
V
ersion1.1

An n-gram Babbler

Guide to the ngram Package

Drew Schmidt and Christian Heckendorf

Guide to the

ngram Package

An n-gram Babbler

June 24, 2014

Drew Schmidt

wrathematics@gmail.com

Christian Heckendorf

heckendorfc@gmail.com

Version 1.1

c© 2014 Drew Schmidt and Christian Heckendorf.

Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.

This manual may be incorrect or out-of-date. The authors assume no responsibility for errors
or omissions, or for damages resulting from the use of the information contained herein.

Cover art is Hydra, uploaded to openclipart.org by Tavin.

This publication was typeset using LATEX.

openclipart.org

Contents

1 Introduction 1

2 Installation 1

2.1 Installing from Source . 1
2.2 Installing from CRAN . 2

3 Using the Package 2

3.1 Background . 2
3.2 Package Use and Example . 2
3.3 Important Notes About the Internal Representation 4

2 INSTALLATION 1 of 4

1 Introduction

An n-gram is an ordered sequence of n “words” taken from a body of text. For example, consider
the string A B A C A B B. This is the “blood code” for the video game Mortal Kombat for the
Sega Genesis, but you can pretend it’s a biological sequence or something boring if you prefer.
If we examine the 2-grams (or bigrams) of this sequence, they are:

✞ ☎

A B, B A, A C, C A, A B, B B
✝ ✆

or without repetition:

✞ ☎

A B, B A, A C, C A, B B
✝ ✆

That is, we take the input string and group the “words” 2 at a time (because n=2). If we form
all of the n-grams and record the next “words” for each n-gram (and their frequency), then we
can generate new text which has the same statistical properties as the input.

The ngram package is an R package for constructing n-grams and generating new text as de-
scribed above. It also contains a few preprocessing utilities to aid in this process. Additionally,
the C code underlying this library can be compiled as a standalone shared library.

2 Installation

In this section, we will describe the various ways that one can install the ngram package.

2.1 Installing from Source

The sourcecode for this package is available (and actively maintained) on GitHub. To install an
R package from source on Windows, you will need to first install the Rtools package. To install
an R package from source on a Mac, you will need to install the latest Xcode, which you can get
from the App store.

The easiest way to install ngram from GitHub is via the devtools package by Hadley Wickham.
To install ngram using devtools, simply issue the command:
✞ ☎

1 library(devtools)

2 install_github(repo="ngram", username="wrathematics")
✝ ✆

from R. Alternatively, you could download the sourcecode from github, unzip this archive, and
issue the command:
✞ ☎

R CMD INSTALL ngram -master
✝ ✆

from your shell.

http://cran.r-project.org/bin/windows/Rtools/Rtools216.exe
http://cran.r-project.org/web/packages/devtools/index.html
https://github.com/wrathematics/ngram/archive/master.zip

3 USING THE PACKAGE 2 of 4

2.2 Installing from CRAN

The usual
✞ ☎

1 install.packages("ngram")
✝ ✆

from an R session should do it.

3 Using the Package

3.1 Background

The input to the n-gram processor must be a single string (character vector of length 1). To aid
in what could be a repetitive task, the package offers the concat() function. For example:
✞ ☎

1 > letters

2 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"

"p" "q" "r" "s"

3 [20] "t" "u" "v" "w" "x" "y" "z"

4 > library(ngram)

5 > concat(letters)

6 [1] "abcdefghijklmnopqrstuvwxyz"

7 > concat(concat(letters), letters , collapse =" ")

8 [1] "abcdefghijklmnopqrstuvwxyz a b c d e f g h i j k l m n o p

q r s t u v w x y z"
✝ ✆

So if data is coming from multiple files, the simplest way to merge them together would be to
call
✞ ☎

1 x <- readLines("file1")

2 y <- readLines("file2")

3

4 str <- concat(x, y)
✝ ✆

The ngram() function (which does the processing and forms the n-grams) always splits words
at a space. You can preprocess the string with R’s regular expression utilities, such as gsub(),
or use the preprocess() utility in the ngram package to be able to split at non-spaces for the
purpose of n-gram generation (by inserting your own beforehand).

