
Propensity score based data analysis

Susanne Stampf

March 28, 2014

Abstract

For some time, propensity score (PS) based methods have been frequently applied
in the analysis of observational and registry data. The PS is the conditional probability
of a certain treatment given patient’s covariates. PS methods are used to eliminate
imbalances in baseline covariate distributions between treatment groups and permit
to estimate marginal effects.

The package nonrandom is a tool for a comprehensive data analysis using stratifi-
cation, matching and covariate adjustment by PS. Several functions are implemented,
starting from the selection of the PS model up to estimating the PS based treat-
ment effect. Before estimating the PS, knowledge about which covariates should
be included in the PS model is needed. relative.effect() provides the op-
portunity to investigate the extent to which a covariate confounds the treatment-
outcome relationship. pscore() estimates the PS and plot.pscore() offers a
graphical presentation of the PS distribution. Stratification and matching by PS are
directly implemented in ps.makestrata() and ps.match(). To check covariate
balance between treatment groups, statistical tests or standardized differences are
given in ps.balance(). In addition, dist.plot() and plot.stdf() provide a
graphical balance check. Finally, the PS based treatment effect can be estimated in
ps.estimate(). This function also offers a comparison to regression based esti-
mates. A special case of regression based analysis may be covariate adjustment by
PS.

All functions can be applied separately and combined. Additionally, it is possible
to apply all functions repeatedly to decide which analysis strategy is most suitable.
Print and summary functions are available for the most implemented functions.

There are two real data examples to illustrate the application of nonrandom. In
the first data example, quality of life is investigated in breast cancer patients in an
observational treatment study of the German Breast Cancer Study Group (GBSG).
The second data example deals with lower respiratory tract infections (LRTI) in in-
fants and children in the observational study Pri.DE (Pediatric Respiratory Infection,
Deutschland) in Germany.
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1 Introduction

For some time, propensity score (PS) based methods have been frequently applied in the
analysis of observational and registry data. In the medical field, the PS is often defined
as the conditional probability of receiving a certain treatment given covariates [1]. In gen-
eral, it is unknown and has to be estimated, e.g.~via logistic regression. The selection of
an appropriate PS model may be the first obstacle. Lunt et al.~[2] proposed a measure
estimating the extent to which a covariate confounds the treatment effect on outcome.
Covariates with a large extent are potential candidates for the inclusion in the PS model.

In observational studies, covariate distributions differ generally between treatment groups
and PS based methods aim to eliminate these imbalances. There are four PS based
methods: stratification, matching, covariate adjustment and inverse probability weighting
by PS. The first both methods are commonly used and intend to create data situations
as in randomized controlled trials (RCTs) within which direct comparison of treatment
groups are meaningful. Covariate adjustment by PS is also a favourite approach since
it is easy to apply. The PS is included as a covariate in addition to treatment in a usual
regression model. The fourth approach, namely the inverse probability weighting by PS,
is rather rarely used [3, 4]. The PS is here used to weight each individual and it is often
applied as weighted regression [5]. Stratification and matching by PS are more popular
methods since they are easy to understand. However, matching by PS is applied at most
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in medical research [6, 7].

Stratification by PS is used to group individuals with similar or equal PS such that the
distributions of measured covariates are sufficiently balanced in the treatment groups
within each stratum [1, 8]. It can be supposed that each stratum mimics a randomized
situation within which the distributions of the measured covariates are balanced in ex-
pectation. If the assumption of ’strongly ignorable treatment assignment’ (SITA) holds,
stratum-specific parameters can be unbiasedly estimated [1] and those estimates are in
turn summed up using appropriate weights to estimate the parameter of interest.
If matching by PS is used, one or more untreated individuals are matched to one treated
individual or vice versa. Individuals within these matched pairs or sets have similar or
equal PS whereas the similarity is often defined by a so-called caliper, generally used as
one-fifth of the standard deviation of the logit of the estimated PS [9]. Although match-
ing by PS has been frequently applied [6, 7], it has been shown that the dependence
structure in the matched sample is often not accounted for in the estimation of the in-
teresting parameter [10]-[12]. Approaches such as generalized linear mixed models and
generalized estimation equations are appropriate to analyze data with correlation stru-
cture [13]-[17].

In general, PS methods are embedded in the framework of causal modeling dealing with
potential outcomes [18]-[20]. Consider a pair of random variables (Y0, Y1), where Y1
denotes the outcome of an individual if treated, and Y0 represents the outcome of the
same individual if not treated1. The observed outcome is Y = ZY1 + (1 − Z )Y0 whereas
Z is the treatment indicator with Z = 1 if the individual is treated and Z = 0 if not. The
expected values of the potential outcomes E[Y1] and E[Y0] can be derived if the identi-
fying assumption (SITA) holds [1]. This assumption states, that, within groups defined
by PS, the observed outcome of individuals assigned to treatment Z = 0 has the same
distribution as the unobserved outcome of individuals assigned to treatment Z = 1, if the
latter had been assigned to treatment Z = 0.
The idea of PS was initiated to estimate marginal linear treatment effects defined as
∆ = E[Y1 − Y0] [1]. By now, the idea has been transferred to estimate non-linear effects,
e.g.~the marginal odds ratio which is the change in odds of outcome, if everybody versus
nobody were treated [21]-[23]. Therefore, the marginal probabilities for the potential out-
comes P[Y1 = 0] and P[Y1 = 1] have to be estimated which are used to construct an ap-
propriate estimator for the marginal odds ratio defined as δ = p1/(1−p1)

p0/(1−p0) with pz = P[Yz = 1],
z = 0, 1. In case of stratified data, the marginal probabilities of the potential outcomes
can be estimated by the outcome rates from the PS strata or derived from the standard
regression results [21].

