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Abstract

This introduction to the R package multgee is a slightly modified version of Touloumis
(2015), published in the Journal of Statistical Software. To cite multgee in publications,
please use Touloumis (2015). To cite the GEE methodology implemeted in multgee, please
use Touloumis et al. (2013).

The R package multgee implements the local odds ratios generalized estimating equa-
tions (GEE) approach proposed by Touloumis et al. (2013), a GEE approach for correlated
multinomial responses that circumvents theoretical and practical limitations of the GEE
method. A main strength of multgee is that it provides GEE routines for both ordi-
nal (ordLORgee) and nominal (nomLORgee) responses, while relevant softwares in R and
SAS are restricted to ordinal responses under a marginal cumulative link model specifi-
cation. In addition, multgee offers a marginal adjacent categories logit model for ordinal
responses and a marginal baseline category logit model for nominal. Further, utility func-
tions are available to ease the local odds ratios structure selection (intrinsic.pars) and
to perform a Wald type goodness-of-fit test between two nested GEE models (waldts).
We demonstrate the application of multgee through a clinical trial with clustered ordinal
multinomial responses.

Keywords: generalized estimating equations, nominal and ordinal multinomial responses, local
odds ratios, R.

1. Introduction

In several studies, the interest lies in drawing inference about the regression parameters of
a marginal model for correlated, repeated or clustered multinomial variables with ordinal
or nominal response categories while the association structure between the dependent re-
sponses is of secondary importance. The lack of a convenient multivariate distribution for
multinomial responses and the sensitivity of ordinary maximum likelihood methods to mis-
specification of the association structure led researchers to modify the GEE method of Liang
and Zeger (1986) in order to account for multinomial responses (Miller et al. 1993; Lipsitz
et al. 1994; Williamson et al. 1995; Lumley 1996; Heagerty and Zeger 1996; Parsons et al.
2006). These GEE approaches estimate the marginal regression parameter vector by solving
the same set of estimating equations as in Liang and Zeger (1986), but differ in the way
they parametrize and/or estimate α, a parameter vector that is usually defined to describe a
“working” assumption about the association structure.

Touloumis et al. (2013) showed that the joint existence of the estimated marginal regres-
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sion parameter vector and α̂ cannot be assured in existing approaches. This is because the
parametric space of the proposed parameterizations of the association structure depends on
the marginal model specification even in the simple case of bivariate multinomial responses.
To address this issue, Touloumis et al. (2013) defined α as a “nuisance” parameter vector
that contains the marginalized local odds ratios structure, that is the local odds ratios as if
no covariates were recorded, and they employed the family of association models (Goodman
1985) to develop parsimonious and meaningful structures regardless of the response scale.
The practical advantage of the local odds ratios GEE approach is that it is applicable to both
ordinal and nominal multinomial responses without being restricted by the marginal model
specification. Simulations in Touloumis et al. (2013) imply that the local odds ratios GEE
approach captures a significant portion of the underlying correlation structure, and compared
to the independence ‘working’ model (i.e., assuming no correlation structure in the GEE
methodology), simple local odds ratios structures can substantially increase the efficiency
gains in estimating the regression vector of the marginal model. Note that low convergence
rates for the GEE approach of Lumley (1996) and Heagerty and Zeger (1996) did not allow
the authors to compare these approaches with the local odds ratios GEE approach while the
GEE approach of Parsons et al. (2006) was excluded from the simulation design because its
use is restricted to a cumulative logit marginal model specification.

The R (R Core Team 2014) package multgee implements the local odds ratios GEE approach
and it is available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=multgee. To emphasize the importance of reflecting the nature of the response
scale on the marginal model specification and on the marginalized local odds ratios struc-
ture, two core functions are available in multgee: nomLORgee which is appropriate for GEE
analysis of nominal multinomial responses and ordLORgee which is appropriate for ordinal
multinomial responses. In particular, options for the marginal model specification include a
baseline category logit model for nominal response categories and a cumulative link model
or an adjacent categories logit model for ordinal response categories. In addition, there are
three utility functions that enable the user to: i) Perform goodness-of-fit tests between two
nested GEE models (waldts), ii) select the local odds ratios structure based on the rule of
thumb discussed in Touloumis et al. (2013) (intrinsic.pars), and iii) construct a probability
table (to be passed in the core functions) that satisfies a desired local odds ratios structure
(matrixLOR).

