is 0. The size-spectra show the abundances at size to be
evenly spaced by asymptotic size.

6.4 Example of a trophic cascade with the trait-based model

As with the community model, it is possible to use the trait-based model to simulate a trophic cascade,
similar to those seen in Andersen and Pedersen (2010). Again, we perform two simulations, one with
fishing and one without. We therefore need to consider how fishing gears and selectivity have been set
up by the set_trait_model() function.

The default fishing selectivity function is a knife-edge function, which only selects individuals larger
than 1000 g. There is also only one fishing gear in operation, and this selects all of the species. You can
see this if you call the summary() method on the params argument we set up above. At the bottom
of the summary there is a section on “Fishing gear details”. You can see that there is only one gear,
called “knife edge gear” and that it selects species 1 to 10. To control the size at which individuals
are selected there is a knife_edge_size argument to the set_trait_model() function. This has a
default value of 1000 g.

In mizer it is possible to include more than one fishing gear in the model and for different species to
be caught by different gears. We will ignore this for now, but will explore it further below when we
introduce an industrial fishery to the trait-based model.

To set up the trait-based model to have fishing we set up the MizerParams object in exactly the same
way as we did before but here the knife_edge_size argument is explicitly passed in for clarity:

> params_knife <- set_trait_model(no_sp = 10, min_w_inf = 10, max_w_inf = 1e5,

+ knife_edge_size = 1000)

22

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1e−05

1e−03

0 20 40 60
Time

B
io

m
as

s

0.0

2.5

5.0

7.5

1e−01 1e+02 1e+05
Size

M
2

−0.50

−0.25

0.00

0.25

0.50

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e−10

1e−06

1e−02

1e+02

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species
1
10
2
3
4
5
6
7
8
9
Background

Figure 8: Example plot of the trait-based model with no fishing.

23

First we perform a simulation without fishing in the same way we did above by setting the effort

argument to 0:

> sim0 <- project(params_knife, effort = 0, t_max = 75)

Now we simulate with fishing. Here, we use an effort of 0.75. As mentioned in Section 5.4, the fishing
mortality on a species is calculated as the product of effort, catchability and selectivity (see Section 8.3
for more details). Selectivity ranges between 0 (not selected) and 1 (fully selected). The default value
of catchability is 1. Therefore, in this simulation the fishing mortality of a fully selected individual is
simply equal to the effort. This effort is constant throughout the duration of the simulation (however,
this is does not necessarily have to be the case, see Section9).

> sim1 <- project(params_knife, effort = 0.75, t_max = 75)

Again, we can plot the summary of the fished community using the default plot() function (Figure
9). The knife-edge selectivity at 1000 g can be clearly seen in the fishing mortality panel:

> plot(sim1)

The trophic cascade can be explored by comparing the total abundances of all species at size when the
community is fished and unfished. As mentioned above, the abundances are stored in the n slot of the
MizerSim object. The n slot returns a three dimensional array with dimensions time x species x size.
Here we have 76 time steps (75 from the simulation plus one which stores the initial population), 10
species and 100 sizes:

> dim(sim0@n)

[1] 76 10 100

As with the community model, we are interested in the relative total abundances by size in the final
time step so we want to pull out the 76th time step from the abundances and sum over the species.
We can use the apply() function to help us:

> total_abund0 <- apply(sim0@n[76,,],2,sum)

> total_abund1 <- apply(sim1@n[76,,],2,sum)

We can then use these vectors to calculate the relative abundances:

> relative_abundance <- total_abund1 / total_abund0

Which can be plotted using (Figure 10):

> plot(x=sim0@params@w, y=relative_abundance, log="xy", type="n", xlab = "Size (g)",

+ ylab="Relative abundance", ylim = c(0.1,10))

> lines(x=sim0@params@w, y=relative_abundance)

> lines(x=c(min(sim0@params@w),max(sim0@params@w)), y=c(1,1),lty=2)

24

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1e−07

1e−05

1e−03

1e−01

0 20 40 60
Time

B
io

m
as

s

0

2

4

1e−01 1e+02 1e+05
Size

M
2

0.0

0.2

0.4

0.6

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e−16

1e−10

1e−04

1e+02

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species
1
10
2
3
4
5
6
7
8
9
Background

Figure 9: Summary plot for the trait-based model when fishing with knife-edge selectivity at size =
1000 g.

25

1e−03 1e−01 1e+01 1e+03 1e+05

0.
1

0.
5

2.
0

5.
0

Size (g)

R
el

at
iv

e
ab

un
da

nc
e

Figure 10: Relative abundances from the unfished (dashed line) and fished (solid line) trait based
model.

The impact of fishing on species larger than 1000 g can be clearly seen. As described above and in
(Andersen and Pedersen, 2010), the fishing pressure lowers the abundance of large fish (> 1000 g).
This then relieves the predation pressure on their smaller prey (the preferred predator-prey size ratio
is given by the β parameter, which is set to 100 by default), leading to an increase in their abundance.
This in turn increases the predation mortality on their smaller prey, which reduces their abundance
and so on.

This impact can also be seen by looking at the predation mortality by size. The predation mortalities
are retrieved using the getM2() method for MizerSim objects. This returns a three dimensional array
of predation mortalities by time x species x size (see the help page for getM2() for more details). As
mentioned above, for the trait based model the predation mortality by size is the same for each species.
Therefore we only look at the predation mortality of the first species.

> m2_no_fishing <- getM2(sim0)[76,1,]

> m2_with_fishing <- getM2(sim1)[76,1,]

The predation mortalities can then be plotted (see Figure 11).

> plot(x = sim0@params@w, y = m2_no_fishing, log="x", type="n", xlab = "Size (g)",

+ ylab = "M2")

> lines(x = sim0@params@w, y = m2_no_fishing, lty=2)

> lines(x = sim0@params@w, y = m2_with_fishing)

26

1e−03 1e−01 1e+01 1e+03 1e+05

0
2

4
6

8

Size (g)

M
2

Figure 11: Predation mortalities from the unfished (dashed line) and fished (solid line) trait-based
model.

6.5 Setting up an industrial fishing gear

In this section we only want to operate an “industrial” fishery, like in Andersen and Pedersen (2010).
Industrial fishing targets the small zooplanktivorous species that are typically used for fishmeal pro-
duction.

In the previous simulations we had only one fishing gear and it targeted all the species in the community.
This gear had a knife-edge selectivity that only selected species larger than 1 kg. Here we expand the
model to include multiple fishing gears. This requires us to look more closely at how fishing gears are
handled in mizer. In mizer it is possible for a fishing gear to catch only a subset of the species in the
model. This is useful because when running a simulation with project() you can specify the effort
per gear and so you can turn gears on or off as you want. The shape of the selectivity function of
each gear will be the same for all of the species it catches but the selectivity parameter values for each
species may be different. For example, we can set up an “industrial” gear to catch only a subset of
species. Each species it catches will be caught with knife-edge selectivity but they may have a different
knife-edge positions.

Using the trait-based model wrapper function it is only possible to have a knife-edge selectivity.
Each species in the model must be given the position of the knife edge and the name of the fish-
ing gear. This is done using the knife_edge_size argument (which we have already seen) and the
gear_names argument of the set_trait_model() function. In the previous examples, we passed in the
knife_edge_size argument as a single value which was used for all the species. This effectively set up
a single gear, that caught all species using the same selectivity pattern. The gear_names argument was
not used. Now we are going to pass the knife_edge_size argument as a vector with the same length
as the number of species in the model. The values in the vector will be the positions of the knife-edge
for each species. We are also going to pass in a new argument, gear_names which is a vector of the
names of the gears. The vector must have the same length as the number of species in the model.

27

We will set up the model to include two fishing gears: an “industrial” gear that only catches species
with an asymptotic size less than or equal to 500g, and a second gear, “other”, that catches everything
else. The position of the knife-edge for both gears will occur at 0.05 x the asymptotic size i.e. the
selectivity parameters will be different for each species and will depend on the asymptotic size.

To start with we need to know what the asymptotic sizes of the species in the model are so we can
determine the knife-edge positions for each species. As mentioned above, the set_trait_model()

function spaces the asymptotic sizes equally on a logarithmic scale. This means we can calculate them
by hand.

> no_sp <- 10

> min_w_inf <- 10

> max_w_inf <- 1e5

> w_inf <- 10^seq(from=log10(min_w_inf), to = log10(max_w_inf), length=no_sp)

We can then use these asymptotic sizes to set a vector of knife-edges that are 0.05 times the asymptotic
size:

> knife_edges <- w_inf * 0.05

Now we want to assign each species to either the “industrial” or “other” gear, We want to create a
vector of gear names. This vector must be the same length as the number of species in the model.

> other_gears <- w_inf > 500

> gear_names <- rep("Industrial", no_sp)

> gear_names[other_gears] <- "Other"

Finally, we can create our MizerParams object by passing in the knife_edge_sizes and gear_names

argument. All the other arguments are the same as before:

> params_multi_gear <- set_trait_model(no_sp = no_sp, min_w_inf = min_w_inf,

+ max_w_inf = max_w_inf, knife_edge_size = knife_edges, gear_names = gear_names)

To check what has just happened we can take a look inside the MizerParams object. There is a slot
in the object called species_params. This is a data.frame that contains the life-history parameters of
the species in the model (the results of running this command are not shown):

> params_multi_gear@species_params

This data.frame is pretty interesting as it allows you to investigate the parameters for each species.
For example, you can see that the predator-prey mass ratio parameters, beta and sigma, are indeed
the same for each species. The columns of the species_params data.frame that we are interested
in here are species (the name of the species, here just numerical identifiers), w_inf (the asymptotic
size), sel_func (the name of the selectivity function for that species), knife_edge_size (the position
of the knife-edge of the selectivity) and gear (the name of the fishing gear). You can see that two
gears have been set up, “Industrial” and “Other” and that they catch different species depending on
their asymptotic size.

Having created our MizerParams object with multiple gears, we can now turn our attention to running
a projection with multiple gears. In our previous examples of calling project() we have specified the
fishing effort with the effort argument using a single value. This fixes the fishing effort for all gears
in the model, for all time steps. We can do this with our multi-gear parameter object:

28

> sim_multi_gear <- project(params_multi_gear, t_max = 75, effort = 0.5)

By plotting this you can see that the fishing mortality for each species now has a different selectivity
pattern (Figure 12), and that the position of the selectivity knife-edge is given by the asymptotic size
of the species.

> plot(sim_multi_gear)

For the industrial fishery we said that we only wanted species with an asymptotic size of 500 g or less
to be fished. There are several ways of specifying the effort argument for project() . Above we
specified a single value that was used for all gears, for all time steps. It is also possible to specify a
separate effort for each gear that will be used for all time steps. To do this we pass in effort as a named
vector. Here we set the effort for the “Industrial” gear to 0.75, and the effort of the “Other” gear to 0
(effectively turning it off).

> sim_multi_gear <- project(params_multi_gear, t_max = 75,

+ effort = c(Industrial = 0.75, Other = 0))

Now you can see that the “Industrial” gear has been operating and that fishing mortality for species
larger than 500 g is 0 (Figure 13).

> plot(sim_multi_gear)

6.6 The impact of industrial fishing

In the previous section we set up and ran a model in which an industrial fishery was operating that
only selected smaller species. We can now answer the question: what is the impact of such a fishery?
We can again compare abundances of the fished (sim industrial1) and unfished (sim industrial0)
cases:

> sim_industrial0 <- project(params_multi_gear, t_max = 75, effort = 0)

> sim_industrial1 <- project(params_multi_gear, t_max = 75,

+ effort = c(Industrial = 0.75, Other = 0))

> total_abund0 <- apply(sim_industrial0@n[76,,],2,sum)

> total_abund1 <- apply(sim_industrial1@n[76,,],2,sum)

> relative_abundance <- total_abund1 / total_abund0

And plot the relative abundances:

> plot(x=sim0@params@w, y=relative_abundance, log="xy", type="n", xlab = "Size (g)",

+ ylab="Relative abundance", ylim = c(0.1,10))

> lines(x=sim0@params@w, y=relative_abundance)

> lines(x=c(min(sim0@params@w),max(sim0@params@w)), y=c(1,1),lty=2)

This shows another trophic cascade (Figure 14), although this time one driven by fishing the species
at the midrange part of the spectrum, not the largest individuals as before. This trophic cascade acts
in both directions. The cascade upwards is driven by the lack of food for predators leading to smaller
realised maximum sizes. The cascade downwards has the same mechanism as fishing on large fish, a
combination of predation mortality and food limitation.