1For simplicity, indices for individiuals are here ignored.
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In the following, the application of the nonrandom package is demonstrated step by step
introducing all implemented functions. The usage of all functions is illustrated by exem-
plary analyses of two data sets. First, there are data on quality of life in breast cancer
patients in an observational treatment study of the German Breast Cancer Study Group
(GBSG) [24, 25]. Patients with mastectomy and lumpectomy are compared with each
other regarding the quality of life measured as a linear sum score. The second data ex-
ample deals with lower respiratory tract infections (LRTI) in a population of infants and
children years in the observational study Pri.DE (Pediatric Respiratory Infection, Deutsch-
land) in Germany [26]. Here, the impact of a current infection with the respiratory syncytial
virus (RSV) on the severity of LRTI is investigated [23].

2 The estimation of PS

The PS is generally unknown and has to be estimated whereas the selection of the PS
model is often a delicate issue [27]-[31]. A measure describing the extent to which a
covariate is confounding the treatment effect on the outcome is proposed by Lunt et
al.~[2]. Covariates with a large impact are potential candidates for the inclusion in the PS
model. This proposal is implemented in the function relative.effect().

2.1 Selection of PS model ... relative.effect()

An important step is to decide which baseline covariates Xk , k = 1, ..., K , are necessary
to include in the PS model. A measure describing the extent to which a covariate Xk
confounds the effect of treatment Z on the outcome Y may be helpful. In linear case, it is
defined as the relative effect (per cent)∣∣∣∣βz,xk − βz

βz

∣∣∣∣× 100

and for binary outcome ∣∣∣∣∣e{βz,xk } − e{βz}

e{βz}

∣∣∣∣∣× 100

with regression coefficients for treatment βz and βz,xk from the corresponding regression
models. That means, K adjusted (in abstract formula: Y ∼ Z + Xk ) and one unadjusted
regression models (Y ∼ Z ) are fitted using generalized linear regression with respect to
the measuring scale of the outcome (internal use of glm()).

To define the models, two specification options are available in relative.effect().
First, outcome, treatment and covariates can be defined separately as strings or numerics
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using the arguments resp, treat and sel or, secondly, an explicit regression formula
using the argument formula can be specified:

> ## (1) PRI.De data dealing with LRTI
> load(pride)
> pride.effect <- relative.effect(data = pride,
+ sel = c(2:14),
+ family = "binomial",
+ resp = 15,
+ treat = "PCR_RSV")
>
>
> ## (2) STU1 data on quality of life
> load(stu1)
> stu1.effect <- relative.effect(data = stu1,
+ formula = pst~therapie+tgr+age)

Information about the unadjusted and the adjusted treatment effects on outcome and the
corresponding relative effects are available, e.g.~in the STU1 example:

> stu1.effect

Treatment: therapie
Outcome: pst
Covariates: tgr age

Unadjusted treatment effect: 1.5894

Adjusted and relative effects:

adj. treatment effect rel. effect
age 0.7880392 50.420198
tgr 1.7004732 6.985956

Two covariates ’tgr’ (tumor size, binary) and ’age’ (age groups) are investigated and they
seem to affect the ’therapie’ effect on quality of life (’pst’) in two different directions.

2.2 Estimation of PS ... pscore() and plot.pscore()

If covariates needed for the PS estimation are determined, a logistic regression model is
fitted (internal use of glm()) assuming a binary treatment variable:
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> stu1.ps <- pscore(data = stu1,
+ formula = therapie~tgr+age)
>
> pride.ps <- pscore(data = pride,
+ formula = PCR_RSV~SEX+RSVINF+REGION+
+ AGE+ELTATOP+EINZ+EXT,
+ name.pscore = "ps")

It is possible to specify a name for the estimated PS which in turn is used to save it in the
data set (argument name.pscore, default is ’pscore’).
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Figure 1: Density estimation of the estimated PS in the PRI.De data using
plot.pscore()

In the current version 1.3, a plot function plot.pscore() is available to illustrate the
estimated density of the estimated PS in the treatment groups. However, the function
pscore() has to be previously used.

> ## Figure 1
> plot.pscore(pride.ps,
+ main = "PRI.De study",
+ with.legend = TRUE,
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+ par.1 = list(lty=1, lwd=2), ## line type and size
+ ## for PS density in
+ ## the group '1'
+ par.0 = list(lty=3, lwd=2), ## ... in the group '0'
+ xlab = "",
+ ylim = c(0,4.5))

The output object is of class ’pscore’ and contains comprehensive information about the
PS model, e.g.~the specified PS model formula ($formula.pscore) and the name of
the PS estimated at last ($name.pscore), the treatment ($name.treat) and the out-
come ($name.resp). Furthermore, the complete data set ($data) extended by the esti-
mated PS, a vector with values of the PS estimated at last ($pscore) and the treatment
variable ($treat) are separately available.

3 PS based methods

Observational and registry data frequently present imbalances in covariate distributions
between treatment groups. Stratification and matching by PS can be used to eliminate
these imbalances by creating data situation as in RCTs.

3.1 Stratification by PS ... ps.makestrata()

In general, stratification groups individuals who have similar or equal values for the strati-
fication variable. If the (estimated) PS is the stratification variable, its distribution is often
used to define the strata [8, 34].