To appreciate the features of multgee, we briefly review GEE software for multinomial re-
sponses in SAS (SAS Institute Inc. 2003) and R. The current version of SAS supports only
the independence “working” model under a marginal cumulative probit or logit model for
ordinal multinomial responses. To the best of our knowledge, SAS macros (Williamson et al.
1998; Yu and Yuan 2004) implementing the approach of Williamson et al. (1995) are not
publicly available. The R package repolr (Parsons 2013) implements the approach of Par-
sons et al. (2006) but it is restricted to using a cumulative logit model. Another option for
ordinal responses is the function ordgee in the R package geepack (Halekoh et al. 2006).
This function implements the GEE approach of Heagerty and Zeger (1996) but it seems to
produce unreliable results for multinomial responses. To illustrate this, we simulated inde-
pendent multinomial responses under a cumulative probit model specification with a single
time-stationary covariate for each subject and we employed ordgee to obtain the GEE esti-
mates from the independence ‘working’ model. Description of the generative process can be
found in Scenario 1 of Touloumis et al. (2013) except that we used the values −3,−1, 1 and

http://CRAN.R-project.org/package=multgee
http://CRAN.R-project.org/package=multgee
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3 for the four category specific intercepts in order to make the problem more evident. Based
on 1000 simulation runs when the sample size N = 500, we found that the bias of the GEE
estimate of β = 1 was ≈ 4.8 × 1028, indicating the presence of a bug or -at least- of numer-
ical problems for some situations. Similar problems occurred for the alternative global odds
ratios structures in ordgee. In contrast to existing software, multgee offers greater variety
of GEE models for ordinal responses, implements a GEE model for nominal responses and is
not limited to the independence “working” model, which might lead to significant efficiency
losses. Further, one can assess the goodness of fit for two or more nested GEE models.

This paper is organized as follows. In Section 2, we present the theoretical background of
the local odds ratios GEE approach that is necessary for the use of multgee. We introduce
the marginal models implemented in multgee, the estimation procedure for the ‘nuisance’
parameter vector α and the asymptotic theory on which GEE inference is based. We describe
the arguments of the core GEE functions (nomLORgee, ordLORgee) in Section 3 while the
utility functions (waldts, intrinsic.pars, matrixLOR) are described in Section 4. In Section
5, we illustrate the use of multgee in a longitudinal study with correlated ordinal multinomial
responses. We summarize the features of the package and provide a few practical guidelines
in Section 6.

2. Local odds ratios GEE approach

For notational ease, suppose the data arise from a longitudinal study with no missing ob-
servations. However, note that the local odds ratios GEE approach is not limited neither
to longitudinal studies nor to balanced designs, under the strong assumption that missing
observations are missing completely at random (Rubin 1976).

Let Yit be the multinomial response for subject i (i = 1, . . . , N) at time t (t = 1, . . . , T ) that
takes values in {1, 2, . . . , J}, J > 2. Define the response vector for subject i

Yi = (Yit1, . . . , Yi1(J−1), Yi21, . . . , Yi2(J−1), . . . , YiT1, . . . , YiT (J−1))
>,

where Yitj = 1 if the response for subject i at time t falls at category j and Yitj = 0 otherwise.
Denote by xit the covariates vector associated with Yit, and let xi = (x>i1, . . . ,x

>
iT )> be the

covariates matrix for subject i. Define πitj = E(Yitj |xi) = P(Yitj = 1|xi) = P(Yit = j|xi) as
the probability of the response category j for subject i time t, and let πi = (π>i1, . . . ,π

>
iT )>

be the mean vector of Yi, where πit = (πit1, . . . , πit(J−1))
>. It follows from the above that

YitJ = 1−
∑J−1

j=1 Yitj and πitJ = 1−
∑J−1

j=1 πitj .

