
A Quick Guide for the pbdPROF Package

Wei-Chen Chen1, Drew Schmidt2, Gaurav Sehrawat3, Pragneshkumar Patel4,

George Ostrouchov4,5

1pbdR Core Team

2Business Analytics and Statistics,

University of Tennessee,

Knoxville, TN, USA

3Jaypee Institute of Information Technology

Uttar Pradesh, India

4National Institute for Computational Sciences,

University of Tennessee,

Knoxville, TN, USA

5Computer Science and Mathematics Division,

Oak Ridge National Laboratory,

Oak Ridge, TN, USA

January 24, 2016

Contents

Acknowledgement iv

I Installation 1

1 Introduction 1

1.1 Supported MPI Profilers . 1
1.2 Choice of Profiler . 1

2 Installation 2

2.1 System Requirements . 2
2.2 The Big Picture . 2
2.3 Installing pbdPROF with fpmpi . 3

2.3.1 Linking pbdMPI with pbdPROF . 4
2.3.2 Linking pbdBASE with pbdPROF . 4
2.3.3 Linking Rmpi with pbdPROF . 5

2.4 Installing pbdPROF with mpiP . 5

i

CONTENTS CONTENTS

2.4.1 Linking pbdMPI with pbdPROF . 6
2.4.2 Linking pbdBASE with pbdPROF . 6
2.4.3 Linking Rmpi with pbdPROF . 7

3 Testing pbdPROF Installation 7

3.1 Test with pbdMPI . 7
3.2 Test with Rmpi . 8

II Profiling 9

4 Profiling with fpmpi 9

4.1 Demo of pbdMPI . 9
4.2 Demo of pbdDMAT . 10
4.3 Demo of Rmpi . 11

5 Profiling with mpiP 12

5.1 Demo of pbdMPI . 12
5.2 Demo of pbdDMAT . 13
5.3 Demo of Rmpi . 14

6 Plotting 15

III Appendix 15

A pbdPROF Troubleshooting 16

A.1 Installation . 16
A.2 Running . 17

B References 19

ii

CONTENTS CONTENTS

c© 2013-2016 pbdR Core Team.

The findings and conclusions in this article have not been formally disseminated by the U.S. Department
of Energy and should not be construed to represent any determination or policy of University, Agency,
and National Laboratory.

Permission is granted to make and distribute verbatim copies of this vignette and its source provided the
copyright notice and this permission notice are preserved on all copies.

This publication was typeset using LATEX.

iii

CONTENTS CONTENTS

Acknowledgement

Chen was supported in part by the Department of Ecology and Evolutionary Biology at the University
of Tennessee, Knoxville, and a grant from the National Science Foundation (MCB-1120370.)

Chen and Ostrouchov were supported in part by the project “Visual Data Exploration and Analysis
of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Contract No. DE-AC05-
00OR22725. Ostrouchov, Schmidt, and Patel were supported in part by the project “NICS Remote Data
Analysis and Visualization Center” funded by the Office of Cyberinfrastructure of the U.S. National
Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center. Sehrawat was
generously supported by Google for Google Summer of Code 2013.

iv

1 INTRODUCTION

Part I

Installation

This document is written to explain the main functions of pbdPROF (Chen et al., 2013), version 0.2-0.
Every effort will be made to ensure future versions are consistent with these instructions, but features in
later versions may not be explained in this document.

Information about the functionality of this package, and any changes in future versions can be found on
website: “Programming with Big Data in R” at http://r-pbd.org/.

1 Introduction

The goal of pbdPROF is to utilize external MPI profiling libraries to profile parallel R code and understand
hidden MPI communications between processors. The number of communications, sizes of messages,
times, and types of functions calls all affect program performance, and so having these measurements can
greatly aid in debugging and algorithm design.

An MPI profiling libraries is able to hijack calls to MPI functions and then capture the profiling infor-
mation (such as that described above), all without disturbing the execution of the original program.

The current main features of pbdPROF include:

1. the support of several profiling libraries

2. provide linking information to pbdR (Ostrouchov et al., 2012) and other MPI-using R packages

3. output profiling information associated with MPI calls

4. parse and summarize profiling information

1.1 Supported MPI Profilers

As of version 0.2-0 of pbdPROF, the officially supported MPI profilers are

• fpmpi (Gropp, 2000), and

• mpiP (Vetter and McCracken, 2001)

with plans to eventually support additional profilers, including TAU (Shende and Malony, 2006).