The use of the function ps.makestrata() depends on the class of the input object
whereas ’data.frame’ and ’pscore’ (if pscore() is previously used) are permitted. The
arguments stratified.by and breaks are crucial for the stratification procedure:
stratified.by defines the stratification variable in the data (i.e.~defined by argument
object) and the way to stratify is specified by breaks. The former argument is not
necessarily needed if the input object is of class ’pscore’. The estimated PS stored in
$pscore is then automatically sourced. Contrary, it is needed if the input object is of
class ’data frame’. The argument name.stratum.index specifies the name of the va-
riable containing the stratum indices which is stored in the data.
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There are three possibilities to use the argument breaks. First, the stratification variable
is simply factorized and each factor corresponds to one stratum (breaks is set to ’NULL’,
default setting). This is useful when the stratification variable has only few values.

> ## (1) stratification (factorization)
> stu1.str4 <- ps.makestrata(object = stu1.ps)
> stu1.str4

Stratified by: pscore

Strata information:

Strata bounds n n (per cent)
1 0.601 231 0.358
2 0.709 65 0.101
3 0.824 255 0.395
4 0.883 95 0.147

Secondly, the number of strata can be specified. Therefore, an integer has to be specified.

> ## (2) stratification (specification of the number of strata)
> pride.str.b3 <- ps.makestrata(object = pride.ps, breaks = 3)
> pride.str.b3

Stratified by: ps

Strata information:

Strata bounds n n (per cent)
1 [0.0619,0.24] 634 0.206
2 (0.24,0.417] 1713 0.557
3 (0.417,0.595] 731 0.237

The third method permits the definition of specific stratum limits. For it, appropriate R-
functions as e.g.~quantile() can be used as well as pre-specified interval limits. In
case of the PRI.De example, quintiles from the distribution of the estimated PS are cho-
sen:

> ## (3) stratification (definition of specific stratum limits)
> pride.str5 <- ps.makestrata(object = pride.ps,
+ breaks = quantile(pride.ps$pscore,
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+ seq(0,1,0.2)),
+ name.stratum.index = "stratum")

Depending on the class of the input object, ps.makestrata() returns an object of
class ’stratified.pscore’ or ’stratified.data.frame’. If the class of the input object is ’pscore’,
the output object inherits all information from the input object. The complete data set
($data) extended by the generated stratum indices labeled by $name.stratum.index
is available. Furthermore, the name of the stratification variable ($stratified.by), the
variable with the stratum indices ($stratum.index) and the corresponding stratum lim-
its ($intervals) generated at last are stored in the output object.

Stratification of data can be done repeatedly, but only the information from the last appli-
cation is stored separately in the output object. However, stratum indices from all stra-
tification procedures previously done are included in the data set stored in the output
object.

3.2 Matching by PS ... ps.match()

The most popular PS method to cope with covariate imbalances is matching by PS. One
or more untreated individuals are matched to treated individuals (or vice versa) according
to the estimated PS. Individuals matched to each other have a similar or an identical esti-
mated PS wheres the similarity is determined by a caliper size defined by a pre-specified
maximum distance between the estimated PS from treated and untreated individuals.

Similar to ps.makestrata(), the use of ps.match() depends both on the class and
the numbers of the input objects. The classes ’data.frame’ and ’pscore’ (if pscore()
is previously used) are supported and one or two input objects of class ’data.frame’
are allowed. The argument matched.by defining the matching variable in the data
has not to be specified when the input object is of class ’pscore’. The estimated PS
stored in $pscore is then automatically used. Additionally, the treatment variable is
also not necessarily needed since it is already stored in $treat. Contrary, both ar-
guments are needed when the input object(s) are of class ’data.frame’. The argument
name.match.index specifies the name of the variable that contains the matching in-
dices (matching sets of individuals get a consecutive matching index). This variable is
stored in the data.

In ps.match() it is possible to pass two data frames by using the argument
object.control in addition to the argument object. This can be useful if one data
set only includes treated individuals and a second data set contains information about
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the untreated individuals. If the matching variable (matching.by) differs in both data
sets, the matching variable in the second data set must also be specified in argument
control.matched.by. Independent of the classes and the number of input objects, the
treatment value defining ’treated’ individuals must be given in argument who.treated
(default is ’1’ and means ’treated’).

There are further parameters specifying the matching procedure. The matching ratio
(argument ratio) indicates how many individuals should be matched and the argu-
ment givenTmatchingC concerns the direction of the matching procedure, i.e.~who
is matched to whom. The default is ’TRUE’, i.e.~treated individuals are matched to un-
treated individuals as long as who.treated is set to ’1’ describing ’treated’). The argu-
ment bestmatch.first means that matching partners with the most similar estimated
PS are selected to be matched (’TRUE’, default) or they are taken randomly from the
pool of potential matching partners (’FALSE’). The caliper size can be defined by the ar-
guments caliper and x. The default setting for the caliper size is one-fifth (x=’0.2’) of
the standard deviation of the logit of estimated PS (caliper=’logit’) [9, 35]. However, it is
possible to specify numerics in the argument caliper (argument x is then disregarded)
or to modify the argument x in connection with caliper="logit". Furthermore, a ran-
dom number can be specified (setseed) to make the matching procedure reproducible.