2.1. Marginal models for correlated multinomial responses

The choice of the marginal model depends on the nature of the response scale. For ordinal
multinomial responses, the family of cumulative link models

F−1 [P(Yit ≤ j|xi)] = β0j + β>∗ xit (1)

or the adjacent categories logit model

log

(
πitj

πit(j+1)

)
= β0j + β>∗ xit (2)
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can be used, where F is the cumulative distribution function of a continuous distribution
and {β0j : j = 1, . . . , J − 1} are the category specific intercepts. For nominal multinomial
responses, the baseline category logit model

log

(
πitj
πitJ

)
= β0j + β>j xit (3)

can be used, where βj is the j-th category specific parameter vector.

It is worth mentioning that the linear predictor differs in the above marginal models. First, the
category specific intercepts need to satisfy a monotonicity condition β01 ≤ β02 ≤ . . . ≤ β0(J−1)
only when the family of cumulative link models in (1) is employed. Second, the regression
parameter coefficients of the covariates xit are category specific only in the marginal baseline
category logit model (3) and not in the ordinal marginal models (1) and (2).

2.2. Estimation of the marginal regression parameter vector

To unify the notation, let β be the p-variate parameter vector that includes all the regression
parameters in (1), (2) or (3). To obtain β̂G, a GEE estimator of β, Touloumis et al. (2013)
solved the estimating equations

U(β, α̂) =
1

N

N∑
i=1

DiV
−1
i (Yi − πi) = 0 (4)

where Di = ∂πi/∂β and Vi is a T (J − 1) × T (J − 1) ‘weight’ matrix that depends on β
and on α̂, an estimate of the ‘nuisance’ parameter vector α defined formally in Section 2.3.
Succinctly, Vi is a block matrix that mimics the form of COV(Yi|xi), the true covariance
matrix for subject i. The t-th diagonal matrix of Vi is the covariance matrix of Yit deter-
mined by the marginal model. The (t, t′)-th off-diagonal block matrix describes the marginal
pseudo-association of (Yit, Yit′), which is a function of the marginal model and of the pseudo-
probabilities {P(Yit = j, Yit′ = j′|xi) : j, j′ = 1, . . . , J − 1} calculated based on (α̂,β). We
should emphasize that Vi is a ‘weight’ matrix because α is defined as a ‘nuisance’ parame-
ter vector and it is unlikely to describe a valid ‘working’ assumption about the association
structure for all subjects.

2.3. Estimation of the nuisance parameter vector and of the weight matrix

Order the L = T (T − 1)/2 time-pairs with the rightmost element of the pair most rapidly
varying as (1, 2), (1, 3), . . . , (T − 1, T ), and let G be the group variable with levels the L
ordered pairs. For each time-pair (t, t′), ignore the covariates and cross-classify the responses
across subjects to form an J × J contingency table such that the row totals correspond to
the observed totals at time t and the column totals to the observed totals at time t′, and
let θtjt′j′ be the local odds ratio at the cutpoint (j, j′) based on the expected frequencies
{ftjt′j′ : j, j′ = 1, . . . , J}. For notational reasons, let A and B be the row and column variable
respectively. Assuming a Poisson sampling scheme to the L sets of J × J contingency tables,
fit the RC-G(1) type model (Becker and Clogg 1989)

log ftjt′j′ = λ+ λAj + λBj′ + λG(t,t′) + λAG
j(t,t′) + λBG

j′(t,t′) + φ(t,t
′)µ

(t,t′)
j µ

(t,t′)
j′ , (5)



