
Introduction to pathdiagram

Gaston Sanchez
www.gastonsanchez.com

1 Introduction

pathdiagram is an accessory R package for drawing path diagrams in R, like the one below:

Pancakes

Waffles

Eggs

Milk

Flour

Sugar

Butter

Figure 1: example of a path diagram

pathdiagram is intended to help you plot nice and beautiful path diagrams for visualization and illustration
purposes, especially when generating reports in R with knitr or Sweave. Briefly, path diagrams are just
a graphical means to visually display path models. The aim of the R package pathdiagram is to help you
draw path diagrams the way they are usually depicted under a Partial Least Squares Path Modeling
(PLS-PM) approach.

1.1 Motivation

The one and only reason to create pathdiagram was the need to plot a path diagram in R. Since I was using
knitr (by Yihui Xie) to write the tutorials and demos for the package plspm, I realized that I badly needed
path diagrams accompanying my examples. I first tried using the grid package (by Paul Murrell). It was
fine but it didn’t allow me to have complete control over the looking of the objects (mainly with color of
lines, borders, text, etc). Then I tried to use the package diagram (by Karline Soetaert) but I got the same
restrictions. Finally, after some short experiments, I decided to create pathdiagram.

1

http://www.gastonsanchez.com

1.2 Installation

Install pathdiagram as you would install any other package on the CRAN repository. Simply run in your R
console:

installation

install.packages("pathdiagram")

Once pathdiagram has been installed, you just need to load it using the function library():

load pathdiagram

library(pathdiagram)

1.3 Available Functions

pathdiagram has a very simple structure and it provides five functions:

Function Description
manifest() sets the graphical specifcations for a manifest variable
latent() sets the graphical specifcations for a latent variable
wall() opens a new plotting window to start drawing a path diagram
draw() plots either a manifest or a latent variable
arrow() plots an arrow between two specifed variables

These functions are all you need to create beautiful PLS-like path diagrams in R. This type of diagrams follow
a set of semi-established rules to represent different types of variables, as well as the relationships between
them. The general convention is to display manifest variables in a rectangular shape, and latent variables in
a circular-elliptical way. I’m not going to describe the etiquette rules for PLS path diagrams (if you google
a little bit you will find more information about this topic). Instead, I’m going to focus on describing the
know-how for generating path diagrams with pathdiagram.

1.4 pathdiagram basics

When we draw a path model, we basically use three types of geometric objects:

• rectangles (or squares) for representing manifest variables

• ellipses (or circles) for representing latent variables

• arrows to establich the connections between (manifest and latent) variable

The function manifest() lets you define the graphical specifications for drawing manifest variables in a
rectangular shape. The function latent() lets you define the graphical specifications for drawing latent
variables in an elliptical format. And the function arrow() allows you to set the graphical specifications and
draw an arrow between two given variables.

In addition, we also have two more functions. wall() is just a conveniente way to open a plot window so we
can start drawing a path diagram. By default it opens a window in a x− y coordinate region of [0, 1]x[0, 1],
but you could change the predetermined limits. The other function is draw() which, as its name suggests,
lets you draw the manifest and latent variables on a plotting window.

2 Toy Example

Let’s start by considering an informal simple path model for representing the ingredients of two of my favorite
breakfast plates: waffles and pancakes. Both dishes share the same ingredients: eggs, milk, flour, sugar, and
butter. But the difference between waffles and pancakes is in the way they are cooked. The important thing
for this example is that the ingredients will play the role of manifest variables, while the produced plates will
play the role of latent constructs.