In PRI.De data, untreated individuals are matched to treated individuals in a ratio of
1 : 1 (default) and the default caliper size is used. The matching variable is set to ’ps’.
Comprehensive information are available via the summary function:

> pride.m1 <- ps.match(object = pride.ps,
+ ratio = 1, ## default
+ x = 0.2, caliper = "logit", ## default
+ matched.by = "ps",
+ setseed = 38902)
> summary(pride.m1)

Matched by: ps

Matching parameter:

Caliper size: 0.102
Ratio: 1.000
Who is treated?: 1.000

Matching information:
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Untreated to treated?: TRUE
Best match?: TRUE

Matching data:

Number of treated obs.: 1031
Number of matched treated obs.: 1031
Number of untreated obs.: 2047
Number of matched untreated obs.: 1031
Number of total matched obs.: 2062
Number of not matched obs.: 1016
Number of matching sets: 1031
Number of incomplete matching sets: 0

The matching algorithm for the STU1 example is switched, i.e.~two treated individuals
should be matched to one untreated individual (givenTmatchingC=FALSE) since there
are fewer untreated than treated individuals in the data. Furthermore, the caliper size is
set to 0.5.

> stu1.m2 <- ps.match(object = stu1.ps,
+ ratio = 2, caliper = 0.5,
+ givenTmatchingC = FALSE,
+ setseed = 39062)
Argument 'givenTmatchingC'=FALSE: Treated elements were matched to
each untreated element.

The output object(s) are either of class ’matched.pscore’, ’matched.data.frame’ or
’matched.data.frames’ which depends on the class and the numbers of the input objects
and on the specification of the argument combine.output. This is useful when two
data frames are specified as input objects. The default is ’TRUE’, i.e.~the two input data
frames extended by the matching information are combined for the output and only one
output data frame of class ’matched.data.frame’ is given. Otherwise, the output object is
of class ’matched.data.frames’.
The data set and the data set limited to the matched individuals are stored in the output
object ($data, $data.matched). Both are extended by column(s) including the match-
ing indices labeled by name.match.index. Furthermore, individual matching indices
generated at last ($match.index, $name.match.index), the name of the matching
variable ($matched.by) and several matching parameters ($match.parameter) used
at last are stored. If there are two input objects and argument combine.output is set
to ’FALSE’, the values $data, $data.matched and $match.index are lists of data
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frames and vectors corresponding to the input objects. If the class of the input object is
pscore, the output object also inherits all information from the input object.

4 The balance check for covariate distributions

PS methods are used to cope with imbalances in covariate distributions between the
treatment groups. An important, but often neglected issue is the check for covariate bal-
ance between treatment groups after stratification or matching by PS. Graphics, statistical
tests and standardized differences can therefore be applied [36]-[38].

4.1 Graphical balance check ... dist.plot()

The function dist.plot() offers an illustration of the covariate distributions in the treat-
ment groups. Its usage depends on the class of the input object. As before, argu-
ments treat, stratum.index and match.index, respectively, are not necessarily
needed if the input object results from a previous application of ps.makestrata() or
ps.match(). This is in contrast to the situation when the input object is of class ’data
frame’.

If the input object is of class ’stratified.data.frame’ or ’stratified.pscore’, covariate distri-
butions are plotted separately by the treatment in each stratum. If the class of the
input object is either ’matched.data.frame’, ’matched.data.frames’ or ’matched.pscore’,
the covariate distributions are illustrated per treatment group in the matched data. Of
course, a comparison to the covariate distribution in the original data is possible (argu-
ment compare, default is ’FALSE’).

> ## Figure 2 (left)
> stu1.dplot1 <- dist.plot(object = stu1.m2,
+ sel = c("tgr"),
+ compare = TRUE,
+ label.match = c("original data",
+ "matched sample"))
>
> ## Figure 2 (right)
> stu1.dplot2 <- dist.plot(object = stu1.m2,
+ sel = c("age"),
+ plot.type = 2,
+ compare = TRUE,
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Figure 2: Balance check for the categorical covariates ’tgr’ and ’age’ in the STU1 data
before and after matching using different plot types in dist.plot(): plot.type=1
(left) and plot.type=2 (right)

+ legend.title = "Therapy")

There are two different plot types (argument plot.type) which act differently depend-
ing on the measuring scale of covariates. The default is ’1’, i.e.~stacked bar plots are
used to show frequencies (or rather proportions) for categorical and means for contin-
uous covariates. The decision about the categorical or the continuous character of the
selected covariates (argument sel) is controlled by the argument cat.level (default is
’2’, i.e.~covariates with more than 2 different values are considered as continuous). The
covariate distributions are illustrated by histograms if plot.type is set to ’2’. Therefore,
argument plot.levels specifies the number of cutpoints needed to define histogram
classes for continuous covariates. However, the definition of the number of histogram
classes (plot.levels, default is ’5’) in case of continuous covariates still depends on
the covariate structure to be plotted such that class number finally used may differ from
the specified number. If the covariate is categorical, the number of its categories are used
to define cutpoints.

> ## Figure 3 (left)
> pride.dplot1 <- dist.plot(object = pride.str5,
+ sel = "AGE",
+ label.stratum = c("Str.","Original"))
>
> ## Figure 3 (right)
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> pride.dplot2 <- dist.plot(object = pride.m1,
+ sel = c("AGE"),
+ plot.type = 2,
+ compare = TRUE,
+ legend.title = "RSV infection")

If plot.type=1 and the covariates are categorical/continuous, the category/treatment
labels are given in the legend. Therefore, users have to be careful to modify the argument
legend.title if both covariate types are simultaneously plotted. If plot.type=2, the
treatment labels are shown in the legend independent of the covariate type.