Anestis Touloumis 5

where {µ(t,t
′)

j : j = 1, . . . , J} are the score parameters for the J response categories at the
time-pair (t, t′). After imposing identifiability constraints on the regression parameters in (5),
the log local odds ratios structure is given by

log θtjt′j′ = φ(t,t
′)
(
µ
(t,t′)
j − µ(t,t

′)
j+1

)(
µ
(t,t′)
j′ − µ(t,t

′)
j′+1

)
. (6)

At each time-pair, (6) summarizes the local odds ratios structure in terms of the J score
parameters and the intrinsic parameter φ(t,t

′) that measures the average association of the
marginalized contingency table. Since the score parameters do not need to be fixed or mono-
tonic, the local odds ratios structure is applicable to both nominal and ordinal multinomial
responses.

Touloumis et al. (2013) defined α as the parameter vector that contains the marginalized
local odds ratios structure

α =
(
θ1121, . . . , θ1(J−1)2(J−1), . . . , θ(T−1)1T1, . . . , θ(T−1)(J−1)T (J−1)

)>
where θtjt′j′ satisfy (6). To increase the parsimony of the local odds ratios structures for

ordinal responses, they proposed to use common unit-spaced score parameters
(
µ
(t,t′)
j = j

)
and/or common intrinsic parameters

(
φ(t,t

′) = φ
)

across time-pairs. For a nominal response

scale, they proposed to apply a homogeneity constraint on the score parameters
(
µ
(t,t′)
j = µj

)
and use common intrinsic parameters across time-pairs. To estimate α maximum likelihood
methods are involved by treating the L marginalized contingency tables as independent.
Technical details and justification about this estimation procedure can be found in Touloumis
(2011) and Touloumis et al. (2013).

Conditional on the estimated marginalized local odds ratios structure α̂ and the marginal
model specification at times t and t′, {P(Yit = j, Yit′ = j′|xi) : t < t′, j, j′ = 1, . . . , J − 1} are
obtained as the unique solution of the iterative proportional fitting (IPF) procedure (Deming
and Stephan 1940). Hence, Vi can be readily calculated and the estimating equations in (4)
can be solved with respect to β.

2.4. Asymptotic properties of the GEE estimator

Given α̂, inference about β is based on the fact that
√
N(β̂G−β) ∼ N(0,Σ) asymptotically,

where
Σ = lim

N→∞
NΣ−10 Σ1Σ

−1
0 , (7)

Σ0 =
∑N

i=1 D>i V−1i Di and Σ1 =
∑N

i=1 D>i V−1i COV(Yi|xi)V
−1
i Di. For finite sample sizes,

Σ̂ is estimated by ignoring the limit in (7) and replacing β with β̂G and COV(Yi|xi) with
(Yi − π̂i)(Yi − π̂i)

> in Σ0 and Σ1. In the literature, Σ̂/N is often termed as “sandwich” or
“robust” covariance matrix of β̂G.

3. Description of core functions

We describe the arguments of the functions nomLORgee and ordLORgee, focusing on the
marginal model specification (formula, link), data representation (id, repeated, data) and
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local odds ratios structure specification (LORstr, LORterm, homogeneous, restricted). For
completeness’ sake, we also present computational related arguments (LORem, add, bstart,
LORgee.control, ipfp.control, IM). The two core functions share the same arguments, ex-
cept link and restricted which are available only in ordLORgee, and they both create an
object of the class LORgee which admits summary, coef, update and residuals methods.

3.1. Marginal model specification

For ordinal multinomial responses, the link argument in the function ordLORgee specifies
which of the marginal models (1) or (2) will be fitted. The options "logit", "probit",
"cauchit" or "cloglog" indicate the corresponding cumulative distribution function F in
the cumulative link model (1), while the option "acl" implies that the adjacent categories
logit model (2) is selected. For nominal multinomial responses, the function nomLORgee fits
the baseline category logit model (3), and hence the link argument is not offered.

