
modelObj: A Model Object Framework for Regression
Analysis

Shannon T. Holloway

June 10, 2015

Abstract

It is becoming common practice for researchers to disseminate new statistical meth-
ods to the broader research community by developing and releasing R packages that
implement the method. Often, methods are developed on the framework of traditional
regression. To simplify software development, researchers and developers often make
choices regarding the types of regression models that can be used; hard-coding a spe-
cific regression method into the library and limiting or eliminating the ability of the
user to modify regression control parameters. In many instances, there is not a fun-
damental reason why a new statistical method should use a specific regression method
(e.g., linear vs. non-linear) and such choices artificially limit the general application
of new packages. In addition, if a new method requires multiple regression steps, a
developer must artificially break the method into multiple function calls, each for a
specific regression step, or provide a cumbersome and/or confusing interface. We have
developed a new R package to facilitate the use of existing and future R regression li-
braries that simplifies the development of general, non-model-specific implementations
of new statistical methods.

Keywords: Regression and classification

1 Introduction

IMPACT is a joint venture of the University of North Carolina at Chapel Hill, Duke Uni-
versity, and North Carolina State University. The program project aims to improve the
health and longevity of people by improving the clinical trial process. A key component of
this research has been the development of public-use software packages that implement new
statistical methods developed by the 30+ investigators. Whenever possible, these methods
have been developed in R. The modelObj library was born from the need to create simple,
general-use implementations of new statistical methods that do not limit the underlying

1

regression method(s) and do not require continued upgrading as new regression methods
become available.

When creating R packages for statistical methods developed on the framework of tradi-
tional regression or classification methods, researchers and/or software developers often make
choices regarding the types of models that can be specified by the user; hard-coding the re-
gression method into the library and limiting or eliminating the ability of the user to modify
regression control parameters. However, the choice of a specific regression method may
not be fundamental constraint of the new method and such choices can limit the general
application of an implementation.

In addition, a new method may require multiple regression steps. For example, a forthcoming
package, DynTxRegime, implements the Augmented Inverse Probability Weighted Estimators
(AIPWE) for average treatment effects and requires multiple regression analyses. To imple-
ment this method generally without using the framework described herein would require that
the procedure be artificially broken into multiple function calls, each for a specific regression
step, or that the user interface to the method be cumbersome and/or confusing.

The modelObj library is built on the premise of a “model object.” A model object contains
all of the information needed to complete a standard regression analysis and subsequent
prediction step: a formula object, the existing R regression method to be used to obtain
parameter estimates (the so-called solver method), any control arguments to be passed to
the regression method, the R method to be used to obtain predictions, and any arguments to
be passed to the prediction method. This information is grouped into a single object of class
modelObj by a call to buildModelObj(...). To use a package built on the model object
framework, the user creates the modelObj prior to calling the statistical method and passes
the model object as input. The modelOBj library provides simple functions that developers
can use to implement standard regression procedures, such as fit(...) to obtain parameter
estimates and predict(...) to obtain predictions.

2 Interacting with packages that implement the model

object framework.

Users of packages that have been developed based on the model object framework will in-
terface with the modelObj library through calls to buildModelObj(...). These calls create
a model object for a single regression step and are passed as input to the method. The
buildModelObj(...) function takes as input

• model : an object of class formula. Note that any lhs variables provided will be
ignored.

• solver.method : an object of class character; the name of the R regression method.
For example, a user might commonly specify ‘lm’ or ‘glm’ for the conditional expecta-

2

tion. For classification, ‘rpart’ might be used. The specified method MUST have
a corresponding predict method.

• solver.args : an object of class list; additional arguments to be passed to solver.method.
The name of each element of the list must match a formal argument of solver.method.
For example, for logistic regression using glm:

solver.method = "glm"

solver.args = list("family"=binomial).

It is assumed that the R method specified in solver.method has formal arguments “for-
mula” and “data”. If solver.method does not use “formula” and/or “data,” solver.args
must explicitly indicate the variable names used for these inputs. For example, list(“x”=“formula”)
if the formula object is passed to solver.method through input argument“x”or list(“df”=“data”)
if the data.frame object is passed to solver.method through input argument “df.”

