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This document describes the statistical models used in MORSE to analyze survival and reproduction
data, and as such serves as a mathematical specification of the package. For a more practical introduction,
please consult the “Tutorial” vignette; for information on the structure and contents of the library, please
consult the reference manual.

Model parameters are estimated using Bayesian inference, where posterior distributions are computed
from the likelihood of observed data and prior distributions on the parameters. These priors are specified
after each model description.

1 Survival bioassays

In a survival bioassay, subjects are exposed to a controlled dose of a contaminant over a given period of
time and the number of surviving individuals is measured at certain time points during exposition. In most
standard bioassays, the dose is held constant throughout the whole experiment, which we will assume here.
An experiment is generally replicated several times and also repeated for various levels of the contaminant.

In so-called final time bioassays, the mortality is measured only at the end of the experiment. The chosen
time point is called target time. Let us see how this particular case is handled in MORSE.

1.1 Analysis of final time survival bioassays

A dataset from a final time survival bioassay is a collection D = {(c;, ni" n;)}; of experiments, where c;
is the tested concentration, n‘™* the initial number of individuals and n; the number of individuals at the
target time. Triplets such that ¢; = 0 correspond to control experiments.

Modelling In the particular case of endpoint assays, the model used in MORSE is defined as follows.
Let ¢t be the target time in days. We suppose the mean survival rate after t days is given by a function f
of the contaminant level c. We also suppose that the death of two individuals are two independent events.
Hence, given an initial number ni"® of individuals in the bioassay, we obtain that the number N; of surviving

individuals at time ¢ follows a binomial distribution:
N ~ B(ni™, f(c:))

Note that this model neglects inter-replicate variations, as a given concentration of pollutant implies a fixed
value of the survival rate. There may be various possibilities for f. In MORSE we assume:

d

f(c):T(g)b

where b, e and d are (positive) parameters. In particular d corresponds to the survival rate in absence of
pollutant and e corresponds to the LC5y. The parameter b is related to the effect intensity of the contaminant.



Inference Posterior distributions for parameters b, d and e are estimated using JAGS with the following
priors:

e we assume the range of tested concentrations in an experiment is chosen to contain the LC5q with high
probability. More formally, we choose:

logo(min; ¢;) + logyp(max; ¢;) logyy(max; ¢;) — log;,(min; ¢;)
2 ’ 4

logyg e ~ N( )
which implies e has a probability slightly higher than 0.95 to lie between the minimum and the maximum
tested concentration.

e we choose a quasi non-informative prior distribution for the shape parameter b:

logyg b~ U(-2,2)

The prior on d is chosen as follows: if we observe no mortality in control experiments then we set d = 1,
otherwise we assume a uniform prior for d between 0 and 1.

2 Reproduction bioassays

In a reproduction bioassay, we observe the number of offspring produced by a population of adult indi-
viduals subjected to a certain dose of a contaminant over a given period of time. The offspring (young
individuals, clutches or eggs) are regularly counted and removed from the medium at each observation, so
that the reproducing population cannot increase. It can decrease however, if some individuals die during the
experiment. The same procedure is usually repeated with various concentrations of contaminant, in order
to establish a quantitative relationship between the reproduction rate and the concentration of contaminant
in the medium.

As mentionned already, it is often the case that part of the individuals of an bioassay die during the
observation period. In previous approaches, it was proposed to consider the cumulated number of reproduc-
tion outputs without accounting for mortality [2, 3], or to exclude replicates where mortality occurred [4].
However, individuals may have reproduced before dying and thus contributed to the observed response. In
addition, individuals dying the first are the most sensitive, so the information on reproduction of these pre-
maturely dead individuals is valuable and ignoring it is likely to bias the results in a non-conservative way.
This is particularly critical at high concentrations, when mortality may be very high.

In a bioassay, mortality is usually regularly recorded, i.e. at each timepoint when reproduction outputs
are counted. Using these data, we can approximately estimate for each individual the period it has stayed
alive (which we assume coincides with the period it may reproduce). As commonly done in epidemiology
for incidence rate calculations, we can then calculate, for one replicate, the total sum of the periods of
observation of each individual before its death (see next paragraph). This sum can be expressed as a number
of individual-days. Hence, reproduction can be evaluated through the number of outputs per individual-day.