The formula (=response~covariates) argument identifies the multinomial response variable
(response) and specifies the form of the linear predictor (covariates), assuming that this
includes an intercept term. If required, the J > 2 observed response categories are sorted in
an ascending order and then mapped onto {1, 2, . . . , J}. To account for a covariate x with a
constrained parameter coefficient fixed to 1 in the linear predictor, the term offset(x) must
be inserted on the right hand side of formula.

3.2. Data representation

The id argument identifies the N subjects by assigning a unique label to each subject. If re-
quired, the observed id labels are sorted in an ascending order and then relabeled as 1, . . . , N ,
respectively.

The repeated argument identifies the times at which the multinomial responses are recorded
by treating the T unique observed times in the same manner as in id. The purpose of
repeated is dual: To identify the T distinct time points and to construct the full marginalized
contingency table for each time-pair by aggregating the relevant/available responses across
subjects. The repeated argument is optional and it can be safely ignored in balanced designs
or in unbalanced designs in which if the t-th response is missing for a particular subject
then all subsequent responses at times t′ > t are missing for that subject. Otherwise, it is
recommended to provide the repeated argument in order to ensure proper construction of
the full marginalized contingency table. To this end, note that if the measurement occasions
are not recorded in a numerical mode, then the user should create repeated by mapping the
T distinct measurement occasions onto the set {1, . . . , T} in such a way that the temporal
order of the measurement occasions is preserved. For example, if the measurements occasions
are recorded as “before”, “baseline”, “after”, then the levels for repeated should be coded as
1, 2 and 3, respectively.

The dataset is imported via the data argument in “long” format, meaning that each row
contains all the information provided by a subject at a given measurement occasion. This
implies that data must include the variables specified in the mandatory arguments formula

and id, as well as the optional argument repeated when this is specified by the user. If no
data is provided then the above variables are extracted from the environment that nomLORgee
and ordLORgee are called. Currently missing observations, identified by NA in data, are
ignored.
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log θtjt′j′ LORstr Functions Parameters

φ "uniform" ordLORgee 1

φ(t,t
′) "category.exch" ordLORgee L

φ (µj − µj+1)
(
µj′ − µj′+1

)
"time.exch" Both J − 1

φ(t,t
′)
(
µ
(t,t′)
j − µ(t,t

′)
j+1

)(
µ
(t,t′)
j′ − µ(t,t

′)
j′+1

)
"RC" Both L(J − 1)

Table 1: The main options for the marginalized local odds ratios structures in multgee.

3.3. Marginalized local odds ratios structure specification

The marginalized local odds ratios is specified via the LORstr argument. Table 1 displays
the structures proposed by Touloumis et al. (2013). Currently the default option is the time
excheangeability structure ("time.exch") in nomLORgee and the category excheangeability
("category.exch") structure in ordLORgee. The uniform ("uniform") and category ex-
cheangeability structures are not allowed in nomLORgee because given unit-spaced parameter
scores are not meaningful for nominal response categories.

The user can also fit the independence ‘working’ model (LORstr="independence") or even
provide the local odds ratios structure (LORstr="fixed") using the LORterm argument. In
this case, an L×J2 matrix must be constructed such that the g-th row contains the vectorized
form of a probability table that satisfies the desired local odds ratios structure at the time-pair
corresponding to the g-th level of G.

Touloumis (2011) discussed two further versions of the "time.exch" and the RC ("RC")
structures based on using: i) Heterogeneous score parameters (homogeneous=FALSE) at each
time-pair, and/or ii) monotone score parameters (restricted=TRUE), an option applicable
only for ordinal response categories. However, it is sensible to employ these additional options
only when the local odds ratios structures in Table 1 do not seem adequate.

It is important to mention that the user must provide only the arguments required for the
specified local odds ratios structure. For example, the arguments homogeneous, restricted
and LORterm are ignored when LORstr="uniform".