3.2 Package Use and Example

The general process goes

1. Prepare the input string; you may find concat() and preprocess() useful (see the pre-
vious subsection).

3 USING THE PACKAGE 3 of 4

2. Process with ngram().

3. Generate new text with babble(), and/or

3.5 Extract pieces of the processed ngram data with the get.*() functions.

Let us return to the example sequence of letters from Section 1. If we store this string in x:
✞ ☎

1 x <- "A B A C A B B"
✝ ✆

then the next step is to process with ngram():
✞ ☎

1 library(ngram)

2 ng <- ngram(x, n=2)
✝ ✆

We can then inspect the sequence:
✞ ☎

1 > ng

2 [1] "An ngram object with 5 2-grams"
✝ ✆

If you don’t have too many n-grams, you may want to print all of them by calling print()

directly, with option full=TRUE:
✞ ☎

1 > print(ng , full=TRUE)

2 C A

3 B {1} |

4

5 B A

6 C {1} |

7

8 B B

9 NULL {1} |

10

11 A C

12 A {1} |

13

14 A B

15 A {1} | B {1} |
✝ ✆

Here we see each 3-gram, followed by its next possible “words” and each word’s frequency of
occurrence (occurrence following the given n-gram). So in the above, the first n-gram printed C

A has B as a next possible word, because the sequence C A is only ever followed by the “word”
B in the input string. On the other hand, A B is followed by A once and B once. The sequence B
B is terminal, i.e. followed by nothing; we treat this case specially.

Next, we might want to generate some new strings. We for this, we use babble():
✞ ☎

1 > babble(ng , 10)

2 [1] "A C A B B B A C A B "

3 USING THE PACKAGE 4 of 4

3 > babble(ng , 10)

4 [1] "B B C A B A C A B A "

5 > babble(ng , 10)

6 [1] "A C A B A C A B A C "
✝ ✆

This generation includes a random process. For this, we developed our own implementation of
MT19937, and so R’s seed management does not apply. To specify your own seed, use the seed=
argument:
✞ ☎

1 > babble(ng , 10, seed =10)

2 [1] "A C A B A C A B B B "

3 > babble(ng , 10, seed =10)

4 [1] "A C A B A C A B B B "

5 > babble(ng , 10, seed =10)

6 [1] "A C A B A C A B B B "
✝ ✆

3.3 Important Notes About the Internal Representation

The entirety of the interesting bits of the ngram package take place outside of R (completely in
C). Observe:
✞ ☎

1 > str(ng)

2 Formal class ’ngram ’ [package "ngram"] with 6 slots

3 ..@ str_ptr:<externalptr >

4 ..@ strlen : int 13

5 ..@ n : int 2

6 ..@ ng_ptr :<externalptr >

7 ..@ ngsize : int 5

8 ..@ wl_ptr :<externalptr >
✝ ✆

So everything is wrangled up top as an S4 class, and underneath the data is stored as 2 linked
lists, outside the purview of R. This means that, for example, that you cannot save the n-gram
object with a call to save(). If you do and you shut down and restart R, the pointers will no
longer be valid.

Extracting a the data into a native R data structure is not currently possible. Full support is
planned for a later release. Some pieces can be extracted. At this time, get.ngrams() and
get.string() are implemented, but get.nextwords() is not.
✞ ☎

1 > get.ngrams(ng)

2 [1] "C A" "B A" "B B" "A C" "A B"

3 > get.string(ng)

4 [1] "A B A C A B B"

5 > get.nextwords(ng)

6 Error in .local(ng, ...) : Not yet implemented
✝ ✆

	Introduction
	Installation
	Installing from Source
	Installing from CRAN

	Using the Package
	Background
	Package Use and Example
	Important Notes About the Internal Representation