2

2.1 manifest() variables

We begin by defining the manifest variables: eggs, milk, flour, sugar, butter. For illustration purposes, I’m
going to define each ingredient separately inside a list. Each variable is defined with the function manifest().
The first argument is the label that will be displayed inside the rectangle. The rest of the parameters set the
graphical characteristics like the coordinates of the rectangle’s center, its width and height, the fill color, the
border color, the type of font for the label, etc.

manifest variables

ingredients = list(

eggs = manifest("Eggs", x = 0.25, y = 0.8, width = 0.1, height = 0.08),

milk = manifest("Milk", x = 0.25, y = 0.65, width = 0.1, height = 0.08),

flour = manifest("Flour", x = 0.25, y = 0.5, width = 0.1, height = 0.08),

sugar = manifest("Sugar", x = 0.25, y = 0.35, width = 0.1, height = 0.08),

butter = manifest("Butter", x = 0.25, y = 0.2, width = 0.1, height = 0.08)

)

2.2 latent() variables

The following step is to define the latent variables by using the function latent() which has pretty much the
same parameters of manifest(). The only difference is that latent() does not have a width and a height

parameters. Instead, it has rx and ry which are the major and minor radius of the ellipse.

latent variables

pancakes = latent("Pancakes", x = 0.8, y = 0.65, rx = 0.08, ry = 0.06)

waffles = latent("Waffles", x = 0.8, y = 0.35, rx = 0.08, ry = 0.06)

The real challenge when using manifest() and latent() is in the values for the parameters x, y, width,

height, rx and ry. To be honest, you will need to try different values until you find the best location and
looking shapes for your manifest and latent variables.

2.3 draw()ing the diagram

Once we have defined the variables, the next step is to draw them in a plot window. pathdiagram comes
with the function wall() that opens a white canvas to start drawing your diagram. But you could as well
use the typical plot() function to open a plotting window.

open a new wall

wall(xlim = c(0.1, 0.9), ylim = c(0.1, 0.9))

draw latent variables

draw(pancakes)

draw(waffles)

draw ingredients

for (i in 1:5) {
draw(ingredients[[i]])

}

3

Pancakes

Waffles

Eggs

Milk

Flour

Sugar

Butter

The last step is to add the connecting arrows with the function arrow(). Basically, you just need to tell
arrow() from which variable to which variable there is a connection, and what are the starting and ending
positions for the arrow according to the four cardinal options: "north", "south", "east", and "west".

arrows

for (i in 1:5) {
arrow(from = ingredients[[i]], to = pancakes, start = "east", end = "west")

arrow(from = ingredients[[i]], to = waffles, start = "east", end = "west")

}

Pancakes

Waffles

Eggs

Milk

Flour

Sugar

Butter

4

3 Some Path Diagram Examples

The best way to learn about pathdiagram is to show you some examples. In this section you will find four
different diagrams (and their corresponding code snippets) that show some of the plots you can create with
pathdiagram.

3.1 Barcelona FC

The first example consists of a path diagram of the FC Barcelona soccer team. This model has 3 blocks of
variables: attack, defense, and success. Each block corresponds to a latent construct, and each of them
contains 3 manifest variables.
The first step is to define the graphical specifications for both the manifest and the latent variables as follows:

define Attack block

attack = list(

att1 = manifest("Messi", x=0.15, y=0.9, width=0.09, height=0.08, fill="#d199a4"),

att2 = manifest("Xavi", x=0.15, y=0.75, width=0.09, height=0.08, fill="#d199a4"),

att3 = manifest("Iniesta", x=0.15, y=0.6, width=0.09, height=0.08, fill="#d199a4"))

ATTACK = latent("ATTACK", x=0.35, y=0.75, rx=0.08, ry=0.07, fill="#a12b43", font=1)

define Defense block

defense = list(

def1 = manifest("Puyol", x=0.15, y=0.4, width=0.09, height=0.08, fill="#a0bee1"),

def2 = manifest("Pique", x=0.15, y=0.25, width=0.09, height=0.08, fill="#a0bee1"),

def3 = manifest("Abidal", x=0.15, y=0.1, width=0.09, height=0.08, fill="#a0bee1"))