3.4. Computational details

The default estimation procedure for the marginalized local odds ratios structure is to fit
model (5) to the full marginalized contingency table (LORem="3way") after imposing the de-
sired restrictions on the intrinsic and the score parameters. Touloumis (2011) noticed that the
estimated local odds ratios structure under model (5) is identical to that obtained by fitting
independently a row and columns (RC) effect model (Goodman 1985) with homogeneous score
parameters to each of the L contingency tables. Motivated by this, an alternative estimation
procedure (LORem="2way") for estimating the structures "uniform" and "time.exch" was
proposed. In particular, one can estimate the single parameter of the "uniform" structure
as the average of the L intrinsic parameters φ(t,t

′) obtained by fitting the linear-by-linear
association model (Agresti 2013) independently to each of the L marginalized contingency
tables. For the "time.exch" structure, one can fit L RC effects models with homogeneous
(homogeneous=TRUE)/heterogeneous (homogeneous=FALSE) score parameters and then esti-
mate the log local odds ratio at each cutpoint (j, j′) by averaging log θ̂tjt′j′ for t < t′. Regard-
less of the value of LORem, the appropriate model for counts is fitted via the function gnm of
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the R package gnm (Turner and Firth 2012).

In the presence of zero observed counts, a small positive constant can be added (add) at each
cell of the marginalized contingency table to ensure the existence of α̂. We conjecture that a
constant of the magnitude 10−4 will serve this purpose without affecting the strength of the
association structure.

A Fisher scoring algorithm is employed to solve the estimating equations (4) as in Lipsitz et al.
(1994). The only difference is that now α̂ is not updated. The default way to obtain the initial
value for β is via the function vglm of the R package VGAM (Yee 2010). Alternatively, the
initial value can be provided by the user (bstart). The Fisher scoring algorithm converges
when the elementwise maximum relative change in two consecutive estimates of β is less
than or equal to a predefined positive constant ε. The control argument controls the related
iterative procedure variables and printing options. The default maximum number of iterations
is 15 and the default tolerance is ε = 0.001.

Recall that calculation of the ‘weight’ matrix Vi at given values of (β,α) relies on the IPF
procedure. The ipfp.ctrl argument controls the related variables. The convergence criterion
is the maximum of the absolute difference between the fitted and the target row and column
marginals. By default, the tolerance of the IPF procedure is 10−6 with a maximal number of
iterations equal to 200.

The IM argument defines which of the R functions solve, qr.solve or cholesky will be used
to invert matrices in the Fisher scoring algorithm.

4. Description of utility functions

The function waldts performs a goodness-of-fit test for two nested GEE models based on
a Wald test statistic. Let M0 and M1 be two nested GEE models with marginal regression
parameter vectors β0 and β1 = (β>0 ,β

>
q )>, respectively. Define a matrix C such that Cβ1 =

βq. Here q equals the rank of C and the dimension of βq. The hypothesis

H0 : βq = 0 vs H1 : βq 6= 0

tests the goodness-of-fit of M0 versus M1. Based on a Wald type approach, H0 is rejected
at α% significance level, if (Cβ̂)>(NCΣ̂C>)−1(Cβ̂) ≥ Xq(α), where β̂ and Σ̂ are estimated
under model M1 and Xq(α) denotes the α upper quantile of a chi-square distribution with q
degrees of freedom.

Touloumis et al. (2013) suggested to select the local odds ratios structure by inspecting
the range of the L estimated intrinsic parameters under the "category.exch" structure for
ordinal responses, or under the "RC" structure for nominal responses. If the estimated intrinsic
parameters do not differ much, then the underlying marginalized local odds ratios structure is
likely nearly exchangeable across time-pairs. In this case, the simple structures "uniform" or
"time.exch" should be preferred because they tend to be as efficient as the more complicated
ones. The function intrinsic.pars gives the estimated intrinsic parameter of each time-pair.