29

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1e−06

1e−04

1e−02

0 20 40 60
Time

B
io

m
as

s

0

2

4

6

1e−01 1e+02 1e+05
Size

M
2

0.0

0.1

0.2

0.3

0.4

0.5

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e−22

1e−14

1e−06

1e+02

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species
1
10
2
3
4
5
6
7
8
9
Background

Figure 12: Summary plot for the trait-based model with multiple gears when all gears are operational.

30

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1e−05

1e−03

0 20 40 60
Time

B
io

m
as

s

0

2

4

6

1e−01 1e+02 1e+05
Size

M
2

0.0

0.2

0.4

0.6

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e−10

1e−06

1e−02

1e+02

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species
1
10
2
3
4
5
6
7
8
9
Background

Figure 13: Summary plot for the trait-based model with multiple gears when only the industrial gear
that fishes on species with asymptotic size of 500 g or less is operational.

31

1e−03 1e−01 1e+01 1e+03 1e+05

0.
1

0.
5

2.
0

5.
0

Size (g)

R
el

at
iv

e
ab

un
da

nc
e

Figure 14: Relative abundances from the unfished (dashed line) and fished (solid line) trait based
model with an industrial fishery that targets species with an asymptotic size of 500 g or less.

7 Introducing multispecies models

The previous sections have used wrapper functions to set up MizerParams objects that are appropriate
for community and trait-based simulations. We now turn our attention to multispecies, or species-
specific, models. These are potentially more complicated than the community and trait-based models
and use the full power of the mizer package.

In multispecies type models multiple species are resolved. However, unlike in the trait-based model
which also resolves multiple species, explicit species are represented. There are several advantages to
this approach. As well as investigating the community as a whole (as was done for the community
and trait-based models), we are able to investigate the dynamics of individual species. This means
that species specific management rules can be tested and species specific metrics, such as yield, can be
compared to reference levels.

A multispecies model can take more effort to set up. For example, each species will have different
life-history parameters; there may be multiple gear types with different selectivities targeting different
groups of species; the fishing effort of each gear may change with time instead of just being constant
(which has been the case in the simulations we have looked at so far); the interactions between the
species needs to be considered.

For the remainder of this vignette we build up a multispecies model for the North Sea. To effectively
use mizer for a multispecies model we are going to have to take a closer look at the MizerParams class
and the project() method. This will all be done in the context of examples so hopefully everything
will be clear.

We also take a closer look at some of the summary plots and analyses that can be performed, for
example, calculating a range of size-based indicators.

32

8 Setting up a multispecies model

8.1 Overview

The MizerParams class is used for storing model parameters. We have already met the MizerParams
class when we looked at community and trait-based models. However, direct handling of the class was
largely hidden by the use of the wrapper functions. To set up a multispecies model we need to directly
create and use the MizerParams class. This is probably the most complicated part of using the mizer

package so we will take it slowly. For additional help you can look at the help page for the class by
entering class ? MizerParams.

The MizerParams class stores the:

• life-history parameters of the species in the community, such as W∞;

• size-based biological parameters for the species, such as the search volume, V (w);

• stock-recruitment relationship functions and parameters of each species;

• interaction matrix to describe the spatial overlap of pairs of species;

• parameters relating to the growth and dynamics of the background resource spectrum;

• fishing gear parameters: selectivity and catchability.

Note that the MizerParams class does not store any parameters that can vary through time, such as
fishing effort or population abundance. These are stored in the MizerSim class which we will come to
later in Section 9.

Although the MizerParams class seems complicated, it is relatively straightforward to set up and
use. Objects of class MizerParams are created using the constructor method MizerParams(). This
constructor method can take many arguments. However, creation is simplified because many of the
arguments have default values.

In the rest of this section we look at the main arguments to the MizerParams() constructor method.
To help understand how the constructor is used and how the MizerParams class relates to the equations
given in Section 3, there is an example section where we create example parameter objects using data
that comes with the mizer package.

8.2 The species parameters

Although many of the arguments used when creating a MizerParams object are optional, there is
one argument that must be supplied by the user: the species specific parameters. These are stored
in a single data.frame object. The data.frame is arranged species by parameter, so each column is a
parameter and each row has the parameters for one of the species in the model. Although it is possible
to create the data.frame by hand in R , it is probably easier to create the data externally as a .csv file
(perhaps using a suitable open source spreadsheet such as LibreOffice) and then read the data into R .

For each species in the model community there are certain parameters that are essential and that do
not have default values. The user must provide values for these parameters. There are also some
essential parameters that have default values, such as the selectivity function parameters, and some
that are calculated internally using default relationships if not explicitly provided. These defaults are
used if the parameters are not found in the data.frame. A description of the columns of the species
parameter data.frame and any default values can be seen Table 2.

33

The essential columns of the species parameters data.frame that have no default values are: species,
the names of the species in the community; w_inf, the asymptotic mass of the species; w_mat, the mass
at maturation; beta and sigma, the predator-prey mass ratio parameters β and σ (see Equation 3.3);
stock-recruitment parameters (by default, the stock-recruitment function is a Beverton-Holt type and
so, unless a different SRR function is used, a r_max column must be provided - see Section 8.4 for
more details).

Essential columns that have default values are: k, the activity coefficient (default = 0); alpha, the as-
similation efficiency (default = 0.6); erepro, the reproductive efficiency (default value = 1); w_min, the
size of recruits (default value is the smallest size of the community size spectrum); sel_func, the name
of the fishing selectivity function (default value = ”knife edge”); gear, the name of the fishing gear that
catches the species (default value is the name of the species in the species column); catchability,
the catchability of the fishing gear on that species (default value = 1). Additionally, columns that
contain the selectivity function parameters are needed. As mentioned, the default selectivity function
is a “knife edge” function. This has an argument knife_edge_size that determines the knife-edge
position and has a default value of w_min. If any of these columns are not included in the species
parameter data.frame, the default values are used.

As mentioned above, there are some columns that are essential but if they are not provided, values for
them are estimated using the values in the other columns. These columns are: h, the maximum food
intake; gamma, the volumetric search rate; ks, the coefficient for standard metabolism; z0, the mortality
from other sources (µb,i in Equation 3.14). These parameters can be included as columns in the
species parameters data.frame if they are available. If they are not provided then the MizerParams()

construction method will try to calculate them.

The h column is calculated as:

h =
3kvb
αf0

W 1/3
∞ (8.1)

where kvb is the von Bertalanffy K parameter and f0 is the feeding level of small individuals feeding
mainly on the background resource. This mean that if an h column is not included in the species
parameter data.frame, a column for k_vb is necessary. If it is not included then the MizerParams()

method will fail with an error message. The calculation also requires a value of the feeding level of small
individuals. This can be passed as an additional argument, f0, to the MizerParams() constructor and
it has a default value of 0.6.

The gamma column is calculated using Equation 3.16. This calculation requires that the h column is
available, either included in the species parameter data.frame, or calculated internally using the k_vb

column as described above. This means that if you include a k_vb column in the data.frame, h and
gamma will be calculated from it.

The z0 column (mortality from other sources) is calculated using Equation 3.14. z0pre (equivalent to
µ0) and z0exp (the power that W∞ is raised to) can be passed as arguments to the MizerParams()

constructor and have default values of 0.6 and n-1 (n has a default value of 2/3 - see below) respectively.

The ks column is calculated as 20% of h, i.e. the standard metabolism coefficient is 20% of the
maximum consumption. Standard metabolism is used in calculation of the growth of individuals as
ks ∗ wpi (see Section 3.4).

You can see in Table 2 that most of the species specific parameters relate to the life history of the
species. The others relate to the gear selectivity function and the stock-recruitment relationship. These
are explained further in Sections 8.3 and 8.4 respectively.

34

8.3 Fishing gears and selectivity

In this section we take a look at how fishing is implemented and how fishing gears are set up within
mizer.

In mizer, fishing mortality is imposed on species by fishing gears. The fishing mortality F imposed by
gear g on species s at size w is calculated as:

Fs,g,w = Ss,g,wQs,gEg (8.2)

where S is the selectivity by species, gear and size, Q is the catchability by species and gear and E is
the fishing effort by gear. The selectivity at size has a range between 0 (not selected at that size) to 1
(fully selected at that size). Catchability is used as an additional scalar to make the link between gear
selectivity, fishing effort and fishing mortality. For example, it can be set so that an effort of 1 gives
a desired fishing mortality. In this way effort can then be specified relative to a ’base effort’, e.g. the
effort in a particular year. Fishing effort is not stored in the MizerParams object. Instead, effort is
set when the simulation is run and can vary through time (see Section 9).

At the moment a species can only be selected by one fishing gear, although each gear can select more
than one species (this is a limitation with the current package that will be developed in future releases).

The selectivity at size of each gear is given by a selectivity function. Some selectivity functions are
included in the package. New functions can be defined by the user. Each gear has the same selectivity
function for all the species it selects, but the parameter values for each species may be different, e.g.
the lengths of species that a gear selects may be different.

The name of the selectivity function is given by the sel func column in the species parameters
data.frame. Each selectivity function has a range of arguments. Values for these arguments must
be included as columns in the species parameters data.frame. The names of the columns must exactly
match the names of the arguments. For example, the default selectivity function is knife_edge which
has sudden change of selectivity from 0 to 1 at a certain size. The arguments for this selectivity
function can be seen in the help page for this function. To see them enter:

> ?knife_edge

It can be seen that the knife_edge() function has arguments w and knife_edge_size The first
argument, w, is size (the function calculates selectivity at size). All selectivity functions must have w

as the first argument. The values for the other arguments must be found in the species parameters
data.frame. So for the knife_edge() function there should be a knife_edge_size column (but note
that because knife_edge() is the default selectivity function, the knife_edge_size argument actually
has a default value = w_mat). This can be seen in the example in Section 8.7. If the columns of the
selectivity function arguments are not in the species parameter data.frame, an error is thrown when
the MizerParams object is created.

Users are able to write their own size based selectivity function. The first argument to the function
must be w and the function must return a vector of the selectivity (between 0 and 1) at size.

The name of the fishing gear is given in the gear column of the species parameter data.frame. If the
gear column is not specified, the default gear name is simply the name of the species. This implies
that each species is fished by a different gear. This approach can be used to explore the impacts of
changing fishing mortality on individual species.

35

8.4 The stock-recruitment relationship

In size spectrum modelling recruitment refers to the flux of individuals that enter the size-spectrum
at the smallest size group of that species (given by the parameter w_min in the species parameter
data.frame). As can be seen in Section 3, calculating the recruitment flux involves calculating the
“density independent” recruitment, Rp.i (see Section 3.5). The Rp.i is then modified by a stock-
recruitment relationship (SRR) to impose some form of density-dependence. This then results in the
density-dependent recruitment, Ri (see Section 3.6). Without this density dependence, the realised
recruitment flux to the smallest size class is determined only by Rp.i. The default SRR is a Beverton-
Holt type function (see Equation 3.11).

Similar to the fishing selectivity functions, any parameter used in the stock-recruitment function, other
than Rp.i, must be in the species parameter data.frame and the column must have the same name as
the function argument. For example, the default stock-recruitment function has a second argument to
it, r_max. Therefore the species parameter data.frame must have an r_max column.

Users are able to write their own stock-recruitment function. The first argument to the function must
be rdi, which is the density independent recruitment, Rp.i.

8.5 The interaction matrix

The interaction matrix describes the interaction of each pair of species in the model. This can be
viewed as a proxy for spatial interaction e.g. to model predator-prey interaction that is not size based.
The values in the interaction matrix are used to scale the encountered food and predation mortality
(see Section 3.2). The matrix is square with every element being the interaction between a pair of
species. The dimensions, nrows and ncolumns, therefore equal the number of species. The values are
between 0 (species do not overlap and therefore do not interact with each other) to 1 (species overlap
perfectly). If all the values in the interaction matrix are set to 1 then predator-prey interactions are
determined entirely by size-preference.

The interaction matrix must be of type array or matrix . One way of creating your own is to enter the
data using a spreadsheet (such as LibreOffice) and saving it as a .csv file. The data can be read into
R using the command read.csv(). This reads in the data as a data.frame. We then need to convert
this to a matrix using the as() function. An example of how to do this is given in Section 8.7.