DEFENSE = latent("DEFENSE", x=0.35, y=0.25, rx=0.08, ry=0.07, fill="#1e67ba", font=1)

define Success block

success = list(

suc1 = manifest("2008-2009", x=0.85, y=0.65, width=0.14, height=0.08, fill="gold2"),

suc2 = manifest("2009-2010", x=0.85, y=0.5, width=0.14, height=0.08, fill="gold2"),

suc3 = manifest("2010-2011", x=0.85, y=0.35, width=0.14, height=0.08, fill="gold2"))

SUCCESS = latent("SUCCESS", x=0.65, y=0.5, rx=0.08, ry=0.07, fill="gold2", font=1)

After defining the graphical parameters, we plot it with the functions wall() and draw() like this:

open plot window

wall(ylim = c(0.1, 0.9))

draw latent variables

draw(ATTACK)

draw(DEFENSE)

draw(SUCCESS)

draw manifest variables

for (i in 1:3) {
draw(attack[[i]])

arrow(from = attack[[i]], to = ATTACK, start = "east", end = "west", col = "#d199a4")

draw(defense[[i]])

arrow(from = defense[[i]], to = DEFENSE, start = "east", end = "west", col = "#a0bee1")

draw(success[[i]])

arrow(from = SUCCESS, to = success[[i]], start = "east", end = "west", col = "gold1")

}

5

arrows of inner model

arrow(from = ATTACK, to = SUCCESS, start = "east", end = "west", col = "#d199a4")

arrow(from = DEFENSE, to = SUCCESS, start = "east", end = "west", col = "#a0bee1")

ATTACK

DEFENSE

SUCCESS

Messi

Puyol

2008−2009

Xavi

Pique

2009−2010

Iniesta

Abidal

2010−2011

Figure 2: FC Barcelona path diagram

6

3.2 Harry Potter

The second example is a path diagram based on Harry Potter’s books. The model illustrates the competition
between Gryffindor and Slytherin.

Gryffindor block

gryff = list(

harry = manifest("Harry \nPotter", x=0.15, y=0.8, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"),

ron = manifest("Ron\nWeasley", x=0.15, y=0.7, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"),

hermione = manifest("Hermione\nGranger", x=0.15, y=0.6, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"),

albus = manifest("Albus\nDumbledore", x=0.15, y=0.5, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"),

neville = manifest("Neville\nLongbottom", x=0.15, y=0.4, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"),

sirius = manifest("Sirius\nBlack", x=0.15, y=0.3, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"),

rubeus = manifest("Rubeus\nHagrid", x=0.15, y=0.2, width=0.12, height=0.08,

cex=0.8, fill="#f2d22e", col="#7c4f87", family="serif"))

Slytherin block

slyth = list(

tom = manifest("Tom\nRiddle", x=0.85, y=0.8, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"),

severus = manifest("Severus\nSnape", x=0.85, y=0.7, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"),

bella = manifest("Bellatrix\nLestrange", x=0.85, y=0.6, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"),

regulus = manifest("Regulus\nBlack", x=0.85, y=0.5, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"),

phineas = manifest("Phineas\nBlack", x=0.85, y=0.4, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"),

draco = manifest("Draco\nMalfoy", x=0.85, y=0.3, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"),

horace = manifest("Horace\nSlughorn", x=0.85, y=0.2, width=0.12, height=0.08,

cex=0.8, fill="gray70", col="#467d70", family="serif"))

7

latent variables

gry = latent("Gryffindor", x=0.375, y=0.5, rx=0.07, ry=0.06, cex=0.85,

fill="#7c4f87", family="serif")

sly = latent("Slytherin", x=0.625, y=0.5, rx=0.07, ry=0.06, cex=0.85,

fill="#467d70", family="serif")