The single-argument function matrixLOR creates a two-way probability table that satisfies a
desired local odds ratios structure. This function aims to ease the construction of the LORterm
argument in the core functions nomLORgee and ordLORgee.
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5. Example

To illustrate the main features of the package multgee, we follow the GEE analysis performed
in Touloumis et al. (2013). The data came from a randomized clinical trial (Lipsitz et al. 1994)
that aimed to evaluate the effectiveness of the drug Auranofin versus the placebo therapy for
the treatment of rheumatoid arthritis. The five-level (1=poor, . . . , 5=very good) ordinal
multinomial response variable was the self-assessment of rheumatoid arthritis recorded at one
(t = 1), three (t = 2) and five (t = 3) follow-up months. To acknowledge the ordinal response
scale, the marginal cumulative logit model

log

(
P(Yit ≤ j|xi)

1− P(Yit ≤ j|xi)

)
= β0j + β1I(timei = 3) + β2I(timei = 5) + β3trti

+ β4I(bi = 2) + β5I(bi = 3) + β6I(bi = 4) + β7I(bi = 5). (8)

was fitted, where i = 1, . . . , 301, t = 1, 2, 3, j = 1, 2, 3, 4 and I(A) is the indicator function
for the event A. Here xi denotes the covariates matrix for subject i that includes the self-
assessment of rheumatoid arthritis at the baseline (bi), the treatment variable (trti), coded
as (1) for the placebo group and (2) for the drug group, and the follow-up time recorded in
months (timei).
The GEE analysis is performed in two steps. First, we select the marginalized local odds
ratios structure by estimating the intrinsic parameters under the "category.exch" structure

R> library("multgee")

R> data("arthritis")

R> head(arthritis)

id y sex age trt baseline time

1 1 4 2 54 2 2 1

2 1 5 2 54 2 2 3

3 1 5 2 54 2 2 5

4 2 4 1 41 1 3 1

5 2 4 1 41 1 3 3

6 2 4 1 41 1 3 5

R> intrinsic.pars(y = y, data = arthritis, id = id, repeated = time,

+ rscale = "ordinal")

[1] 0.6517843 0.9097341 0.9022272

The range of the estimated intrinsic parameters is small (≈ 0.26) which suggests that the
underlying marginalized association pattern is nearly constant across time-pairs. Thus we
expect the "uniform" structure to capture adequately the underlying correlation pattern.
Note that we passed the time variable to the repeated argument because this numerical
variable indicates the measurement occasion at which each observation was recorded.

Now we fit the cumulative logit model (8) under the "uniform" via the function ordLORgee
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R> fit <- ordLORgee(formula = y ~ factor(time) + factor(trt) + factor(baseline),

+ link = "logit", id = id, repeated = time, data = arthritis,

+ LORstr = "uniform")

R> summary(fit)

GEE FOR ORDINAL MULTINOMIAL RESPONSES

version 1.5.1 modified 2015-03-09

Link : Cumulative logit

Local Odds Ratios:

Structure: uniform

Model: 3way

call:

ordLORgee(formula = y ~ factor(time) + factor(trt) + factor(baseline),

data = arthritis, id = id, repeated = time, link = "logit",

LORstr = "uniform")

Summary of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.5161000 -0.2399000 -0.0749700 0.0000219 -0.0066990 0.9933000

Number of Iterations: 5

Coefficients:

Estimate san.se san.z Pr(>|san.z|)

beta01 -1.84315 0.38929 -4.7346 < 2e-16 ***

beta02 0.26692 0.35013 0.7624 0.44585

beta03 2.23132 0.36625 6.0924 < 2e-16 ***

beta04 4.52542 0.42123 10.7434 < 2e-16 ***

factor(time)3 0.00140 0.12183 0.0115 0.99080

factor(time)5 -0.36172 0.11395 -3.1743 0.00150 **

factor(trt)2 -0.51212 0.16799 -3.0486 0.00230 **

factor(baseline)2 -0.66963 0.38036 -1.7605 0.07832 .

factor(baseline)3 -1.26070 0.35252 -3.5763 0.00035 ***

factor(baseline)4 -2.64373 0.41282 -6.4041 < 2e-16 ***

factor(baseline)5 -3.96613 0.53164 -7.4602 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Local Odds Ratios Estimates:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257