It should be noted that the order of species in the interaction matrix has to be the same as the order in
the species parameters data.frame. Although you can specify the dimnames of the interaction matrix,
these names are overwritten by the species names from the species parameters data.frame inside the
MizerParams constructor.

If an interaction matrix is not specified to the MizerParams() constructor the default iteration matrix
is used. This has all values set to 1.

8.6 The other MizerParams() arguments

As well as the essential species parameters data.frame and the interaction matrix, there are several
other arguments to the MizerParams constructor. These have default values. The arguments can be
seen in Table 3.

Some of these parameters may be used to calculate the species specific parameters if they are not
provided. For example, if there is no gamma column in the species parameter data.frame, then it is
calculated using kappa and f0. This means that depending on which columns have been provided in
the species parameters data.frame, some of the parameters in Table 3 may not be used. For example,

36

if the column z0 (the mortality from other sources) has been included, then the arguments z0pre and
z0exp are not used.

Determining a value for the kappa argument can be difficult and may need to be estimated through
some kind calibration process. The default value kappa is for the North Sea model.

8.7 Examples of making a MizerParams objects

As mentioned in the preceding sections, an object of MizerParams is created by using the Mizer-

Params() constructor method. You can see the help page for the constructor:

> help(MizerParams)

This shows that the constructor takes the following arguments:

object The species parameter data.frame (see Section 8.2). This is compulsory with no default value.

inter The interaction matrix (see Section 8.5). The default is a matrix of 1s.

... Other model parameters (see Section 8.6).

In the rest of this section we demonstrate how to pull these elements together to make MizerParams
objects.

The first step is to prepare the species specific parameter data.frame. As mentioned above, one way of
doing this is to use a spreadsheet and save it as a .csv file. We will use this approach here. An example
.csv file has been included in the package. This contains the species parameters for a multispecies North
Sea model (Blanchard et al., 2013). This file is placed in the doc folder of the package installation.
The location of the file can be found by running:

> system.file("doc/NS_species_params.csv",package="mizer")

This file can be opened with most spreadsheets or a text editor for you to inspect. This can be loaded
into R using the following code (after you have told R to look in the right directory):

> params_data <- read.csv("NS_species_params.csv")

This reads the .csv file into R in the form of a data.frame. You can check this with the class:

> class(params_data)

[1] "data.frame"

The example data.frame can be inspected by entering the name of the object.

> params_data

species w_inf w_mat beta sigma r_max k_vb

1 Sprat 33 13 51076 0.8 7.38e+11 0.681

2 Sandeel 36 4 398849 1.9 4.10e+11 1.000

3 N.pout 100 23 22 1.5 1.05e+13 0.849

37

4 Herring 334 99 280540 3.2 1.11e+12 0.606

5 Dab 324 21 191 1.9 1.12e+10 0.536

6 Whiting 1192 75 22 1.5 5.48e+11 0.323

7 Sole 866 78 381 1.9 3.87e+10 0.284

8 Gurnard 668 39 283 1.8 1.65e+12 0.266

9 Plaice 2976 105 113 1.6 4.08e+14 0.122

10 Haddock 3485 165 558 2.1 1.84e+12 0.271

11 Cod 40044 1606 66 1.3 8.26e+09 0.216

12 Saithe 16856 1076 40 1.1 1.12e+11 0.175

You can see that there are 12 species and 7 columns of parameters: species, w_inf,w_mat,beta,sigma,r_max
and k_vb.

Of these parameters, species, w_inf, w_mat, beta and sigma are essential and have no default values
(as described in Section 8.2). r_max is a SRR parameter. We are going to use the default Beverton-
Holt type SRR which has r_max as an argument (see Section 8.4), making this column also essential.
The final column, k_vb, will be used to calculate values for h and then gamma. This column is only
essential here because the h and gamma are not included in the data.frame. It would also have been
possible to include h and gamma columns in the data.frame and not include the k_vb column.

The values of the non-essential species specific parameters alpha, k, ks, z0, w_min and erepro are not
included in the data.frame. This means that the default values will be automatically used when we
create the MizerParams object.

Note that there are no columns describing the fishing selectivity. There is no sel_func column to
determine the selectivity function. This means that the default selectivity function, knife_edge, will
be used. As mentioned in Section 8.3, this function also needs another argument, knife_edge_size.
This is not present in the data.frame and so it will be set to the default value of w_mat. Also, there
is no catchability column so a default value for catchability of 1 will be used for all gears and
species.

This species parameter data.frame is the minimum we need to create a MizerParams object as it
contains only essential columns. To create the MizerParams object we pass the data.frame into the
MizerParams() constructor method:

> params <- MizerParams(params_data)

We have just created a MizerParams object:

> class(params)

[1] "MizerParams"

attr(,"package")

[1] "mizer"

As has been mentioned in Sections 5 and 6, a MizerParams object is made up of“slots”that store a wide
range of model parameters. Each of these slots contains information on the parameters in the model. A
description of these slots can be found by calling help() on the class: help("MizerParams-class").
The different slots can be accessed using the @ operator.

The slot species_params contains the species parameters data.frame that was passed in to the con-
structor. We can inspect this slot with:

> params@species_params

38

species w_inf w_mat beta sigma r_max k_vb gear k alpha erepro

1 Sprat 33 13 51076 0.8 7.38e+11 0.681 Sprat 0 0.6 1

2 Sandeel 36 4 398849 1.9 4.10e+11 1.000 Sandeel 0 0.6 1

3 N.pout 100 23 22 1.5 1.05e+13 0.849 N.pout 0 0.6 1

4 Herring 334 99 280540 3.2 1.11e+12 0.606 Herring 0 0.6 1

5 Dab 324 21 191 1.9 1.12e+10 0.536 Dab 0 0.6 1

6 Whiting 1192 75 22 1.5 5.48e+11 0.323 Whiting 0 0.6 1

7 Sole 866 78 381 1.9 3.87e+10 0.284 Sole 0 0.6 1

8 Gurnard 668 39 283 1.8 1.65e+12 0.266 Gurnard 0 0.6 1

9 Plaice 2976 105 113 1.6 4.08e+14 0.122 Plaice 0 0.6 1

10 Haddock 3485 165 558 2.1 1.84e+12 0.271 Haddock 0 0.6 1

11 Cod 40044 1606 66 1.3 8.26e+09 0.216 Cod 0 0.6 1

12 Saithe 16856 1076 40 1.1 1.12e+11 0.175 Saithe 0 0.6 1

sel_func knife_edge_size h gamma z0 ks w_min

1 knife_edge 13 18.20276 3.190183e-11 0.18705957 3.640551 0.001

2 knife_edge 4 27.51606 1.503569e-11 0.18171206 5.503212 0.001

3 knife_edge 23 32.83924 8.504085e-11 0.12926608 6.567848 0.001

4 knife_edge 99 35.03807 1.123212e-11 0.08647736 7.007614 0.001

5 knife_edge 21 30.67834 4.645215e-11 0.08735805 6.135668 0.001

6 knife_edge 75 28.53952 7.390625e-11 0.05658819 5.707904 0.001

7 knife_edge 78 22.55847 3.115287e-11 0.06294752 4.511695 0.001

8 knife_edge 39 19.37727 2.948552e-11 0.06863713 3.875454 0.001

9 knife_edge 105 14.62366 2.846500e-11 0.04171321 2.924733 0.001

10 knife_edge 165 34.23910 4.037031e-11 0.03957464 6.847819 0.001

11 knife_edge 1606 61.58170 1.597275e-10 0.01753768 12.316339 0.001

12 knife_edge 1076 37.39168 1.230565e-10 0.02340093 7.478336 0.001

w_min_idx

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

We can see that this contains the original species data.frame (with w_inf and so on), plus any default
values that may not have been included in the original data.frame. For example, we can see that there
are no columns for alpha and h and gamma etc.

Also note how the default fishing gears have been set up. Because we did not specify gear names
in the original species parameter data.frame, each species is fished by a unique gear named after the
species. This can be seen in the new gear column which holds the names of the fishing gears. Also, the
selectivity function for each fishing gear has been set in the sel_func column to the default function,
knife_edge(). A catchability column has been added with a default value of 1 for each of the species
that the gear catches. An example of setting the catchability by hand can be seen in Section 11.

39

As has been shown in Sections 5 and 6, there is a summary() method for MizerParams objects which
prints a useful summary of the model parameters:

> summary(params)

As well as giving a summary of the species in the model and what gear is fishing what species, it
gives a summary of the size structure of the community. For example there are 100 size classes in the
community, ranging from 0.001 to 44000. These values are controlled by the arguments no_w, min_w
and max_w respectively. For example, if we wanted 200 size classes in the model we would use:

> params200 <- MizerParams(params_data, no_w=200)

> summary(params200)

So far we have created a MizerParams object by passing in only the species parameter data.frame
argument. This means the interaction matrix will be set to the default value (see Section 8.5). This
is a matrix of 1s, implying that all species fully interact with each other, i.e. the species are spread
homogeneously across the model area. For the North Sea this is not the case and so the model would be
improved by also including an interaction matrix which describes the spatial overlap between species
(see Section 8.5).

An example interaction matrix for the North Sea has been included in mizer as a .csv file. The location
of the file can be found by running:

> system.file("doc/inter.csv",package="mizer")

Take a look at it in a spreadsheet if you want. As mentioned above, to read this file into R we can
make use of the read.csv() function. However, this time we want the first column of the .csv file to
be the row names. We therefore use an additional argument to the read.csv() function: row.names.

> inter <- read.csv("inter.csv", row.names=1)

The read.csv() function reads the data into a data.frame. We want the interaction matrix to be of
class matrix so we need to make use of the as() function.

> inter <- as(inter, "matrix")

We now have an interaction matrix that can be passed to the MizerParams constructor along with the
species parameter data.frame. To make the MizerClass object you just call the constructor method
and pass in the arguments. We will use default values for the remainder of the arguments to the
MizerParams() method (see Section 8.6 and Table 3). This means that we only need to pass in two
arguments to the constructor:

> params <- MizerParams(params_data, interaction = inter)

Note that the first argument must be the species parameters data.frame. The remaining arguments can
be in any order but should be named. If we didn’t want to use default values for the other arguments
we would pass them in to the constructor by name.

We now have all we need to start running projections. Before we get to that though, we’ll take a quick
look at how different fishing gears can be set up.

40

8.8 Setting different gears

In the above example, each species is caught by a different gear (named after the species it catches).
This is the default when there is no gear column in the species parameter data.frame.

Here, we look at an example where we do specify the fishing gears. We take the original params_data
species parameter data.frame that was read in above and bind an additional column, gear, to it. This
gear column contains the name of the gear that catches the species in that row. Here we set up four
different gears: Industrial, Pelagic, Beam and Otter trawl, that catch different combinations of species.

> params_data_gears <- params_data

> params_data_gears$gear <- c("Industrial","Industrial","Industrial",

+ "Pelagic","Beam","Otter",

+ "Beam","Otter","Beam",

+ "Otter","Otter","Otter")

If you inspect the params_data object you will see a new column, gear, has been added to it. We
then make a new MizerParams object as before:

> params_gears <- MizerParams(params_data_gears, interaction = inter)

You can see the result by calling summary() on the params_gears object.

In this example the same gear now catches multiple stocks. For example, the “Industrial” gear catches
Sprat, Sandeel and Norway Pout. Why would we want to set up the gears like this? In the next
section we will see that to project the model through time you can specify the fishing effort for each
gear through time. By setting the gears up in this way you can run different management scenarios of
changing the efforts of the fishing gears rather than on individual species. It also means that after a
simulation has been run you can examine the catches by gear.

9 Running a simulation

In the preceding section and in the sections on the community and trait-based models above, we
used the project() method to perform simple simulations where the fishing effort was held constant
through the duration of the simulation. In the trait-based model example, we also looked at how
the effort for different gears could be specified. In this section we take a detailed look at how the
project() method works and the different ways in which effort and time can be set up.

In mizer simulations are performed using the project() method. This method takes a MizerParams
object and projects it forward through time, starting from an initial population abundance and with
a pre-determined fishing effort pattern.

Running a projection with project() requires various arguments:

A MizerParams object The model parameters (see previous section);

Fishing effort The fishing effort of each gear through time;

Initial population The initial abundances of the stocks and the background spectrum;

Time arguments Arguments to control the time of the simulation, including the simulation time
step, the length of the simulation and how frequently the output is stored.