Original
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Figure 3: Balance check for ’Age’ (in years) in the PRI.De data before and after stratifi-
cation (left) and matching (right) using different plot types in distplot(): mean bars
(left, plot.type=1) and histograms (right, plot.type=2)

There are further useful arguments. For example, the arguments label.stratum and
label.match provide a modification of the label names within the graphic. Defaults are
’Original’ and ’Stratum’ and ’Matched’ for label.stratum and label.match, respecti-
vely. Further arguments can be used to modify, among others, font sizes, labels, colors
and plot margins.

The function dist.plot() returns numerous values which are stored in the output ob-
ject, e.g.~names of categorical ($var.cat) and continuous covariates ($var.noncat).
The length and the structure of the output (stored as lists) depend on the type of the
selected covariates and the chosen plot type.

For example, frequencies (scaled to one, therefore it should be called rather proportions
than frequencies) of the categorical covariate ’tgr’ in the treatment groups before and
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after matching are shown in Figure 2 on the left hand side. They are stored in the value
$frequency of the output object stu1.dplot1 containing a list for each selected cate-
gorical covariate which in turn includes cross tables for treatment (columns) and covariate
(rows), one for the ’original data’ and for the ’matched sample’. There is no proportion
difference in the group of untreated individuals (labeled by treatment ’0’), but there is a
difference in the group of treated individuals (since treated to untreated individuals were
matched). After matching (’matched sample’), the proportions of ’tgr’ are more similar in
both treatments compared to the original data.

> ## Return values of 'stu1.dplot1' presenting in Figure 2 (left)
> stu1.dplot1$var.cat
[1] "tgr"
>
> stu1.plot1$frequency
[[1]]
, , index = original data

treat
0 1

1 0.1796407 0.2713987 ## rows: 'tgr' categories
2 0.8203593 0.7286013 ## columns : treatment

, , index = matched sample

treat
0 1

1 0.1796407 0.1676647
2 0.8203593 0.8323353

If the argument plot.type is set to 2 as done in Figure 2 on the right hand side, fre-
quencies shown in histograms are separately saved for both treatment groups before and
after matching.

> ## Return values of 'stu1.dplot2' presenting in Figure 2 (right)
> stu1.dplot2$var.cat
[1] "age"
>
> stu1.dplot2$x.s.cat
[[1]] ## x.s.cat: category frequencies for

index ## covariate 'age' (rows) in treatment
1 2 ## group (Therapy=0) in original data

1 56 56 ## (index=1) and in the matched sample
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2 111 111 ## (index=2) (columns)

> stu1.dplot2$y.s.cat
[[1]] ## y.s.cat: category frequencies for

index ## covariate 'age' (rows) in treatment
1 2 ## group (Therapy=1) in original data

1 294 149 ## (index=1) and in the matched sample
2 185 185 ## (index=2) (columns)

In Figure 3, the distribution of the continuous covariate ’AGE’ in the PRI.De data set
are illustrated in both treatment groups before and after stratification (left) and matching
(right). On the left hand side, means of ’age’ in both treatment groups in original data and
in each stratum are given. The corresponding means are stored as follows:

> ## Return values of 'pride.dplot1' presenting in Figure 3 (left)
> pride.dplot1$var.noncat
[1] "AGE"
>
> pride.plot1$mean
[[1]] ## 1st list element for original data
[[1]][[1]] ## one list entry for each 'var.noncat'

0 1
1.2342170 0.9283253 ## means per treatment groups 0/1

[[2]] ## 2nd list element for stratified data
[[2]][[1]] ## one list entry for each 'var.noncat'

1 2 3 4 5
0 2.174609 1.482517 0.9733666 0.6686585 0.4156446
1 2.185500 1.563706 1.0035175 0.5804821 0.3117728

The first list element of ...$mean contains the ’age’ means in both treatment group in
the original data. There is in turn one entry for each selected covariate (the sequence of
covariates is identical to that defined in argument sel; since only ’age’ is here selected,
there is only one entry). Stratum-specific means are given in the second list elements
(rows: treatment, columns: strata) which in turn have so many entries as covariates were
selected in argument sel.

The return values of the object pride.m1 plotted on the right hand side in Figure 3 are
stored in pride.dplot2:
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> pride.dplot1$var.noncat
[1] "AGE"
>
pride.plot2$breaks.noncat ## breaks points for
[[1]] ## histogram classes
[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0
>
> pride.dplot2$x.s.noncat ## frequencies for
[[1]] ## 'RSV infection = 0'
[[1]]$`1` ## in original data('1') and
[1] 383 554 405 310 225 170 ##

##
[[1]]$`2` ## in matched data ('2')
[1] 315 321 178 101 78 38 ##

> pride.dplot2$y.s.noncat ## frequencies for
[[1]] ## 'RSV infection = 1'
[[1]]$`1` ## in original data('1') and
[1] 393 261 135 123 67 52 ##

##
[[1]]$`2` ## in matched data ('2')
[1] 393 261 135 123 67 52 ##

In addition to the data information that is plotted, treatment ($treat), individual stratum
indices ($stratum.index) or matching indices ($match.index) and selected covari-
ates ($name.sel, $sel) are saved in the output object.

4.2 Statistical tests and standardized differences ... ps.balance() and plot.stdf()

The graphical illustration of the covariate distributions in the treatment groups gives a
first insight, however, statistical tests decide whether differences potentially visible in the
graphics are significant. The function ps.balance() permits the application of stati-
stical tests and results can be used to decide about covariate balance. Since there is
an ongoing discussion about the appropriateness of statistical tests for balance decision,
standardized differences are proposed to decide about covariate balance, especially in
matched data [39]-[41].