[2,] 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257

[3,] 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257

[4,] 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257
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[5,] 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257

[6,] 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257

[7,] 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257

[8,] 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000 2.257 2.257 2.257 2.257

[9,] 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000

[10,] 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000

[11,] 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000

[12,] 2.257 2.257 2.257 2.257 2.257 2.257 2.257 2.257 0.000 0.000 0.000 0.000

pvalue of Null model: <0.0001

The summary method summarizes the fit of the GEE model including the GEE estimates,
their estimated standard errors based on the “sandwich” covariance matrix and the p-values
from testing the statistical significance of each regression parameter in (8). The estimated
marginalized local odds ratios structure can be found in a symmetric T (J − 1) × T (J − 1)
block matrix written symbolically as

0 Θ12 . . . Θ1T

Θ21 0 . . . Θ2T

. . . . . .
. . . . . .

ΘT1 ΘT2 . . . 0

 .
Each block denotes an (J − 1) × (J − 1) matrix. The (j, j′)-th element of the off-diagonal
block Θtt′ represents the estimate of θtjt′j′ . Based on the properties of the local odds ratios
it is easy to see that Θtt′ = Θ>t′t for t < t′. Finally, the diagonal blocks are zero to reflect the
fact that no local odds ratios are estimated when t = t′. In our example, J = 5 and thus each
block is a 4×4 matrix. Since the uniform structure is selected, all local odds ratios are equal
and estimated as 2.257. Finally, pvalue of Null model corresponds to the p-value of testing
the hypothesis that no covariate is significant, i.e., β1 = β2 = β3 = β4 = β5 = β6 = β7 = 0,
based on a Wald test statistic.

The goodness-of-fit of model (8) can be tested by comparing it to a marginal cumulative logit
model that additionally contains the age and gender main effects in the linear predictor

R> fit1 <- update(fit, formula = ~. + factor(sex) + age)

R> waldts(fit, fit1)

Goodness of Fit based on the Wald test

Model under H_0: y ~ factor(time) + factor(trt) + factor(baseline)

Model under H_1: y ~ factor(time) + factor(trt) + factor(baseline) + factor(sex) +

age

Wald Statistic=3.9554, df=2, p-value=0.1384

6. Summary and practical guidelines



12 multgee: GEE for Multinomial Responses

We described the R package multgee which implements the local odds ratios GEE approach
(Touloumis et al. 2013) for correlated multinomial responses. Unlike existing GEE softwares,
multgee allows GEE models for ordinal (ordLORgee) and nominal (nomLORgee) responses.
The available local odds ratios structures (LORstr) in each function respect the nature of the
response scale to prevent usage of ordinal local odds ratios structures (e.g., "uniform") in
nomLORgee. The fitted GEE model is summarized via the summary method while the estimated
regression coefficient can be retrieved via the coef method. The statistical significance of
the regression parameters can be assessed via the function waldts. A similar strategy to
that presented in Section 5, can be adopted to analyze GEE models for correlated nominal
multinomial responses.

From a practical point of view, we recommend the use of the "uniform" structure for ordi-
nal responses and the "time.exch" structure for nominal especially when the range of the
estimated intrinsic parameters (intrinsic.pars) is small. Based on our experience, some
convergence problems might occur as the complexity of the local odds ratios structure in-
creases and/or if the marginalized contingency tables are very sparse. Two possible solutions
are either to adopt a simpler local odds ratios structure or to increase slightly the value of the
constant added to the marginalized contingency tables (add). However, we believe that users
should refrain from using the independence ‘working’ model unless the aforementioned strate-
gies fail to remedy the convergence problems. To decide on the form of the linear predictor,
variable selection model procedures could be incorporated using the function waldts.

In future versions of multgee, we plan to permit time-dependent intercepts in the marginal
models, to increase the range of the marginal models, by including, for example, the family
of continuation-ratio models for ordinal responses, and to offer a function for assessing the
proportional odds assumption in models (1) and (2).
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