41

The help page for project() describes the arguments in more detail.

The MizerParams class was explored in the previous section. In this section we will look at the other
arguments and use examples to perform some simple projections.

The object returned from calling project() is of class MizerSim. This contains the abundances of
the species in the model by time and size. It is described fully in Section 9.4.

9.1 The time arguments

There are three arguments that control time in the project() method: dt, t_max and t_save. All of
them have default values.

t_max determines the maximum time of the simulation, i.e. how long the projection is run for. The
default value for t_max is 100 respectively.

dt is the time step used by the numerical solver in project(). This is the time step on which the
model operates. The smaller the value, the longer the model will take to run. However, sometimes it
is necessary to use a small value to avoid numerical instabilities. The default value is 0.1.

The final argument is t_save. This sets how frequently project() stores the state of the model in
the resulting MizerSim object. For example, if t_save = 2, the state of the model is stored at t = 0,
2, 4... etc. t_save must be a multiple of dt. The default value of t_save is 1.

9.2 Setting the fishing effort

The fishing effort argument describes the effort of the fishing gears in the model through time. We have
already seen that information on the fishing gears and their selectivities and catchabilities is stored in
the MizerParams argument.

There are three ways of setting the fishing effort. Examples of all three can be seen in Section 9.5.

The simplest way is by passing the effort argument as a single number. This value is then used
as the fishing effort by all of the gears at each time step of the projection, i.e. fishing effort is
constant throughout the simulation and is the same for all gears. We have seen this method in the
community and trait-based model sections above. The length of the simulation is determined by the
t_max argument (see Section 9.1).

The second method for setting the fishing effort is to use a numeric vector that has the same length
as the number of gears. The values in the vector are used as the fishing effort of each gear at each
time step, i.e. again, the fishing effort is constant through time but now each gear can have a different
constant effort. The effort vector must be named and the names must be the same as the gears in the
MizerParams object. Again, the length of the simulation is determined by the t_max argument.

Finally, the most sophisticated way of setting the fishing effort is to use a two-dimensional array or
matrix of values, set up as time step by gear. Each row of the array has the effort values of each
fishing gear by time. The array must have dimension names. The names of the first dimension (the
row names) are the times. The steps between the times can be greater than the dt argument but must
be contiguous. The names of the second dimension (the column names) must match the names of the
gears in the MizerParams object used in the projection.

It is not necessary to supply a t_max argument when the effort is specified as an array because the
maximum time of the simulation is taken from the dimension names. If a value for t_max is also
supplied it is ignored.

42

9.3 Setting the initial population abundance

When running a simulation with the project() method, the initial populations of the species and
the background spectrum need to be specified. These are passed to project() as the arguments
initial_n and initial_n_pp respectively. initial_n is a matrix (with dimensions species x size)
that contains the initial abundances of each species at size (the sizes must match those in the species
size spectrum). initial_n_pp is a vector of the same length as the the length of the full spectrum
(which can be seen as slot w_full in the MizerParams object).

By default, the initial_n argument has values automatically calculated by the function get_initial_n().
The default value for initial_n_pp is the carrying capacity of the background spectrum, stored in
the cc_pp slot of the MizerParams parameters object.

9.4 What do you get from running project()?

Running project() returns an object of type MizerSim that stores the results of the projection.
Like the MizerParams class this is also made up of various “slots”, which can be accessed using the
@ operator. An object of MizerSim has four slots, details of which can be seen in the help page
(help("MizerSim-class"). The params slot holds the MizerParams object that was passed in to
project(). The effort slot holds the fishing effort of each gear through time. Note that the effort

slot may not be exactly the same as the effort argument that was passed in to project(). This is
because only the saved effort is stored (the frequency of saving is determined by the argument t_save).
The n and n_pp slots hold the saved abundances of the species and the background population at size
respectively. Note that The n and n_pp slots have one more row than the effort slot. This is to the
store the initial populations.

9.5 Projection examples

In this section we’ll look at how to run simulations with the project() method. The examples will
focus on fishing effort can be specified in different ways. The results of the simulations will not be
explored in detail. We will leave that for Section 10.2.

Remember that the fishing mortality by size on a species is the product of the selectivity, the catchabil-
ity and the effort of the gear that caught it (see Equation 8.2). We have not specified any catchability
values in the species parameter data.frame so the default value of 1 is used. The selectivity ranges
between 0 and 1. This means that in these examples the fishing mortality of a fully selected species is
given by the effort of the gear that catches it.

9.5.1 Projections with single, simple constant effort

When we use a single value for the effort argument, the value is used as a constant effort for all the
gears. This method can be particularly useful for quickly projecting forward without fishing (you just
set the effort argument to 0).

We will use the params object that was created above in the MizerParams example above in which
each species is caught by a separate gear. Here we make the object again:

> params <- MizerParams(params_data, interaction = inter)

As described above, effort is associated with fishing gears. Because we haven’t specified any gears in
the params_data species parameter data.frame, each species is caught by a separate gear, named after
the species.

43

As well as thinking about the effort argument we also need to consider the time parameters. We will
project the populations forward until time equals 10 (t_max = 10), with a time step of 0.1 (dt = 0.1),
saving the output every time step (t_save = 1). We use a constant effort value of 1.0.

> sim <- project(params, effort = 1, t_max = 10, dt = 0.1, t_save = 1)

The resulting sim object is of class MizerSim. At this point we won’t explore how the results can be
investigated in detail. However, we will use the basic summary plot that you have seen before:

> plot(sim)

Without fishing the community settles down to equilibria at about t = 50 (Figure 15). The big
difference between this multispecies model and the trait-based model can be seen in the range of M2
and feeding level values. With the trait-based model all the “species” had the same M2 and feeding
level patterns (see Figure 8). Here the species all have different patterns, driven by their differing life
history characteristics and the heterogeneous interaction matrix.

You can also see in Figure 15 that each species is has different fishing selectivity (see the Total fishing
mortality panel). Remember that the default setting for the fishing gears is a knife-edge gear where
the knife-edge is positioned at the species w_mat parameter.

The effort through time can be inspected by looking at the effort slot (we use the head() function to
just show the first few lines). The effort slot shows the effort by time and gear. You can see here that
each species is caught by a separate gear, and the gear is named after the species. In this example, we
specified the effort argument as a single numeric of value 1. As you can see this results in the same
effort being used for all gears for all time steps:

> head(sim@effort)

gear

time Sprat Sandeel N.pout Herring Dab Whiting Sole Gurnard Plaice Haddock Cod

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1

gear

time Saithe

1 1

2 1

3 1

4 1

5 1

6 1

A summary() method is also available for objects of type MizerSim. This is essentially the same as
the summary for MizerParams objects, but includes information on the simulation time parameters.

> summary(sim)

44

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1e+08

1e+10

1e+12

0.0 2.5 5.0 7.5 10.0
Time

B
io

m
as

s

0

2

4

6

8

1e−01 1e+02 1e+05
Size

M
2

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e+03

1e+08

1e+13

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species
Cod
Dab
Gurnard
Haddock
Herring
N.pout
Plaice
Saithe
Sandeel
Sole
Sprat
Whiting
Background

Figure 15: Plot of the North Sea multispecies model with no default fishing gears and constant effort
of 1.

45

If we decrease t_save but keep t_max the same then we can see that the time dimension of the effort

slot changes accordingly. This will also be true of the n and n_pp slots. Here we reduce t_save to 0.5,
meaning that the effort and abundance information is stored at t = 1.0, 1.5, 2.0 etc.

> sim <- project(params_gears, effort = 1, t_max = 10, dt = 0.1, t_save = 0.5)

> head(sim@effort)

gear

time Industrial Pelagic Beam Otter

1 1 1 1 1

1.5 1 1 1 1

2 1 1 1 1

2.5 1 1 1 1

3 1 1 1 1

3.5 1 1 1 1

9.5.2 Setting constant effort for different gears

As mentioned above, we can also set the effort values for each gear separately using a vector of effort
values. This still keeps the efforts constant through time but it means that each gear can have a
different constant effort.

Here we will use the MizerParams object with four gears, params_gears, that we created in Section 8.8.
The names of the gears are Industrial, Pelagic, Beam, Otter. We need to create a named vector of
effort, where the names match the gears. For example, here we want to switch off the industrial gear
(i.e. effort = 0), keep the pelagic gear effort at 1, set the effort of the beam trawl gears to 0.3 and the
effort of the otter trawl gear to 0.7. We set the effort like this:

> effort <- c(Industrial = 0, Pelagic = 1, Beam = 0.3, Otter = 0.7)

We then call project() with this effort and inspect the resulting effort slot (again we use the head()
function to just show the first few lines):

> sim <- project(params_gears, effort = effort, t_max = 10, dt = 1, t_save = 1)

> head(sim@effort)

gear

time Industrial Pelagic Beam Otter

1 0 1 0.3 0.7

2 0 1 0.3 0.7

3 0 1 0.3 0.7

4 0 1 0.3 0.7

5 0 1 0.3 0.7

6 0 1 0.3 0.7

You can see that the effort for each gear is constant but each gear has the effort that was specified in
the effort argument.

This impact of this can be seen plotting the fishing mortality. There is a dedicated plot, plotFMort(),
that shows the fishing mortality at size for each species at a particular time step (the default is the
final time step). The fishing mortality on each of the species is determined by the effort of the gear
that caught it (Figure 16).

46

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y
Species

Cod

Dab

Gurnard

Haddock

Herring

N.pout

Plaice

Saithe

Sandeel

Sole

Sprat

Whiting

Figure 16: An example of using the plotFMort() method to show how different efforts for different
gears can be specified.

> plotFMort(sim)

9.5.3 An example of changing effort through time

In this example we set up a more complicated fishing effort structure that allows the fishing effort
of each gear to change through time. As mentioned above, to do this effort must be supplied as a
two dimensional array or matrix. The first dimension is time and the second dimension is gear. The
dimensions must be named. The gear names must match the gears in the MizerParams object. Also,
as mentioned above, if effort is passed in as an array then the length of the simulation is determined
by the time dimension names and the argument t_max is not used.

Here, we will use the params_gears object we created earlier which has four gears. The names of the
gears are Industrial, Pelagic, Beam, Otter.

In this example, we will project forward for 10 time steps. The effort of the industrial gear is held
constant at 0.5, the effort of the pelagic gear is increased linearly from 1 to 2, the effort of the beam
trawl decreases linearly from 1 to 0, whilst the effort of the otter trawl decreases linearly from 1 to 0.5.

First we create the empty effort array:

> gear_names <- c("Industrial","Pelagic","Beam","Otter")

> times <- seq(from = 1, to = 10, by = 1)

> effort_array <- array(NA, dim = c(length(times), length(gear_names)),

+ dimnames = list(time = times, gear = gear_names))

Then we fill it up, one gear at a time, making heavy use of the seq() function to create a sequence:

47

> effort_array[,"Industrial"] <- 0.5

> effort_array[,"Pelagic"] <- seq(from = 1, to = 2, length = length(times))

> effort_array[,"Beam"] <- seq(from = 1, to = 0, length = length(times))

> effort_array[,"Otter"] <- seq(from = 1, to = 0.5, length = length(times))

The first few rows of the effort array are shown as an illustration:

> head(effort_array)

gear

time Industrial Pelagic Beam Otter

1 0.5 1.000000 1.0000000 1.0000000

2 0.5 1.111111 0.8888889 0.9444444

3 0.5 1.222222 0.7777778 0.8888889

4 0.5 1.333333 0.6666667 0.8333333

5 0.5 1.444444 0.5555556 0.7777778

6 0.5 1.555556 0.4444444 0.7222222

Now we can use this effort array in the projection:

> sim <- project(params_gears,effort=effort_array, dt=0.1, t_save = 1)

> head(sim@effort)

gear

time Industrial Pelagic Beam Otter

1 0.5 1.000000 1.0000000 1.0000000

2 0.5 1.111111 0.8888889 0.9444444

3 0.5 1.222222 0.7777778 0.8888889

4 0.5 1.333333 0.6666667 0.8333333

5 0.5 1.444444 0.5555556 0.7777778

6 0.5 1.555556 0.4444444 0.7222222

As you can see, it can be quite fiddly to set up a complicated effort array so it may be easier to prepare
it in advance as a .csv file and read it in, similar to how we read in the interaction matrix in Section 8.7.
We give an example of this in Section 11.