• predict.method : an object of class character; the function name of the R function to
be used to obtain predictions. For example, ‘predict.lm’ or ‘predict.glm’. If no function
is explicitly given, the generic ‘predict’ method is assumed. Most often, this input can
be omitted.

• predict.args : an object of class list; additional arguments to be passed to pre-
dict.method. The name of each element of the list must match a formal argument
of predict.method. For example, if a logistic regression using glm was used to fit the
model formula object and predictions on the scale of the response are desired,

solver.method = "glm"

solver.args = list("family"=binomial)

predict.method = "predict"

predict.args = list("type"="response").

It is assumed that the R method specified in predict.method has formal arguments
“object” and “newdata”. If predict.method does not use these formal arguments, pre-
dict.args must explicitly indicate the variable names used for these inputs. For example,
list(“x”=“object”) if the object returned by solver.method is passed to predict.method
through input argument “x” or list(“ndf”=“newdata”) if the data.frame object is passed
to predict.method through input argument “ndf.”

Unless modified through solver.args and predict.args, default settings are assumed for
the methods specified in solver.method and predict.method.

As a simple example,

> library(modelObj)

> object1 <- buildModelObj(model=~x1, solver.method='lm')

defines a model object for a linear model, the parameter estimates of which are to be obtained
using lm, and predictions obtained using predict. The solver and prediction methods will

3

use default settings.

As a more complex (though contrived) example, consider the following functions

> mylm <- function(df,x){

+ obj <- list()

+ obj$lm <- lm(formula=x, data=df)

+ obj$var <- "does something neat"

+ class(obj) = "mylm"

+ return(obj)

+ }

> predict.mylm <- function(data,obj,ty){

+ obj <- predict.lm(object=obj$lm, newdata=data, type=ty)

+ obj <- exp(obj)

+ return(obj)

+ }

which, for the sake of argument, represent a “new” regression method that a user would like
to utilize. These functions are ‘silly’ examples of solver methods and prediction methods that
do not accept the standard formal arguments. However, they provide a simple illustration of
how flexible the framework can be. In this circumstance, the user would define the following
modeling object:

> object2 <- buildModelObj(model=~x1,

+ solver.method='mylm',
+ solver.args=list('x'="formula", 'df'="data"),
+ predict.method='predict.mylm',
+ predict.args=list('obj'="object", 'data'="newdata",
+ ty='response'))

3 Developing packages that implement the model ob-

ject framework.

The buildModelObj() function invoked by a user returns an object of class modelObj.

Developers that use this utility package should carefully document for users any required
settings for solver.method and predict.method. For example, the scale of the response
needed for predictions. Though the developer can access and modify the argument lists
provided by users using methods predictorArgs() and solverArgs(), there is no strict
variable naming convention in R, and some methods do not adhere to the “usual” choices.
Thus, identifying the formal argument to adjust may be tricky.

Once provided an object of class modelObj, developers can **see** all of the values contained

4

in the object but can modify only the argument lists to be passed to methods. Specifically:

• model Retrieves the formula object.

• solver Retrieves the character name of the regression method.

• solverArgs Retrieves the list of arguments to be passed to the regression method.

• predictor Retrieves the character name of the prediction method.

• predictorArgs Retrieves the list of arguments to be passed to the prediction method.

• solverArgs<- Sets the list of arguments to be passed to the regression method.

• predictorArgs<- Sets the list of arguments to be passed to the prediction method.

The primary utility method available for objects of class modelObj is fit(...), which im-
plements the regression step. The inputs for fit(...) are:

• object an object of class modelObj.

• data an object of class data.frame; the covariates to be used to obtain the fit.

• response an object of class numeric; the response

• . . . ignored

The fit(...) method constructs and executes the function call to the specified solver
method using the formula object and formal arguments provided by the user in solver.args.
The fit(...) method uses an internal naming convention for the response, and thus only
the right-hand-side of the formula object is referenced.

fit(...) returns an S4 object of class modelObjFit. Developers can access members of
this class using the following methods:

• fitObject Retrieves the value object returned by the regression method. Through
this retrieve method, developers have the ability to access any defined methods for the
regression function, such as coef, residuals, or plot.

• predictor Retrieves the character name of the prediction method to be used to obtain
predictions.