Now we plot it:

open plot window

wall(xlim = c(0.1, 0.9), ylim = c(0.15, 0.85))

draw variables

for (i in 1:7) {
arrows between each block and its latent

arrow(from = gryff[[i]], to = gry, start = "east", end = "west", col = "#b095b7",

angle = 5, lwd = 1)

arrow(from = slyth[[i]], to = sly, start = "west", end = "east", col = "#90b1a9",

angle = 5, lwd = 1)

variables

draw(gryff[[i]])

draw(slyth[[i]])

draw(gry)

draw(sly)

arrows between latent variables

arrow(from = gry, to = sly, start = "east", end = "west", col = "#dddddd",

angle = 20)

arrow(from = sly, to = gry, start = "west", end = "east", col = "#dddddd",

angle = 20)

}

8

Harry
Potter

Tom
Riddle

Gryffindor Slytherin

Ron
Weasley

Severus
Snape

Gryffindor Slytherin

Hermione
Granger

Bellatrix
Lestrange

Gryffindor SlytherinAlbus
Dumbledore

Regulus
Black

Gryffindor Slytherin

Neville
Longbottom

Phineas
Black

Gryffindor Slytherin

Sirius
Black

Draco
Malfoy

Gryffindor Slytherin

Rubeus
Hagrid

Horace
Slughorn

Gryffindor Slytherin

Figure 3: Gryffindor vs Slytherin path diagram

3.3 My Model

The next example consists of a path diagram for my achievement model. This model has 7 latent variables:
optimism, dedication, sacrifice, work, achievement, and luck.

latent variables

optimism = latent("Optimism", x=0.35, y=0.75, rx=0.08, ry=0.06,

fill="gray90", col="#1B9E77", font=1)

dedication = latent("Dedication", x=0.2, y=0.6, rx=0.08, ry=0.06,

fill="gray90", col="#D95F02", font=1)

patience = latent("Patience", x=0.2, y=0.4, rx=0.08, ry=0.06,

fill="gray90", col="#7570B3", font=1)

sacrifice = latent("Sacrifice", x=0.35, y=0.25, rx=0.08, ry=0.06,

fill="gray90", col="#E7298A", font=1)

work = latent("Work", x=0.5, y=0.5, rx=0.08, ry=0.06,

fill="gray90", col="#1F78B4", font=1)

achievement = latent("Achievement", x=0.8, y=0.5, rx=0.10, ry=0.075,

fill="gray90", col="tomato", font=1)

luck = latent("Luck", x=0.85, y=0.7, rx=0.065, ry=0.06,

fill="gray90", col="#E6AB02", font=1)

9

After defining the graphical specifications, we plot the diagram like so:

open wall to plot

wall(ylim = c(0.15, 0.85))

draw latent variables

draw(optimism)

draw(dedication)

draw(patience)

draw(sacrifice)

draw(work)

draw(achievement)

draw(luck)

add arrows

arrow(from = optimism, to = work, start = "east", end = "north", col = "gray90")

arrow(from = dedication, to = work, start = "east", end = "west", col = "gray90")

arrow(from = patience, to = work, start = "east", end = "west", col = "gray90")

arrow(from = sacrifice, to = work, start = "east", end = "south", col = "gray90")

arrow(from = work, to = achievement, start = "east", end = "west", col = "gray90")

arrow(from = luck, to = achievement, start = "south", end = "north", col = "gray90")

Optimism

Dedication

Patience

Sacrifice

Work Achievement

Luck

Figure 4: Personal Achievement Model path diagram

10

3.4 Model with Formal Notation

The following example shows a path diagram using a more formal notation. It consists of 5 latent variables
measured in a reflective way. Moreover, using the function expression() it is possible to define the labels
of the variables with mathematical as well as greek symbols.