Note that in this example we set up the effort array so that the effort was set every whole time step
(e.g. time = 1, 2, etc). This does not have to be the case and it is possible to set the effort more
frequently than that, e.g. at time = 1.0, 1.5, 2.0, 2.5 etc. The only restriction is that the difference
between time dimension names must be at least as big as the dt argument.

10 Exploring the simulation results

In the previous sections we saw how to set up a model and project it forward through time under our
desired fishing scenario. The result of running a projection is an object of class MizerSim. What do
we then do? How can we explore the results of the simulation? In this section we introduce a range of
summaries, plots and indicators that can be easily produced using methods included in mizer.

We will use the same MizerSim object for these examples:

> sim <- project(params_gears,effort=effort_array, dt=0.1, t_save = 1)

48

10.1 Directly accessing the slots of MizerSim objects

We have seen in previous sections that a MizerSim object is made up of various “slots” that contain
the original parameters (species_params), the population abundances (n), the abundance of the
background resource spectrum (n_pp) and the fishing effort (effort).

The projected species abundances at size through time can be seen in the n slot. This is a three-
dimensional array (time x species x size). Consequently, this array can get very big so inspecting it
can be difficult. In the example we have just run the time dimension of the n slot has 11 rows (one for
the initial population and then one for each of the saved time steps). There are also 12 species each
with 100 sizes. We can check this by running the dim() function and looking at the dimensions of the
n array:

> dim(sim@n)

[1] 11 12 100

To pull out the abundances of a particular species through time at size you can subset the array. For
example to look at Cod through time you can use:

> sim@n[,"Cod",]

This returns a two-dimensional array: time x size, containing the cod abundances. The time dimension
depends on the value of the argument t_save when project() was run. You can see that even though
we specified dt to be 0.1 when we called project(), the t_save argument had means that the output
is only saved every time step.

The n_pp slot can be accessed in the same way.

10.2 Summary methods for MizerSim objects

As well as the summary() methods that are available for both MizerParams and MizerSim objects,
there are some useful summary methods to pull information out of a MizerSim object (see Table 4). All
of these methods have help files to explain how they are used. (It is also possible to use most of these
methods with a MizerParams object if you also supply the population abundance as an argument.
This can be useful for exploring how changes in parameter value or abundance can affect summary
statistics and indicators. We won’t explore this here but you can see their help files for more details.)

The methods getBiomass() and getN() have additional arguments that allow the user to set the size
range over which to calculate the summary statistic. This is done by passing in a combination of the
arguments min_l, min_w, max_l and max_w for the minimum and maximum length or weight.

If min_l is specified there is no need to specify min_w and so on. However, if a length is specified
(minimum or maximum) then it is necessary for the species parameter data.frame (see Section 8.2) to
include the parameters a and b for length-weight conversion. It is possible to mix length and weight
constraints, e.g. by supplying a minimum weight and a maximum length. The default values are the
minimum and maximum weights of the spectrum, i.e. the full range of the size spectrum is used.

10.2.1 Examples of using the summary methods

Here we show a simple demonstration of using a summary method using the sim object we created
earlier. Here, we use getSSB() to calculate the SSB of each species through time (note the use of the
head() function to only display the first few rows).

49

> ssb <- getSSB(sim)

> dim(ssb)

[1] 11 12

> head(ssb)

sp

time Sprat Sandeel N.pout Herring Dab

0 36029938 5.472992e+07 35571252 2.990330e+07 38479325

1 36933403 6.001398e+07 35842276 2.854796e+07 35678695

2 944534634 9.499346e+10 8540462706 1.489306e+09 1264052662

3 41467000581 8.648454e+11 325972681695 1.138711e+11 17518648469

4 320318461309 1.569140e+12 412593674796 9.341778e+11 44680376356

5 769527943701 1.916931e+12 360962914409 2.066679e+12 56926861429

sp

time Whiting Sole Gurnard Plaice Haddock Cod

0 29928416 29191048 34484711 25984507 25961161 20055185

1 27243935 26808182 31559755 23615150 23778723 18205328

2 16138192 14354016 18400077 9306041 23966122 6968074

3 1145786673 285072935 433822490 4407878 2239458980 4282951

4 8527662933 5132891555 2333292468 7259033 22492951659 260197103

5 54516546920 22826591901 3304850490 72834627 53872489524 14349285855

sp

time Saithe

0 21521377

1 19530302

2 7454960

3 3541163

4 3503658

5 7996987

As mentioned above, we can specify the size range for the getBiomass() and getN() methods. For
example, here we calculate the total biomass of each species but only include individuals that are larger
than 10 g and smaller than 1000 g.

> biomass <- getBiomass(sim, min_w = 10, max_w = 1000)

> head(biomass)

sp

time Sprat Sandeel N.pout Herring Dab

0 4.904176e+07 5.654440e+07 51582276 4.931529e+07 51017971

1 5.130306e+07 5.619928e+07 54192501 5.313853e+07 48052568

2 2.603109e+09 2.403977e+10 46336656239 6.105635e+10 8994056273

3 9.085248e+10 6.222764e+11 633747702138 1.244787e+12 66293152278

4 6.253449e+11 1.507603e+12 578201564609 4.269862e+12 108283252270

5 1.267351e+12 1.955612e+12 485673922254 6.357103e+12 110641764549

sp

time Whiting Sole Gurnard Plaice Haddock Cod

0 34694997 41533451 46484086 12489697 10470857 6.853965e+05

50

1 32135090 38677751 42892962 11580110 10420844 7.402045e+05

2 814092252 1570111805 666936164 12216449 9050912937 1.985139e+06

3 8849651449 26266538064 9139964716 273619463 59146347817 1.881595e+08

4 48014424203 91818766848 13079738426 1256080943 153460360310 9.281371e+09

5 203324660607 213032563258 15355466711 2417114282 340677968901 7.023761e+10

sp

time Saithe

0 1801217

1 1865726

2 3040548

3 6418928

4 152063273

5 1218302410

10.3 Methods for calculating indicators

Methods are available to calculate a range of indicators from a MizerSim object after a projection.
These can be seen in Table 5. You can read the help pages for each of the methods for full instructions
on how to use them, along with examples.

With all of the methods in the table it is possible to specify the size range of the community to be
used in the calculation (e.g. to exclude very small or very large individuals) so that the calculated
metrics can be compared to empirical data. This is used in the same way that we saw with the method
getBiomass() in Section 10.2. It is also possible to specify which species to include in the calculation.
See the help files for more details.

10.3.1 Examples of calculating indicators

For these examples we use the sim object we created earlier.

The slope of the community can be calculated using the getCommunitySlope() method. Initially we
include all species and all sizes in the calculation (only the first five rows are shown):

> slope <- getCommunitySlope(sim)

> head(slope)

slope intercept r2

0 -0.4970061 14.32058 0.7198141

1 -0.9768806 17.57492 0.9519498

2 -1.3303121 21.61749 0.8063288

3 -1.4267555 22.96277 0.7518787

4 -1.2669570 23.66731 0.7049268

5 -1.0713825 24.11592 0.6596924

This gives the slope, intercept and R2 value through time (see the help file for getCommunitySlope

for more details).

We can include only the species we want with the species argument. Here we only include demersal
species. We also restrict the size range of the community that is used in the calculation to between 10
g and 5 kg. The species is a character vector of the names of the species that we want to include in
the calculation.

51

> dem_species <- c("Dab","Whiting","Sole","Gurnard","Plaice","Haddock",

+ "Cod","Saithe")

> slope <- getCommunitySlope(sim, min_w = 10, max_w = 5000,

+ species = dem_species)

> head(slope)

slope intercept r2

0 -0.6612095 15.26977 0.6978218

1 -0.7103392 15.51023 0.7507239

2 -2.4881252 27.18226 0.9781429

3 -3.0017634 31.81385 0.9544509

4 -2.1625151 29.79880 0.9393882

5 -1.4334419 27.71582 0.9608594

10.4 Plotting the results

R is very powerful when it comes to exploring data through plots. A useful package for plotting is
ggplot2. ggplot2 uses data.frames for input data. Many of the summary methods and slots of the
mizer classes are arrays or matrices. Fortunately it is straightforward to turn arrays and matrices into
data.frames using the command melt which is in the reshape2 package. Although mizer does include
some dedicated plots, it is definitely worth your time getting to grips with these ggplot2 and other
plotting packages. This will make it possible for you to make your own plots.

Included in mizer are several dedicated plots that use MizerSim objects as inputs (see Table 6). As
well as displaying the plots, these methods all return objects of type ggplot from the ggplot2 package
meaning that they can be further modified by the user (e.g. by changing the plotting theme). See
the help page of the individual plot methods for more details. The generic plot() method has also
been overloaded for MizerSim objects. This produces several plots in the same window to provide a
snapshot of the results of the simulation.

Some of the plots plot values by size (for example plotFeedingLevel() and plotSpectra()). For
these plots, the default is to use the data at the final time step of the projection. With these plotting
methods, it is also possible to specify a different time step or a time range to average the values over
before plotting.

10.4.1 Plotting examples

Using the plotting methods is straightforward. For example, to plot the total biomass of each species
against time you use the plotBiomass() method:

> plotBiomass(sim)

As mentioned above, some of the plot methods plot values against size at a point in time (or averaged
over a time period). For these plots it is possible to specify the time step to plot, or the time period to
average the values over. The default is to use the final time step. Here we plot the abundance spectra
(biomass), averaged over time = 5 to 10 (see Figure 18):

> plotSpectra(sim, time_range = 5:10, biomass=TRUE)

As mentioned above, and as we have seen several times in this vignette, the generic plot() method
has also been overloaded. This produces 5 plots in the same window (plotFeedingLevel(), plot-
Biomass(), plotM2(), plotFMort() and plotSpectra(), see Figure 19). It is possible to pass in the

52

1e+08

1e+10

1e+12

0.0 2.5 5.0 7.5 10.0
Time

B
io

m
as

s

Species

Cod

Dab

Gurnard

Haddock

Herring

N.pout

Plaice

Saithe

Sandeel

Sole

Sprat

Whiting

Figure 17: An example of using the plotBiomass() method.

1e+03

1e+07

1e+11

1e+15

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species

Cod

Dab

Gurnard

Haddock

Herring

N.pout

Plaice

Saithe

Sandeel

Sole

Sprat

Whiting

Background

Figure 18: An example of using the plotSpectra() method, plotting values averaged over the period
t = 5 to 10.

53

same arguments that these individual plots use, e.g. arguments to change the time period over which
the data is averaged.

> plot(sim)

11 A multispecies model of the North Sea

In this section we try to pull everything together with an extended example of a multispecies model
for the North Sea. First we will set up the model, project it through time using historical levels of
fishing effort, and then examine the results. We then run two different future projection scenarios.
This example is based on the multispecies model in Blanchard et al. (2013).

11.1 Setting up the North Sea model

The first job is to set up the MizerParams object for the North Sea model. In the previous multispecies
examples we have already been using the life-history parameters and the interaction matrix for the
North Sea model used in Blanchard et al. (2013). We will use them again here but will make some
changes. In particular we set up the fishing gears differently.

The parameters and the interaction matrix are stored as *.csv files that need to be read in. We can
use the system.file() function to tell us the location of the files. Remember that we need to convert
the interaction file into a matrix, hence the use of the as() function.

> params_location <- system.file("doc/NS_species_params.csv",package="mizer")

> params_data <- read.csv(params_location)

> inter_location <- system.file("doc/inter.csv",package="mizer")

> inter <- as(read.csv(inter_location, row.names=1),"matrix")

The species in the model are Sprat, Sandeel, N.pout, Herring, Dab, Whiting, Sole, Gurnard, Plaice,
Haddock, Cod, Saithe which account for about 90% of the total biomass of all species sampled by
research trawl surveys in the North Sea. The params_data object is a data.frame with columns for
species, w_inf, w_mat, beta, sigma, r_max and k_vb. We have seen before that only having these
columns in the species data.frame is sufficient to make a MizerParams object. Any missing columns
will be added by the default values and relationships in the MizerParams constructor. For example,
the data.frame does not include columns for h or gamma. This means that they will be estimated using
the k_vb column (see Section 8.2).