The use of the function ps.balance() depends on the class of the input object. If infor-
mation about treatment, stratum or matching indices are stored in the input object, they
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are automatically sourced from the input object if not specified in the corresponding argu-
ments. If the input object is a ’data frame’, those arguments have to be given. By default,
statistical tests (argument method="classical") are used with respect to the measur-
ing scale of the selected covariates, i.e.~t /χ2-test for continuous/categorical covariates
(internal use of t.test() and chisq.test()). As before, the argument cat.levels
defines whether a covariate is categorical or continuous. The tests are applied to data
both before and after stratification or matching.

> ## PRI.De, stratification
> ## Balance check using statistical tests
>
> pride.str5.bal <- ps.balance(object = pride.str5,
+ sel = c(2:8),
+ cat.levels = 4,
+ method = "classical",
+ alpha = 5)
> pride.str5.bal

Summary of balance check:

Before: no bal (0) Before: bal (1)
After: no bal (0) 2 1
After: bal (1) 1 2

Covariates not completely tested:
RSVINF

Detailed balance check (overall):

SEX ETHNO FRUEHG RSVINF HERZ REGION AGE
Before 0 1 1 0 1 0 0
After 1 0 1 NA 1 0 0

Detailed balance check (per stratum):
[p-values from tests (significance level: 0.05)]

SEX ETHNO FRUEHG RSVINF HERZ REGION AGE
Before 0.01 0.907 0.413 0 0.518 0 0
------ ----- ----- ----- ----- ----- ----- -----
Stratum 1 0.296 0.632 0.223 0.647 1 0.058 0.83
Stratum 2 0.16 0.003 0.98 0.422 0.642 0.133 0.084
Stratum 3 0.798 0.169 0.678 1 0.484 0.038 0.429
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Stratum 4 0.124 0.212 0.724 NA 0.843 0.542 0.002
Stratum 5 0.96 0.882 0.404 NA 0.523 0.415 0
--------- ---- ---- ---- ---- ---- ---- ----
Test chi^2 chi^2 chi^2 chi^2 chi^2 chi^2 t

For example, seven covariates in the stratified PRI.De data are checked by statistical
tests for the balance between the treatment groups. Using the print function, four dif-
ferent information are available. First, a summary table for the decision of ’balance’ or
’no balance’ is printed. There are each three balanced and three not balanced covari-
ates before stratification (columns of table ’Summary of balance check’). Stratification
then results in three balanced and three not balanced covariates (rows). However, there
is one of the three covariates not balanced before that becomes balanced after stratifi-
cation. Covariate-specific information are not given in this table. The next information is
about covariates for which tests in the original data or in at least one stratum could not
be performed correctly. This is the case for the covariate ’RSVINF’ describing a previous
RSV infection (yes/no). The table ’Detailed balance check (overall)’ presents covariate-
specific balance information where ’0’ indicates ’not balanced’ and ’1’ means ’balanced’.
It is noticeable that covariate ’SEX’ becomes balanced (indicated by ’1’) after stratification
and ’REGION’ and ’AGE’ remain unbalanced (’0’). The fourth and last information shows
the test results, i.e.~p-values from statistical tests applied in the original data and in each
stratum if possible. Additionally, the used tests are given. ’NA’ means that no test is
performed, i.e.~covariate ’RSVINF’ is not checked in stratum 4 and 5 since there are no
individuals with ’RSVINF=1’.

In the STU1 data example, the covariate balance of ’tgr’ and ’age’ between the treatment
groups is of interest before and after matching. Therefore, standardized differences are
calculated based on the formula described in [42]. Tables are similar to those described
above. Standardized differences are now listed in the last information part ’Detailed bal-
ance check’. The cutpoint at which a decision about balance is made is set to ’20’ (ar-
gument alpha). Both covariates are classified as unbalanced before matching since the
standarized differences are larger than 20. The covariate describing tumor size (’tgr’)
becomes balanced after the matching procdure. All these information are stored in the
return value $bal.test of the output object stu1.m2.bal. In Figure 4, standardized
differences are plotted.

> ## STU1, Matching
> ## Balance check using standardized differences
>
> stu1.m2.bal <- ps.balance(object = stu1.m2,
+ sel = c("tgr","age"),
+ method = "stand.diff", alpha = 20)
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Figure 4: Illustration of standardized differences in original data and after matching in
PRI.De (left) and STU1 data (right) using in plot.stdf() (program code for the left
graphic is not shown)

> stu1.m2.bal

Summary of balance check:

before: no balance (0) before: balance (1)
after: no balance (0) 1 0
after: balance (1) 1 0

Covariates not completely tested: ---

Detailed balance check (overall):

tgr age
table.before 0 0
table.after 1 0

Detailed balance check:
[Standardized differences (cut point: 20)]

tgr age
Before 22.089 58.065
------ ----- -----
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After 3.162 22.852

--------- ---- ----
Scale bin bin

> ## Illustration of standardized differences, Figure 4 (right)
>
> stu1.distplot <- plot.stdf(x = stu1.m2.bal,

sel = c("tgr", "age"),
main = "STU1: Matching by PS",
pch.p = c(20,10))

Information about statistical tests applied or covariate types needed for correct calculation
of standardized differences is also stored ($bal.test$method) in the output object. In
addition, the significance level is available ($bal.test$alpha). It has to be interpreted
as cutpoint at which the decision about the balance of a covariate distribution is made if
standardized differences are calculated.