• predictorArgs Retrieves the list of arguments to be passed to the prediction method
when making predictions.

Note that predictor and predictorArgs only give you access to **see** what has been specified
for the prediction method. Should changes need to be made to the arguments, one must
apply these changes to the defining modelObj before creating the modelObjFit object.

Additional methods available for modelObjFit objects are

• coef(...) If defined for the regression method, returns the estimated coefficients.

5

• plot(...) If defined for the regression method, generates the plot of the model
fitting class.

• predict(...) Obtains predictions from the results of the model fitting function.

• residuals(...) If defined for the regression method, returns the residuals.

• show(...) Uses the predefined show method of the regression method.

• summary(...) Uses the predefined summary method of the regression method.

Again, the value object returned by the regression method can be retrieved using fitObject;
thereby providing access to any R methods developed for the regression method. We have
chosen to implement only the most common methods (coef(), residuals(), etc.) for the
modelObjFit object. Note that not all regression methods have these functions. If these
functions are required in your implementation, additional checks must be incorporated into
your code to ensure their availability.

4 Example Implementation of modelObj

We use a standard R dataset to illustrate the implementation of the model object framework.
The ‘pressure’ data frame contains “data on the relation between temperature in degrees
Celsius and vapor pressure of mercury in millimeters (of mercury).”The details of the datatset
are not relevant for this illustration. However, the reader is referred to ?pressure for details.

> summary(pressure)

temperature pressure

Min. : 0 Min. : 0.0002

1st Qu.: 90 1st Qu.: 0.1800

Median :180 Median : 8.8000

Mean :180 Mean :124.3367

3rd Qu.:270 3rd Qu.:126.5000

Max. :360 Max. :806.0000

It is straightforward to implement a regression step. As an example, suppose we are devel-
oping a new package called wow. The primary function of this package is exampleFun(). In
this function, we want to obtain a fit and return the square of the fitted response and the
estimated coefficients in a list. Our function takes the following form

> exampleFun <- function(modelObj, data, Y){

+

+ fitObj <- fit(modelObj, data, Y)

+

+ ##Test that coef() is an available method

6

+ cfs <- try(coef(fitObj), silent=TRUE)

+ if(class(cfs) == 'try-error'){
+ warning("Provided regression method does not have a coef method.\n")

+ cfs <- NULL

+ }

+

+ fitted <- predict(fitObj)^2

+

+ return(list("fittedSq"=fitted, "coef"=cfs))

+ }

To use this function, a user must create the object of class modelObj and provide it as input
to exampleFun(). The user can implement a linear model as follows:

> ylog <- log(pressure$pressure)

> objlm <- buildModelObj(model = ~temperature,

+ solver.method = "lm",

+ predict.method = "predict.lm",

+ predict.args = list("type"="response"))

> fitObjlm <- exampleFun(objlm, pressure, ylog)

> print(fitObjlm$coef)

(Intercept) temperature

-6.06814354 0.03979188

Or, the non-linear least squares method nls:

> objnls <- buildModelObj(model = ~exp(a + b*temperature),

+ solver.method = "nls",

+ solver.args = list('start'=list(a=1, b=0.1)),

+ predict.method = "predict",

+ predict.args = list("type"="response"))

> fitObjnls <- exampleFun(objnls, pressure, pressure$pressure)

> print(fitObjnls$coef)

a b

-0.67814838 0.02052001

Or, even the previously defined “new” method:

> objectnew <- buildModelObj(model = ~temperature,

+ solver.method = 'mylm',
+ solver.args=list('x'="formula", 'df'="data"),
+ predict.method='predict.mylm',
+ predict.args=list('obj'="object", 'data'="newdata",
+ ty='response'))

7

> fitObjnew <- exampleFun(objectnew, pressure, ylog)

> print(fitObjnew$coef)

NULL

In the last example, the function returned NULL for the parameter estimates because there
is no available method to retrieve the estimated parameters.

The same function, exampleFun() can be used to implement each of these models, and no
development is required to extend the package to new methods as they become available.

8

	Introduction
	Interacting with packages that implement the model object framework.
	Developing packages that implement the model object framework.
	Example Implementation of modelObj