We will use the default stock-recruitment relationship, which is the Beverton-Holt shape. As we saw
in Section 8.4, this requires a column r_max in the species data.frame which contains the maximum
recruitment flux for each species. This column is already in the params_data data.frame. The values
for r_max are taken from Blanchard et al. (2013). The values were found through a calibration process
which is not covered here but will be added to a later version of this manual.

At the moment, the species data.frame does not contain any information on the selectivity of the
species. By default, the selectivity function is a knife-edge which only takes a single argument,
knife_edge_size. In this model we want the selectivity pattern to be a sigmoid shape which more
accurately reflects the selectivity pattern of trawlers in the North Sea. The sigmoid selectivity function
is expressed in terms of length rather than weight and uses the parameters l25 and l50, which are the

54

0.00

0.25

0.50

0.75

1.00

1e−01 1e+02 1e+05
Size

F
ee

di
ng

 L
ev

el

1e+08

1e+10

1e+12

0.0 2.5 5.0 7.5 10.0
Time

B
io

m
as

s

0

2

4

6

8

1e−01 1e+02 1e+05
Size

M
2

0.0

0.5

1.0

1.5

2.0

1e−01 1e+02 1e+05
Size

To
ta

l f
is

hi
ng

 m
or

ta
lit

y

1e+03

1e+07

1e+11

1e+15

1e−03 1e+00 1e+03
Size

B
io

m
as

s

Species
Cod
Dab
Gurnard
Haddock
Herring
N.pout
Plaice
Saithe
Sandeel
Sole
Sprat
Whiting
Background

Figure 19: Example output from using the summary plot() method.

55

lengths at which 25% and 50% of the stock is selected. The length based sigmoid selectivity looks like:

Sl =
1

1 + exp(S1− S2l)
(11.1)

where l is the length of an individual, Sl is the selectivity at length, S2 = log(3)/(l50− l25) and S1 =
l50 ∗ S2.

This selectivity function is included in mizer as sigmoid_length(). You can see the help page for
more details. As well as the arguments l25 and l50, this function has the arguments a and b to
convert between length and weight: w = alb. This is because the sigmoid selectivity function is defined
in terms of length, and the size spectrum model works in terms of weight. As explained in Section 8.3,
all arguments of the selectivity function need to be in the species parameter data.frame. Therefore,
columns for l25, l50, a and b need to be added to params_data. We also add a column specifying the
name of the selectivity function we wish to use. The data is taken from Blanchard et al. (2013). Note
it would probably easier to add this data directly to the *.csv file and then read it in rather than type
it in by hand like we do here:

> params_data$sel_func <- "sigmoid_length"

> params_data$l25 <- c(7.6, 9.8, 8.7, 10.1, 11.5, 19.8, 16.4, 19.8, 11.5,

+ 19.1, 13.2, 35.3)

> params_data$l50 <- c(8.1, 11.8, 12.2, 20.8, 17.0, 29.0, 25.8, 29.0, 17.0,

+ 24.3, 22.9, 43.6)

> params_data$a <- c(0.007, 0.001, 0.009, 0.002, 0.010, 0.006, 0.008, 0.004,

+ 0.007, 0.005, 0.005, 0.007)

> params_data$b <- c(3.014, 3.320, 2.941, 3.429, 2.986, 3.080, 3.019, 3.198,

+ 3.101, 3.160, 3.173, 3.075)

Note that we don’t set up a gear column to give specific gear names. This means that each species
will be caught by a separate gear named after the species.

In this model we are interested in projecting forward using historical fishing mortalities. The historical
fishing mortality from 1967 to 2010 for each species is stored in the csv file NS_f_history.csv included
in the package. As before, we can use read.csv() to read in the data. This reads the data in as a
data.frame. We want this to be a matrix so we use the as() function:

> f_location <- system.file("doc/NS_f_history.csv",package="mizer")

> f_history <- as(read.csv(f_location, row.names=1), "matrix")

We can take a look at the first years of the data:

> head(f_history)

Sprat Sandeel N.pout Herring Dab Whiting Sole Gurnard

1967 0 0 0 1.0360279 0.09417655 0.8294528 0.6502019 0

1968 0 0 0 1.7344576 0.07376065 0.8008995 0.7831250 0

1969 0 0 0 1.4345001 0.07573638 1.3168280 0.8744095 0

1970 0 0 0 1.4342405 0.10537236 1.3473505 0.6389915 0

1971 0 0 0 1.8234973 0.08385884 0.9741884 0.8167561 0

1972 0 0 0 0.9033768 0.09044461 1.3148588 0.7382834 0

Plaice Haddock Cod Saithe

1967 0.4708827 0.7428694 0.6677456 0.4725102

56

1968 0.3688033 0.7084553 0.6994389 0.4270201

1969 0.3786819 1.3302821 0.6917888 0.3844648

1970 0.5268618 1.3670695 0.7070891 0.5987086

1971 0.4192942 0.9173131 0.7737543 0.4827822

1972 0.4522231 1.3279087 0.8393267 0.5796321

As mentioned in Section 8.3, fishing mortality is calculated as the product of selectivity, catchability
and fishing effort (see Equation 8.2). The values in f_history are absolute levels of fishing mortality.
We have seen that the fishing mortality in the mizer simulations is driven by the fishing effort argument
passed to the project() function. Therefore if we want to project forward with historical fishing levels,
we need to provide project() with effort values that will result in these historical fishing mortality
levels.

One of the model parameters that we have not really considered so far is catchability. Catchability
is a scalar parameter used to modify the fishing mortality at size given the selectivity at size and effort
of the fishing gear. By default catchability has a value of 1, meaning that an effort of 1 results in a
fishing mortality of 1 for a fully selected species. When considering the historical fishing mortality,
one option is therefore to leave catchability at 1 for each species and then use the f_history matrix
as the fishing effort. However, an alternative method is to use the effort relative to a chosen reference
year. This can make the effort levels used in the model more meaningful. Here we use the year 1990
as the reference year. If we set the catchability of each species to be the same as the fishing mortality
in 1990 then an effort of 1 in 1990 will result in the fishing mortality being what it was in 1990. The
effort in the other years will be relative to the effort 1990.

The catchability can be set by including a catchability column in the species parameters data.frame.
Doing this overwrites the default values when the MizerParams constructor is called.

> params_data$catchability <- as.numeric(f_history["1990",])

Considering the other model parameters, we will use default values for all of the other parameters apart
from kappa, the carrying capacity of the resource spectrum (see Section 3.9). This was estimated along
with the values r_max as part of the calibration process described in Blanchard et al. (2013).

We now have all the information we need to create the MizerParams object using the species parameters
data.frame.

> params <- MizerParams(params_data, inter, kappa = 9.27e10)

11.2 Setting up and running the simulation

As we set our catchability to be the level of fishing mortality in 1990, before we can run the projection
we need to rescale the effort matrix to get a matrix of efforts relative to 1990. To do this we want to
rescale the f_history object to 1990 so that the relative fishing effort in 1990 = 1. This is done using
R function sweep(). We then check a few rows of the effort matrix to check this has happened:

> relative_effort <- sweep(f_history,2,f_history["1990",],"/")

> relative_effort[as.character(1988:1992),]

Sprat Sandeel N.pout Herring Dab Whiting Sole

1988 0.8953804 1.2633229 0.8953804 1.214900 1.176678 0.9972560 1.2786517

1989 1.1046196 1.2931034 1.1046196 1.232790 1.074205 0.8797926 0.9910112

1990 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000

57

1991 1.1902174 0.8814002 1.1902174 1.108016 1.143110 0.8096927 1.0044944

1992 1.2500000 0.8500522 1.2500000 1.316576 1.113074 0.7718676 0.9505618

Gurnard Plaice Haddock Cod Saithe

1988 0.0000000 1.176678 0.9946140 1.045964 1.0330579

1989 0.0000000 1.074205 0.8545781 1.060538 1.1223140

1990 1.0000000 1.000000 1.0000000 1.000000 1.0000000

1991 0.8096927 1.143110 0.7971275 1.001121 0.9619835

1992 0.7718676 1.113074 0.8797127 0.970852 1.0528926

We could just project forward with these relative efforts. However, the population dynamics in the
early years will be strongly determined by the initial population abundances (known as the transient
behaviour - essentially the initial behaviour before the long term dynamics are reached). As this is
ecology, we don’t know what the initial abundance are. One way around is this to project forward
at a constant fishing mortality equal to the mortality in the first historical year until equilibrium is
reached. We then can carry on projecting forward using the remaining years of effort. This approach
reduces the impact of transient dynamics.

Here we make an initial effort matrix of 100 years at the first effort level. We need to include dimension
names for the time dimension. We then stick it on top of the original matrix of historical relative effort
using rbind().

> initial_effort <- matrix(relative_effort[1,],byrow=TRUE, nrow=100,

+ ncol=ncol(relative_effort), dimnames = list(1867:1966))

> relative_effort <- rbind(initial_effort,relative_effort)

We now have our parameter object and out matrix of efforts relative to 1990. This includes an initial
100 years of constant relative effort at the 1957 level, followed by the relative effort from 1957 to 2010.
We use this effort matrix as the effort argument to the project() method. We use dt = 0.5 (the
simulation will run faster than with the default value of 0.1, but tests show that the results are still
stable) and save the results every year.

> sim <- project(params, effort=relative_effort, dt = 0.5, t_save = 1)

Plotting the results, we can see how the biomasses of the stocks change over time (Figure 20). You
can see the 100 year period of transients with constant fishing fishing mortality before the historical
relative mortality is used from 1967.

> plotBiomass(sim)

To explore the state of the community it is useful to calculate indicators of the unexploited community.
Therefore we also project forward for 100 years with 0 fishing effort.

> sim0 <- project(params, effort=0, dt = 0.5, t_save = 1, t_max = 100)

11.3 Exploring the model outputs

Here we look at some of the way the results of the simulation can be explored. We calculate the
community indicators “mean maximum weight“, “mean individual weight“, “community slope“ and the
”large fish indicator” (LFI) over the simulation period, and compare them to the unexploited values.

58

1e+09

1e+11

1e+13

1900 1950 2000
Time

B
io

m
as

s
Species

Cod

Dab

Gurnard

Haddock

Herring

N.pout

Plaice

Saithe

Sandeel

Sole

Sprat

Whiting

Figure 20: Simulated biomasses of stocks in the North Sea with 100 years of transients.

We also compare the simulated values of the LFI to a community target based on achieving a high
proportion of the unexploited value of the LFI 0.8LFIF=0 (Rochet et al., 2011).

The indicators are calculated using the methods described in see Table 5 and Section 10.2. Here we
calculate the LFI and the other community indicators for the unexploited community. As in Blanchard
et al. (2013), when calculating these indicators we only include demersal species and individuals in the
size range 10 g to 100 kg, and the LFI is based on species larger than 40 cm. Each of these methods
returns a time series. We are interested only in the equilibrium unexploited values so we just select
the final time step (year = 100).

> demersal_species <- c("Dab","Whiting","Sole","Gurnard","Plaice","Haddock",

+ "Cod","Saithe")

> lfi0 <- getProportionOfLargeFish(sim0, species = demersal_species,

+ min_w = 10, max_w = 100e3, threshold_l = 40)["100"]

> mw0 <- getMeanWeight(sim0, species = demersal_species,

+ min_w = 10,max_w = 100e3)["100"]

> mmw0 <- getMeanMaxWeight(sim0, species = demersal_species,

+ min_w = 10, max_w = 100e3)["100","mmw_biomass"]

> slope0 <- getCommunitySlope(sim0, species = demersal_species,

+ min_w = 10, max_w = 100e3)["100","slope"]

We also calculate the time series of these indicators for the exploited community (we are only interested
in the fishing history years, 1967 to 2010, ignoring the transients):

> years <- 1967:2010

> lfi <- getProportionOfLargeFish(sim, species = demersal_species,

+ min_w = 10, max_w = 100e3, threshold_l = 40)[as.character(years)]

> mw <- getMeanWeight(sim, species = demersal_species,

59

+ min_w = 10, max_w = 100e3)[as.character(years)]

> mmw <- getMeanMaxWeight(sim, species = demersal_species,

+ min_w = 10, max_w = 100e3)[as.character(years),"mmw_biomass"]

> slope <- getCommunitySlope(sim, species = demersal_species,

+ min_w = 10, max_w = 100e3)[as.character(years),"slope"]

We can plot the exploited and unexploited indicators, along LFI reference level. Here we do it using
ggplot2 which uses data.frames We make three data.frames (one for the time series, one for the
unexploited levels and one for the reference level): Each data.frame is a data.frame of each of the
measures, stacked on top of each other.