The check for the balance of covariate distributions entails the knowledge about the cor-
rectness of the PS model. If the PS model is correctly fitted, at least covariates included
in PS model should be sufficiently balanced after stratification or matching. Otherwise
re-modeling of the PS model should be considered.

5 Propensity score based treatment effects ... ps.estimate()

The use of the function ps.estimate() depends on the class of the input object. If
functions ps.makestrata() or ps.match() are previously used, the arguments for
the treatment (treat), the stratum (stratum.index) or the matching indices
(match.index) are not needed, contrary to the case if the input object is of class
’data frame’. In addition to PS based effect estimates, a regression model can be si-
multaneously fitted (argument regr). Results from regression models are estimates for
conditional parameters which are automatically projected to estimates for corresponding
marginal parameters. Both conditional and marginal parameter estimates are presented.
Furthermore, additional adjustment for covariates which yet unbalanced in strata or in
matched data can be done using argument adj.
There are two options to specify the arguments adj and regr. On the one hand, they
can be specified as typical formulas whereas treatment has to be the first independent
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variable. Furthermore, outcome and treatment must be the same as specified in argu-
ments resp and treat. On the other hand, a vector of strings or numerics can be given
which indicate covariates to be adjusted for in strata or in the matched sample.

If stratification based on PS is applied in data with continuous outcome, the marginal and
the conditional treatment effect based on PS stratification coincide. It is estimated as a
weighted sum of differences of the mean outcomes in treated and untreated individuals
across PS strata [25]. Two different weighting schemes are available: on the one hand
weights are equal to the proportion of individuals per stratum (weights="rr") and on
the other hand weights are related to the inverse variance of stratum-specific treatment
effects (weights="opt").

In a first example, the treatment effect on the quality of life (argument resp=’pst’ in
ps.estimate()) in the STU1 data is estimated. Using the summary function, compre-
hensive result information are available. First, the crude, the stratification based and the
regression based treatment effect is given as well as the corresponding standard errors
and 95% confidence intervals. To estimate the regression based treatment effect, the
regression formula is defined as ’pst∼therapie+tgr+age’ (argument resp) whereas only
the covariates additional to treatment (’therapie’) have to be specified.

> ## STU1: Effect estimation of therapy ('ther') on quality
> ## of life ('pst') based on PS stratification
>
> stu1.est <- ps.estimate(object = stu1.str4,
+ resp = "pst",
+ weights = "opt",
+ regr =pst~therapie+tgr+age)

Since the argument adj is not used in ps.estimate(), no further covariate adjustment
is done within the PS strata. Therefore, the respective row in section ’Effect estimates’
is empty and the information about ’Stratum-specific adjusted parameter estimates’ is
missing. Additional to the effect estimates, the stratum-specific treatment effects are
listed as well as the stratum-specific weights used to estimate the (overall) treatment
effect. As conditional and marginal parameter coincide in case of continuous outcome,
parameter estimates are not explicitly labeled as marginal.

> ## PS stratification in STU1 data
> ## Summary for treatment effect estimation
>
> summary(stu1.est)
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Summary for effect estimation

Treatment/exposure: therapie
Outcome: pst
Effect measure: differences ('effect')

Effect estimates:

effect SE[effect] [95%-CI[effect]]
------ ---------- ----------------

Crude 1.589 1.261 [-0.883,4.061]
Stratification
Unadjusted 0.793 1.3068 [-1.768,3.354]
Adjusted [,]
Regression 0.788 1.2951 [-1.75,3.326]

Stratum-specific parameter estimates:

S1 S2 S3 S4
----- ----- ----- -----

Unadjusted effect 3.453 -6.703 1.223 -7.001

Stratum-specific adjusted parameter estimates:

Stratum-specific weights:
0.47 0.13 0.34 0.06

In case of stratified data with binary outcome, both the stratified Mantel-Haenszel (MH)
estimator and the estimator based on outcome rates from PS strata [21] are implemented.
The marginal odds ratio for outcome describes the change in odds for the outcome,
if everybody versus nobody were treated. It is different to the conditional odds ratio,
e.g.~estimated by logistic regression (in combination with the assumption of constant
individual odds ratios).
The popular stratified MH estimator (stratified by PS) can fail to estimate both the indi-
vidiual, conditional and the marginal odds ratio [23, 43, 44]. However, the stratified MH
estimator is implemented since it is often used in the analysis of stratified data. The ap-
proach of outcome rates from PS strata is proposed by Graf et al.~[21]. PS methods are
used to estimate marginal treatment effects, but only the outcome rates based estimator
fulfills the criteria for an estimator for the marginal odds ratio. It is defined as an odds
ratio of marginal outcome probabilities, contrary to the stratified MH estimator which is a
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weighted sum of stratum-specific odds ratios [21, 23].

> ## PS stratification in PRI.De
> ## Effect estimation of exposure to RSV infection on the
> ## severity of LRTI
> pride.est <-
+ ps.estimate(object = pride.str5,
+ family = "binomial",
+ resp = "SEVERE",
+ treat = "PCR_RSV",
+ adj = c("REGION", "ETHNO", "AGE"),
+ weights = "rr")

The analysis of the effect of exposure to an RSV infection on the severity of LRTI in
the PRI.De data is extended by additional covariate adjustment in the PS based strata
(argument adj) since variables ’AGE’, ’REGION’ and ’ETHNO’ are still unbalanced after
stratification in at least one stratum. The summary and print functions give a slightly
different and more comprehensive output in case of a binary outcome compared to a
continuous outcome as shown for the STU1 data. If the outcome is binary, the standard
error is given for the effect estimate on log-scale.