In the following, we denote M;;;, the observed number of surviving individuals for concentration c;,
replicate j and time tg.

2.1 Estimation of the effective observation time

We define the effective observation time as the sum for all individuals of the time they spent alive in the
experiment. It is counted in individual-days and will be denoted NID;; for concentration c; and replicate
j. As mentionned earlier, mortality is observed at particular time points only, so the real life time of an



individual is unknown and in practice we use the following simple estimation: if an individual is alive at ¢,
but dead at tyy1, its real life time is approximated as t’““%
With this assumption, the effective observation time for concentration c¢; and replicate j is then given by:
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2.2 Target time analysis

In this paragraph, we describe our so-called “target time analysis”, where we model the cumulated number
of offspring up to a target time as a function of pollutant concentration and effective observation time in
this period (cumulated life times of all individuals in the experiment, as described above). A more detailed
presentation can be found in [1].

We keep the convention that the index ¢ is used for concentration levels and j for replicates. The data
will therefore correspond to a set {(nid;;,n;;)}; of pairs, where nid;; denotes the effective observation time
and n;; the number of reproduction output. These observations are supposed to be drawn independently
from a distribution that is a function of the level of contaminant c;.

Modelling We assume here that the effect of the considered contaminant on the reproduction rate! does
not depend on the exposure time, but only on the concentration of the contaminant. More precisely, the
reproduction rate in an experiment with a concentration ¢; of contaminant is modelled by a three-parameter
log-logistic model, that writes as follows:

f(c;0) = with 6 = (e, b,d)

d
T+ (5
Here d corresponds to the reproduction rate in absence of contaminant (control condition), and e to the
value of the ECj5g, that is the concentration dividing the average number of offspring by two with respect to
the control condition. Now the number of reproduction outputs N;; for concentration ¢; in replicate j can
be modelled using a Poisson distribution:

N;j ~ Poisson(f(c;;0) x NID;;)

This model is later referred to as “Poisson model”. If there happens to be a non-negligible variability of
the reproduction rate between replicates for a some fixed concentration, we propose a second model, named
“gamma-Poisson model”, stating that:

Nij ~ Poisson(Fij X NID”)

where the reproduction rate Fj; for at ¢; in replicate j is a random variable following a gamma distribution.
Introducing a dispersion parameter w, we assume that:
flei; 0

1
Fi; ~ gamma( T

~—

Note that a gamma distribution of parameters « and § has mean % and variance %, that is here f(c;;0)

and w f(c;; 6) respectively. Hence w can be considered as an overdispersion parameter (the greater its value,
the greater the inter-replicate variability)

lthat is, the number of reproduction outputs during the experiment per individual-day



Inference Posterior distributions for parameters b, d and e are estimated using JAGS with the following
priors:

e we assume the range of tested concentrations in an experiment is chosen to contain the ECxqg with high
probability. More formally, we choose:

logo(min; ¢;) + logyo(max; ¢;) logyy(max; ¢;) — log,(min, cl))
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which implies e has a probability slightly higher than 0.95 to lie between the minimum and the maximum
tested concentration.

logyge ~ N(

e we choose a quasi non-informative prior distribution for the shape parameter b:
logiob ~U(—2,2)

e as d corresponds to the reproduction rate without contaminant, we set a normal prior N (4, 04) using

the data:
- 1 noj
fa = Z nido;
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where r( is the number of replicates in the control condition. Note that since they are used to estimate
the prior distribution, the data from the control condition are not used in the fitting phase.

e we choose a quasi non-informative prior distribution for the w parameter of the gamma-Poisson model:

lOglO(W) ~ U(—4, 4)

For a given dataset, the procedure implemented in MORSE will fit both models (Poisson and gamma-
Poisson), and use an information criterion known as Deviance Information Criterion (DIC) to choose the
most appropriate. In situations where overdispersion (that is inter-replicate variability) is negligible, using
the Poisson model will provide more reliable estimates. That is why a Poisson model is preferred unless the
gamma-Poisson model has a sufficiently lower DIC (in practice we require a difference of 10).
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