> library(ggplot2)

> # Simulated data

> community_plot_data <- rbind(

+ data.frame(year = years, measure = "LFI", data = lfi),

+ data.frame(year = years, measure = "Mean Weight", data = mw),

+ data.frame(year = years, measure = "Mean Max Weight", data = mmw),

+ data.frame(year = years, measure = "Slope", data = slope))

> # Unexploited data

> community_unfished_data <- rbind(

+ data.frame(year = years, measure = "LFI", data = lfi0[[1]]),

+ data.frame(year = years, measure = "Mean Weight", data = mw0[[1]]),

+ data.frame(year = years, measure = "Mean Max Weight", data = mmw0[[1]]),

+ data.frame(year = years, measure = "Slope", data = slope0[[1]]))

> # Reference level

> community_reference_level <-

+ data.frame(year=years, measure = "LFI", data = lfi0[[1]] * 0.8)

> # Build up the plot

> p <- ggplot(community_plot_data) + geom_line(aes(x=year, y = data)) +

+ facet_wrap(~measure, scales="free")

> p <- p + geom_line(aes(x=year,y=data), linetype="dashed",

+ data = community_unfished_data)

> p + geom_line(aes(x=year,y=data), linetype="dotted",

+ data = community_reference_level)

According to our simulations, historically the LFI in the North Sea has been below the reference level.

11.4 Future projections

As well as investigating the historical simulations, we can run projections into the future. Here we run
two projections to 2050 with different fishing scenarios.

1. Continue fishing at 2010 levels (the status quo scenario).

2. From 2010 to 2015 linearly change the fishing mortality to approach FMSY and then continue at
FMSY until 2050.

Rather than looking at community indicators here, we will calculate the SSB of each species in the
model and compare the projected levels to a biodiversity target based on the reference point 0.1SSBF=0

(Rochet et al., 2011). The FMSY values are also taken from Rochet et al. (2011).

60

LFI Mean Weight

Mean Max Weight Slope

0.3

0.4

0.5

60

80

100

120

2000

3000

4000

5000

6000

−1.5

−1.4

−1.3

−1.2

−1.1

1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
year

da
ta

Figure 21: Historical (solid) and unexploited (dashed) and reference (dotted) community indicators
for the North Sea multispecies model.

61

Before we can running the simulations, we need to set up arrays of future effort. We will continue to
use effort relative to the level in 1990. Here we make build on our existing array of relative to make
an array for the first scenario. Note the use of the t() command to transpose the array. This because
R recycles by rows, so we need to build the array with the dimensions rotated to start with. We make
an array of the future effort, and then bind it underneath the relative_effort array used in the
previous section.

> scenario1 <- t(array(relative_effort["2010",], dim=c(12,40),

+ dimnames=list(NULL,year = 2011:2050)))

> scenario1 <- rbind(relative_effort, scenario1)

The relative effort array for the second scenario is more complicated to make and requires a little bit
of R gymnastics (it might be easier for you to prepare this in a spreadsheet and read it in). For this
one we need values of FMSY .

> fmsy <- c(Sprat = 0.2, Sandeel = 0.2, N.pout = 0.2, Herring = 0.25, Dab = 0.2,

+ Whiting = 0.2, Sole = 0.22, Gurnard = 0.2, Plaice = 0.25, Haddock = 0.3,

+ Cod = 0.19, Saithe = 0.3)

> scenario2 <- t(array(fmsy, dim=c(12,40), dimnames=list(NULL,year = 2011:2050)))

> scenario2 <- rbind(relative_effort, scenario2)

> for (sp in dimnames(scenario2)[[2]]){

+ scenario2[as.character(2011:2015),sp] <- scenario2["2010",sp] +

+ (((scenario2["2015",sp] - scenario2["2010",sp]) / 5) * 1:5)

+ }

Both of our new effort scenarios still include 100 years at the 1967 level to reduce the impact of the
transient behaviour. We are now ready to project the two scenarios.

> sim1 <- project(params, effort = scenario1, dt = 0.5, t_save = 1)

> sim2 <- project(params, effort = scenario2, dt = 0.5, t_save = 1)

We can now compare the projected SSB values in both scenarios to the biodiversity reference points.
First we calculate the biodiversity reference points (from the final time step in the unexploited sim0

simulation):

> ssb0 <- getSSB(sim0)["100",]

Now we build a data.frame of the projected SSB for each species, ignoring the transients. We make
use of the melt() function in the very useful reshape2 package (REF).

> library(reshape2)

> years <- 1967:2050

> ssb1 <- getSSB(sim1)[as.character(years),]

> ssb2 <- getSSB(sim2)[as.character(years),]

> ssb1_df <- melt(ssb1)

> ssb2_df <- melt(ssb2)

> ssb_df <- rbind(

+ cbind(ssb1_df, scenario = "Scenario 1"),

+ cbind(ssb2_df, scenario = "Scenario 2"))

> ssb_unexploited_df <- cbind(expand.grid(

+ sp = names(ssb0),

62

+ time = 1967:2050),

+ value = as.numeric(ssb0),

+ scenario = "Unexploited")

> ssb_reference_df <- cbind(expand.grid(

+ sp = names(ssb0),

+ time = 1967:2050),

+ value = as.numeric(ssb0*0.1),

+ scenario = "Reference")

> ssb_all_df <- rbind(

+ ssb_df,

+ ssb_unexploited_df,

+ ssb_reference_df)

> p <- ggplot(ssb_all_df) +

+ geom_line(aes(x = time, y = value, colour = scenario)) +

+ facet_wrap(~sp, scales = "free", nrow = 4)

> p + theme(legend.position = "none")

12 Acknowledgements

Finlay Scott would like to thank the Cefas Seedcorn Project DP266 and the Defra project MF1225 for
supporting this work.

References

K. H. Andersen and J. E. Beyer. Asymptotic size determines species abundance in the marine size
spectrum. The American Naturalist, 168(1):54–61, July 2006. ISSN 0003-0147, 1537-5323. doi:
10.1086/504849.

K. H. Andersen and M. Pedersen. Damped trophic cascades driven by fishing in model marine ecosys-
tems. Proceedings of the Royal Society B-Biological Sciences, 277(1682):795–802, March 2010. ISSN
0962-8452. doi: 10.1098/rspb.2009.1512. WOS:000273882800018.

K. H. Andersen and Jake C. Rice. Direct and indirect community effects of rebuilding plans. ICES
Journal of Marine Science: Journal du Conseil, 67(9):1980–1988, January 2010. ISSN 1054-3139,
1095-9289. doi: 10.1093/icesjms/fsq035.

K. H. Andersen, J. E. Beyer, and P. Lundberg. Trophic and individual efficiencies of size-structured
communities. Proceedings of the Royal Society B: Biological Sciences, 276(1654):109–114, July 2009a.
ISSN 0962-8452, 1471-2954. doi: 10.1098/rspb.2008.0951.

K. H. Andersen, K. D. Farnsworth, M. Pedersen, H. Gislason, and J. E. Beyer. How community
ecology links natural mortality, growth, and production of fish populations RID b-5546-2008 RID
c-1357-2008. Ices Journal of Marine Science, 66(9):1978–1984, October 2009b. ISSN 1054-3139. doi:
10.1093/icesjms/fsp161. WOS:000269611300018.

K.H. Andersen, J.E. Beyer, M. Pedersen, N.G. Andersen, and H. Gislason. Life-history constraints
on the success of the many small eggs reproductive strategy. Theoretical Population Biology, 73(4):
490–497, June 2008. ISSN 0040-5809. doi: 10.1016/j.tpb.2008.02.001.

63

Cod Dab Gurnard

Haddock Herring N.pout

Plaice Saithe Sandeel

Sole Sprat Whiting

0.0e+00

4.0e+11

8.0e+11

1.2e+12

1.6e+12

0.0e+00

5.0e+09

1.0e+10

1.5e+10

2.0e+10

2.5e+10

0.0e+00

2.5e+10

5.0e+10

7.5e+10

0e+00

1e+11

2e+11

3e+11

5.0e+11

1.0e+12

1.5e+12

2.0e+12

5.0e+10

1.0e+11

1.5e+11

2.0e+11

1e+11

2e+11

3e+11

4e+11

1e+11

2e+11

3e+11

2e+12

4e+12

6e+12

2e+10

4e+10

6e+10

1e+11

2e+11

4.0e+10

8.0e+10

1.2e+11

1.6e+11

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040

1980 2000 2020 2040 1980 2000 2020 2040 1980 2000 2020 2040
time

va
lu

e

Figure 22: Historical and projected SSB under two fishing scenarios. Status quo (red), Fmsy (yellow).
Unexploited (blue) and reference levels (purple) are also shown.

64

Knud Peter Andersen and Erik Ursin. A multispecies extension to the beverton and holt theory of
fishing, with accounts of phosphorus circulation and primary production. Meddelelser fra Danmarks
Fiskeri- og Havundersøgelser, 1977.

Eric Benôıt and Marie-Joëlle Rochet. A continuous model of biomass size spectra governed by predation
and the effects of fishing on them. Journal of Theoretical Biology, 226(1):9–21, January 2004. ISSN
0022-5193. doi: 10.1016/S0022-5193(03)00290-X.

Julia L. Blanchard, Simon Jennings, Richard Law, Matthew D. Castle, Paul McCloghrie, Marie-
JoÃńlle Rochet, and Eric BenoÃőt. How does abundance scale with body size in coupled size-
structured food webs? Journal of Animal Ecology, 78(1):270âĂŞ280, 2009. ISSN 1365-2656. doi:
10.1111/j.1365-2656.2008.01466.x.

Julia L. Blanchard, Ken H. Andersen, Finlay Scott, Niels T. Hintzen, Gerjan Piet, and Simon Jennings.
Evaluating targets and trade-offs among fisheries and conservation objectives using a multispecies
size spectrum model. Journal of Applied Ecology, 2013.

Samik Datta, Gustav W. Delius, and Richard Law. A jump-growth model for predatorâĂŞprey dy-
namics: derivation and application to marine ecosystems. Bulletin of Mathematical Biology, 72(6):
1361–1382, January 2010. ISSN 0092-8240, 1522-9602. doi: 10.1007/s11538-009-9496-5.

AndrÃl’ M. De Roos and Lennart Persson. Physiologically structured models âĂŞ from versatile tech-
nique to ecological theory. Oikos, 94(1):51âĂŞ71, 2001. ISSN 1600-0706. doi: 10.1034/j.1600-0706.
2001.11313.x.

Tom Fenchel. Intrinsic rate of natural increase: The relationship with body size. Oecologia, 14(4):
317–326, December 1974. ISSN 0029-8549, 1432-1939. doi: 10.1007/BF00384576.

Martin Hartvig. Food web ecology. Ph.D., Lund University, 2011.

Martin Hartvig, K. H. Andersen, and Jan E. Beyer. Food web framework for size-structured populations
RID c-4303-2011. Journal of Theoretical Biology, 272(1):113–122, March 2011. ISSN 0022-5193. doi:
10.1016/j.jtbi.2010.12.006. WOS:000287227700012.

Shaun S. Killen, Isabel Costa, Joseph A. Brown, and A. Kurt Gamperl. Little left in the tank:
metabolic scaling in marine teleosts and its implications for aerobic scope. Proceedings of the Royal
Society B: Biological Sciences, 274(1608):431–438, July 2007. ISSN 0962-8452, 1471-2954. doi:
10.1098/rspb.2006.3741. PMID: 17164208.

Richard Law, Michael J. Plank, Alex James, and Julia L. Blanchard. Size-spectra dynamics from
stochastic predation and growth of individuals. Ecology, 90(3):802–811, February 2009. ISSN 0012-
9658. doi: 10.1890/07-1900.1.

Olivier Maury, Blaise Faugeras, Yunne-Jai Shin, Jean-Christophe Poggiale, Tamara Ben Ari, and
Francis Marsac. Modeling environmental effects on the size-structured energy flow through marine
ecosystems. part 1: The model. Progress in Oceanography, 74(4):479–499, September 2007. ISSN
0079-6611. doi: 10.1016/j.pocean.2007.05.002.