> summary(pride.est)

Summary for effect estimation

Treatment/exposure: PCR_RSV
Outcome: SEVERE
Effect measure: odds ratios ('or')

Effect estimates:

or SE[log[or]] [95%-CI[or]]
----- ----------- ------------

Crude 1.677 0.0796 [1.435,1.96]
Stratification
Outcome rates 1.362 0.0805 [1.163,1.595]
MH 1.419 0.0823 [1.208,1.667]
Adjusted 1.565 0.2013 [1.055,2.322]

Regression
Conditional [,]
Marginal [,]
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Stratum-specific parameter estimates:

S1 S2 S3 S4 S5
----- ----- ----- ----- -----

outcome rates 'p0' 0.44 0.53 0.55 0.6 0.66
outcome rates 'p1' 0.48 0.57 0.58 0.71 0.81
odds ratio 1.16 1.15 1.16 1.67 2.17

Stratum-specific adjusted parameter estimates:
1.407 1.398 1.245 1.62 2.154
Stratum-specific weights:
0.2 0.2 0.2 0.2 0.2

In the section ’Effect estimates’, the crude and stratification based odds ratio estimators
(plus standard errors and 95% confidence intervals) are given. Since argument adj is
used in ps.estimate, an adjusted stratification based estimator is presented. It is a
weighted mean of adjusted stratum-specific regression coefficients across the PS strata.
Additionally, the stratified MH estimator is shown. Users have to be careful to interpret the
adjusted stratified estimate as well as the stratified MH estimate. No regression based
estimates are given since the argument regr is not specified in ps.estimate(). In
general, both conditional and marginal parameter estimates are given since they may
differ in case of binary outcome. Furthermore, estimated stratum-specific parameters
are given: stratum-specific outcome rates per treatment group and stratum-specific odds
ratios are presented in section ’Stratum-specific parameter estimates’. If adj is specified,
estimated stratum-specific parameters are also given (section ’Stratum-specific adjusted
parameter estimates’).
All these comprehensive information is stored in the output object and this is managed
as follows. Results from regression models are stored in value $lr.estimation. PS
based results can be found in value $ps.estimation. This value is in turn divided
in $ps.estimation$unadj and $ps.estimation$adj for unadjusted and adjusted
analyses, respectively. In both values stratum-specific information are stored. Further val-
ues of the output object contain information about the outcome ($name.resp, $resp),
the treatment ($name.treat, $treat) and the stratum indices ($stratum.index,
$name.stratum.index). The output object inherits all values from the input object
as well.

If matching is applied, the dependency structure of the matched sample has to be accounted
for in the data analysis [45]-[47]. For it, generalized linear mixed models are appropriate
and involved in the nonrandom package. Therefore, the function lmer implemented in
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the lme4 package is internally used whereas random intercepts for matching sets are
modeled.
The data analysis of matched data can be done in the same way as for stratified data. The
values of the output object in case of matched data differ slightly from the those based
on the analysis of stratified data. There are naturally no stratum-specific information and
no corresponding weights available, only an estimated overall unadjusted and adjusted
treatment effect (if argument adj is specified) and corresponding standard errors and
95% confidence intervals. If the outcome is binary, the standard error is given for the
effect estimate on log-scale.

> ## STU1, matching by PS, continuous outcome 'pst'
> ## Effect estimation of therapy on quality of life ('pst')
>
> stu1.est.m2 <- ps.estimate(object = stu1.m2,
+ resp = "pst")
> stu1.est.m2

Effect estimation for treatment/exposure on outcome

Treatment/exposure: therapie
Outcome: pst
Effect measure: difference ('effect')

Table of effect estimates:

effect SE[effect] [95%-CI[effect]]
----- ----------- ----------------

Crude 1.589 1.261 [-0.883,4.061]
Matching
Unadjusted 0.873 1.3176 [-1.709,3.455]
Adjusted [,]

Regression [,]

The output object contains information as described above for the data analysis based
on stratified data except for stratum-specific information.

> ## PRI.De, matching on PS, binary outcome 'SEVERE'
> ## Effect estimation of exposure to RSV infection on the
> ## severity of LRTI
>
> pride.estimate.m <- ps.estimate(object = pride.m1,
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+ resp = "SEVERE",
+ family = "binomial")
> pride.estimate.m

Effect estimation for treatment/exposure on outcome

Treatment/exposure: PCR_RSV
Outcome: SEVERE
Effect measure: odds ratio ('or')

Table of effect estimates:

or SE[log[or]] [95%-CI[or]]
----- ----------- ------------

Crude 1.677 0.0796 [1.435,1.96]
Matching
Unadjusted 1.379 0.0916 [1.152,1.65]
Adjusted [,]

Regression
Conditional [,]
Marginal [,]

Altogether, the nonrandom package offers PS based analyses in an easy way, however,
suitable knowledge for adequaete interpretation of results is still needed. The estimation
of treatment effects on linear and binary outcome is implemented, limited to the situation
considering a binary treatment. It provides the experienced user a set of functions for
an easy and flexible implementation of PS based analyses. Users who are not familiar
with the application of such methods and the underlying theory are enabled to conduct
an adequate PS based analysis guided by the package.
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