Block 1

X1 = list(

x11 = manifest(expression(x[11]), x=0.4, y=0.9, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x12 = manifest(expression(x[12]), x=0.47, y=0.9, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x13 = manifest(expression(x[13]), x=0.53, y=0.9, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x14 = manifest(expression(x[14]), x=0.6, y=0.9, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50")

)

LV1 = latent(expression(xi[1]), x=0.5, y=0.75, rx=0.06, ry=0.06,

cex=1.2, fill="gray50")

Block 2

X2 = list(

x21 = manifest(expression(x[21]), x=0.1, y=0.63, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x22 = manifest(expression(x[22]), x=0.1, y=0.55, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x23 = manifest(expression(x[23]), x=0.1, y=0.47, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50")

)

LV2 = latent(expression(xi[2]), x=0.25, y=0.55, rx=0.06, ry=0.06,

cex=1.2, fill="gray50")

Block 3

X3 = list(

x31 = manifest(expression(x[31]), x=0.1, y=0.33, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x32 = manifest(expression(x[32]), x=0.1, y=0.25, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x33 = manifest(expression(x[33]), x=0.1, y=0.17, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50")

)

LV3 = latent(expression(xi[3]), x=0.25, y=0.25, rx=0.06, ry=0.06,

cex=1.2, fill="gray50")

Block 4

X4 = list(

x41 = manifest(expression(x[41]), x=0.4, y=0.45, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x42 = manifest(expression(x[42]), x=0.4, y=0.35, width=0.06, height=0.06,

11

cex=0.8, fill="gray90", col="gray50")

)

LV4 = latent(expression(xi[4]), x=0.55, y=0.4, rx=0.06, ry=0.06,

cex=1.2, fill="gray50")

Block 5

X5 = list(

x51 = manifest(expression(x[51]), x=0.95, y=0.47, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x52 = manifest(expression(x[52]), x=0.95, y=0.4, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50"),

x53 = manifest(expression(x[53]), x=0.95, y=0.33, width=0.06, height=0.06,

cex=0.8, fill="gray90", col="gray50")

)

LV5 = latent(expression(xi[5]), x=0.8, y=0.4, rx=0.06, ry=0.06,

cex=1.2, fill="gray50")

Now we plot it:

open plot window

wall(xlim = c(0, 1), ylim = c(0.05, 0.95))

block 1

draw(LV1)

for (i in 1:length(X1)) {
draw(X1[[i]])

arrow(from = X1[[i]], to = LV1, start = "south", end = "north", lwd = 1,

col = "gray80")

}

block 2

draw(LV2)

for (i in 1:length(X2)) {
draw(X2[[i]])

arrow(from = X2[[i]], to = LV2, start = "east", end = "west", lwd = 1, col = "gray80")

}

block 3

draw(LV3)

for (i in 1:length(X3)) {
draw(X3[[i]])

arrow(from = X3[[i]], to = LV3, start = "east", end = "west", lwd = 1, col = "gray80")

}

block 4

draw(LV4)

for (i in 1:length(X4)) {
draw(X4[[i]])

arrow(from = X4[[i]], to = LV4, start = "east", end = "west", lwd = 1, col = "gray80")

}

12

block 5

draw(LV5)

for (i in 1:length(X5)) {
draw(X5[[i]])

arrow(from = X5[[i]], to = LV5, start = "west", end = "east", lwd = 1, col = "gray80")

}

arrows between latent variables

arrow(from = LV1, to = LV2, start = "west", end = "north", col = "gray80")

arrow(from = LV1, to = LV5, start = "east", end = "north", col = "gray80")

arrow(from = LV2, to = LV3, start = "south", end = "north", col = "gray80")

arrow(from = LV2, to = LV4, start = "east", end = "north", col = "gray80")

arrow(from = LV3, to = LV4, start = "east", end = "south", col = "gray80")

arrow(from = LV4, to = LV5, start = "east", end = "west", col = "gray80")

ξ1

x11 x12 x13 x14

ξ2

x21

x22

x23

ξ3

x31

x32

x33

ξ4

x41

x42

ξ5

x51

x52

x53

Figure 5: Formal Notation Model path diagram

13

	Introduction
	Motivation
	Installation
	Available Functions
	pathdiagram basics

	Toy Example
	manifest() variables
	latent() variables
	draw()ing the diagram

	Some Path Diagram Examples
	Barcelona FC
	Harry Potter
	My Model
	Model with Formal Notation