Johan A. J. Metz and O. Diekmann. The dynamics of physiologically structured populations. Springer-
Verlag, 1986. ISBN 9780387167862.

Ransom A. Myers and Noel G. Cadigan. Density-dependent juvenile mortality in marine demersal
fish. Canadian Journal of Fisheries and Aquatic Sciences, 50(8):1576–1590, August 1993. ISSN
0706-652X, 1205-7533. doi: 10.1139/f93-179.

65

Robert Henry Peters. The Ecological Implications of Body Size. Cambridge University Press, March
1986. ISBN 9780521288866.

John G. Pope, Jake C. Rice, Niels Daan, Simon Jennings, and Henrik Gislason. Modelling an exploited
marine fish community with 15 parameters - results from a simple size-based model. Ices Journal of
Marine Science, 63(6):1029–1044, July 2006. ISSN 1054-3139. doi: 10.1016/j.icesjms.2006.04.015.
WOS:000239691000007.

W. E. Ricker. Stock and recruitment. Journal of the Fisheries Research Board of Canada, 11(5):
559–623, May 1954. ISSN 0015-296X. doi: 10.1139/f54-039.

Marie-Joelle Rochet, Jeremy S. Collie, Simon Jennings, and Stephen J. Hall. Does selective fishing
conserve community biodiversity? predictions from a length-based multispecies model. Canadian
Journal of Fisheries and Aquatic Sciences, 68(3):469–486, March 2011. ISSN 0706-652X. doi:
10.1139/F10-159. WOS:000287978500008.

VanÂăM. Savage, JamesÂăF. Gillooly, JamesÂăH. Brown, GeoffreyÂăB. West, and EricÂăL. Charnov.
Effects of body size and temperature on population growth. The American Naturalist, 163(3):429–
441, March 2004. ISSN 0003-0147, 1537-5323. doi: 10.1086/381872.

Erik Ursin. On the prey size preferences of cod and dab. Meddelelser fra Danmarks Fiskeri-og Havun-
dersÃÿgelser, 7:85âĂŞ98, 1973.

G. G. Winberg. Rate of metabolism and food requirements of fishes. Fish. Res. Bd. Can. Trans. Ser.,
194:1–202, 1956.

Lai Zhang, Uffe HÃÿgsbro Thygesen, Kim Knudsen, and K. H. Andersen. Trait diversity promotes
stability of community dynamics. Theoretical Ecology, 6(1):57–69, February 2013. ISSN 1874-1738,
1874-1746. doi: 10.1007/s12080-012-0160-6.

66

Table 1: Parameters in the model with dimensions and “default” values. For a detailed explanation of
the determination of the values see (Hartvig et al., 2011, App. E).

Resource spectrum
κR 5 · 10−3 gλ−1/m3 Magnitude of the resource spectrum
λ 2.05 - Exponent of resource spectrum (= 2− n+ q)
r0 4 g1−p/yr Constant for regeneration rate of resources
wcut 0.5 g Upper weight limit of the resource spectrum

Individual growth
f0 0.6 - Initial feeding level
α 0.6 - Assimilation efficiency
h 40† g1−n/yr Constant for max. food intake
n 0.75 - Exponent for max. food intake
ks 4.8† g1−p/yr Constant for std. metabolism and activity
p 0.75 - Exponent of standard metabolism*
β 100 - Preferred predator-prey mass ratio
σ 1.3¶ - Width of size selection function
γ Eq. (3.16) g−q/yr Constant for volumetric search rate
q 0.8§ - Exponent for volumetric search rate

Mortality
ξ 0.1 - Fraction of body weight containing reserves
µ0 3† g1−n/yr Constant for background mortality

Reproduction and recruitment
w0 0.5 mg Offspring weight
ε 0.1 - Efficiency of offspring production
κ 50‡ - Factor for maximum recruitment.

*Laboratory experiments on fish indicate that the exponent of standard metabolism should be higher, around p = 0.86
(Killen et al., 2007; Winberg, 1956). The practical implication of choosing p > n is that a maximum weight for individuals
at which all energy, even if f = 1, is used for standard metabolism at W+ = [(αh)/ks]1/(p−n) (Andersen et al., 2008,
Eq. 8). Here a value of p = n is used to make the analysis of the model output easier.
†Adjusted to a different value than in (Hartvig et al., 2011) to give growth rates similar to growth rates of species in the
North Sea.
¶The width of the selection function is chosen to be larger in the trait-based model than in the species-based model
(Hartvig et al., 2011) to emulate the diversity in prey-preferences of the species within a trait-class. The practical
implication of enlarging σ is that the model is more stable (fewer oscillations) (Datta et al., 2010).
‡This value should be a little higher but it has been lowered to give a stable output which will facilitate analysis of
model output.
§If the value of the search exponent is set to n a lot of the formulas involving exponential factors and power-laws of β
are simplified significantly as these factor then just becomes 1. Therefore using q = n is preferred for analytical work.

67

Column name Description Default value
Life history parameters

species Name of the species Compulsory (no default)
w inf The asymptotic mass of the species Compulsory (no default)

w mat Maturation mass. Used to calculate
values for ψ. WHAT IS WMAT IN
TERMS OF BIOLOGY? Is it the mass
at first maturity?

Compulsory (no default)

beta Preferred predator prey mass ratio Compulsory (no default)
sigma Width of prey size preference Compulsory (no default)

h Maximum food intake rate. If this is not
provided, it is calculated using the k_vb

column. Therefore, either h or k_vb

must be provided.

Optional (no default)

k vb The von BertalanffyK parameter. Only
used to calculate h if that column is not
provided

Optional (no default)

gamma Volumetric search rate. If this is not
provided, it is calculated using the h col-
umn and other parameters.

Optional (no default)

ks Standard metabolism coefficient h * 0.2
z0 Background mortality (constant for all

sizes). If this is not provided then z0 is
calculated as z0pre ∗wz0exp∞ . z0pre and
z0exp have default values of 0.6 and -
1/3 respectively.

Optional (no default)

k Activity coefficient 0.0
alpha Assimilation efficiency 0.6

erepro Reproductive efficiency 1
w min The size class that recruits are placed

in.
smallest size class of the species size
spectrum

Fishing gear parameters (see Section 8.3 for more details).
sel func The name of the selectivity function to

be used.
”knife edge”.

gear The name of the fishing gear that selects
the species. At the moment a species
can only be selected by one gear.

Name of the species

catchability The catchability of the fishing gear. 1
other columns Other parameters used by the selectiv-

ity function. For example, if the de-
fault ”knife edge” function is used then
the parameters ”knife edge size” must
also be specified as columns (see Sec-
tion 8.3).
Stock recruitment parameters (see Section 8.4 for more details).

other columns Any arguments that appear in the
stock-recruitment function must also
have a column of values (see Section 8.4)

Table 2: Columns of the species parameters data.frame

68

Argument Description Default value
min w The smallest size of the species commu-

nity size spectrum. Note that this a dif-
ferent w min to the one in the species pa-
rameter data.frame.

0.001

max w The largest size of the species size spec-
trum.

The largest w inf in the species parame-
ters data.frame * 1.1

no w The number of size bins in the species size
spectrum.

100

min w pp The smallest size of the background size
spectrum.

1e-10

no w pp The number of size bins in the back-
ground size spectrum.

round(no w) * 0.3

n The scaling of intake. 2/3
p The scaling of standard metabolism. 0.7
q The search volume exponent. 0.8

r pp The growth rate of the primary produc-
tivity (the background spectrum).

10

kappa The carrying capacity of the background
spectrum.

1e11

lambda The exponent of the background spec-
trum.

2+q-n

w pp cutoff The cut off size of the background spec-
trum.

10

f0 The feeding level of small individuals
feeding mainly on the background re-
source. Used to calculate h and gamma if
they are not provided in the species pa-
rameter data.frame.

0.6

z0pre If z0, the mortality from other sources, is
not a column in the species data.frame, it
is calculated as z0pre ∗ wz0exp∞ .

0.6

z0exp See z0pre n - 1

Table 3: Other parameters to the MizerParams() constructor

69

Method Returns Description
getSSB() Two dimensional array (time x

species)
Total Spawning Stock Biomass (SSB)
of each species through time where
SSB is calculated as the sum of weight
of all mature individuals.

getBiomass() Two dimensional array (time x
species)

Total biomass of each species through
time.

getN() Two dimensional array (time x
species)

Total abundance of each species
through time.

getFeedingLevel() Three dimensional array (time x
species x size)

Feeding level of each species by size
through time.

getM2() Three dimensional array (time x
species x size)

The predation mortality imposed on
each species by size through time.

getFMort() Three dimensional array (time x
species x size)

Total fishing mortality on each species
by size through time.

getFMortGear() Four dimensional array (time x gear x
species x size)

Fishing mortality on each species by
each gear at size through time.

getYieldGear() Three dimensional array (time x gear
x species)

Total yield by gear and species
through time.

getYield() Two dimensional array (time x
species)

Total yield of each species across all
gears through time.

Table 4: Summary methods for MizerSim objects.

70

Method Returns Description
getProportionOfLargeFish() A vector with values at each time

step.
Calculates the proportion of
large fish through time. The
threshold value can be specified.
It is possible to calculation the
proportion of large fish based on
either length or weight.

getMeanWeight() A vector with values at each
saved time step.

The mean weight of the commu-
nity through time. This is calcu-
lated as the total biomass of the
community divided by the total
abundance.

getMeanMaxWeight() Depends on the measure argu-
ment. If measure = “both”
then you get a matrix with two
columns, one with values by
numbers, the other with values
by biomass at each saved time
step. If measure = “numbers” or
“biomass” you get a vector of the
respective values at each saved
time step.

The mean maximum weight of
the community through time.
This can be calculated by num-
bers or by biomass. See the help
file for more details.

getCommunitySlope() A data.frame with four columns:
time step, slope, intercept and
R2 value.

Calculates the slope of the
community abundance spectrum
through time by performing a
linear regression on the logged
total numerical abundance and
logged body size.

Table 5: Indicator methods for MizerSim objects.

Plot Description
plotBiomass() Plots the total biomass of each species through time. A time range to be

plotted can be specified. The size range of the community can be specified in
the same way as the method getBiomass().

plotSpectra() Plots the abundance (biomass or numbers) spectra of each species and the
background community. It is possible to specify a minimum size which is
useful for truncating the plot.

plotFeedingLevel() Plots the feeding level of each species against size.
plotM2() Plots the predation mortality of each species against size.

plotFMort() Plots the total fishing mortality of each species against size.
plotYield() Plots the total yield of each species across all fishing gears against time.

plotYieldGear() Plots the total yield of each species by gear against time.
plot() Produces 5 plots (plotFeedingLevel(), plotBiomass(), plotM2(), plotF-

Mort() and plotSpectra()) in the same window as a summary.

Table 6: Plot methods for MizerSim objects.

71

	Summary
	Package installation and getting help
	Installing mizer
	Getting help

	Size spectrum modelling - concepts, processes and assumptions
	Central concepts and assumptions
	Predator-prey encounter
	Consumption
	Growth
	Reproduction
	Recruitment
	Mortality
	Resource dynamics
	Parameters

	Introducing mizer
	Implementing a community-type model
	Introduction
	Setting up a community model
	Running the community model
	Example of a trophic cascade with the community model
	The impact of changing

	Implementing a trait-based model
	Introduction
	Setting up a trait-based model
	Running the trait-based model
	Example of a trophic cascade with the trait-based model
	Setting up an industrial fishing gear
	The impact of industrial fishing

	Introducing multispecies models
	Setting up a multispecies model
	Overview
	The species parameters
	Fishing gears and selectivity
	The stock-recruitment relationship
	The interaction matrix
	The other MizerParams() arguments
	Examples of making a MizerParams objects
	Setting different gears

	Running a simulation
	The time arguments
	Setting the fishing effort
	Setting the initial population abundance
	What do you get from running project()?
	Projection examples
	Projections with single, simple constant effort
	Setting constant effort for different gears
	An example of changing effort through time

	Exploring the simulation results
	Directly accessing the slots of MizerSim objects
	Summary methods for MizerSim objects
	Examples of using the summary methods

	Methods for calculating indicators
	Examples of calculating indicators

	Plotting the results
	Plotting examples

	A multispecies model of the North Sea
	Setting up the North Sea model
	Setting up and running the simulation
	Exploring the model outputs
	Future projections

	Acknowledgements