1.2 Choice of Profiler

The pbdPROF package currently uses the fpmpi library by default. More explicitly, a source copy of
fpmpi is located at pbdPROF/src/fpmpi of the pbdPROF source. Although we bundle pbdPROF with
fpmpi, it is not the best MPI profiler (though it may be sufficient for your needs). The results from other
libraries, such as mpiP, are much more thorough and may lead to much deeper insights. Additionally,
fpmpi does not handle profiler output file naming nearly as well as the others (see Section 3). However,
fpmpi is the easiest to install.

http://r-pbd.org/

2 INSTALLATION

If fpmpi is used, a static library will be built and placed in pbdPROF/lib/libfpmpi.a of the pbdPROF
install directory. However, external profiling libraries such as mpiP, TAU, or even fpmpi can be also
linked with pbdPROF by passing a suitable --configure-args argument during an installation via R

CMD INSTALL. We will explain this procedure in depth in Section 2.3 using an external fpmpi and mpiP
as an example, TAU will be added in next release.

While it is possible to link with other profiling libraries, at the time of writing (for version 0.2-0), we only
support fpmpi and mpiP. We anticipate full of TAU for the next version of this package.

2 Installation

In this section, we will describe the various ways that one can build pbdPROF and link it with MPI-using
R packages. For installation troubleshooting, see Appendix A.

2.1 System Requirements

The pbdPROF package requires an MPI installation, such as OpenMPI or MS-MPI. Additionally, the
package is basically useless without some kind of MPI-using R package, such as pbdMPI (Chen et al.,
2012a) or Rmpi (Yu, 2002). For information regarding how to install MPI or pbdMPI, please see the
pbdMPI vignette (Chen et al., 2012b) or the pbdR website http://r-pbd.org/install.

2.2 The Big Picture

Before pressing on, let us stop to take a moment and understand the “big picture” here. The following
sections will contain more than sufficient detail, to the point where it would be easy to lose sight of the
proverbial forest for the trees.

For the remainder of this document, we will be providing information for two fairly distinct groups of
people: R-level MPI package developers, and C/Fortran-level MPI package developers. If you are in the
former category, then the use of this package is a bit simpler for you. All you need to do is get pbdPROF
installed and reinstall your MPI-using package of choice (pbdMPI, Rmpi, etc. . . .). Each package that
directly uses MPI (packages produced by developers in the latter category) will have to explicitly support
pbdPROF (or the reader will have to get his/her hands dirty in another developer’s makefiles — an
unpleasant business). It is worth nothing here that there are instructions in this document for how a
developer of the second kind could explicitly add pbdPROF support to his/her package.

So why the need to reinstall things? It boils down to how the profilers actually work. Under normal
circumstances, a user writes some R code from an MPI-using package (e.g., allreduce(x) from pbdMPI,
mpi.allreduce(x, type=2) from Rmpi, etc. . . .).

This then makes a call to some C or Fortran code which directly interfaces with MPI. You can see this
pictures in Figure 1a. When you use a profiler, you instead hijack the calls to MPI from the C/Fortran
code so that some metadata can be stored about MPI usage.

This process is represented in Figure 1b. Hopefully it should be clear what, and when, something should
be reinstalled. For the sake of completion, we summarize the possibilities below:

To enable MPI profiling:

1. install pbdPROF

http://r-pbd.org/install

2 INSTALLATION

(a) Without a Profiler (b) With the Profiler

2. reinstall an MPI-using package and link it with pbdPROF

3. write and execute your MPI-using R code as normal

4. use the pbdPROF utilities read.prof(), etc. for interpreting profiling results

To disable MPI profiling:

1. reinstall any MPI-using package that was linked it with pbdPROF, and this time do not link with
pbdPROF

2.3 Installing pbdPROF with fpmpi

We can install pbdPROF using the internal fpmpi library via

Shell Command
✞ ☎

R CMD INSTALL pbdPROF_0.1-0.tar.gz
✝ ✆

By default, this compiles pbdPROF/src/fpmpi/* of the pbdPROF source, generates a static library
libfpmpi.a, and installs the library to pbdPROF/lib/ of the pbdPROF install. No shared library is
generated or needed, so the directory pbdPROF/libs/ is empty, i.e., there is no need to build pbdPROF.so.
The linking argument is saved in Makeconf and installed to pbdPROF/etc/ for later use by other packages,
such as pbdMPI or Rmpi.

However, if we choose, we can link with an external fpmpi library, via

Shell Command
✞ ☎

R CMD INSTALL pbdPROF_0.1-0.tar.gz \

--configure -args="--with -fpmpi=’/path_to_fpmpi/lib/libfpmpi.a’"
✝ ✆

or

Shell Command
✞ ☎

R CMD INSTALL pbdPROF_0.1-0.tar.gz \

--configure -args="--with -fpmpi=’-L/path_to_fpmpi/lib -lfpmpi ’"
✝ ✆

Or the conventional method in R console

Shell Command

2 INSTALLATION

✞ ☎

install.packages("pbdPROF",

configure.args=c("--with -fpmpi=/path/to/your/fpmpi/lib/libfpmpi.a"))
✝ ✆

Or

Shell Command
✞ ☎

install.packages("pbdPROF",

configure.args=c("--with -fpmpi=-L/path/to/your/fpmpi/lib -lfpmpi"))
✝ ✆

Since fpmpi only builds a static library libfpmpi.a, there is no difference between these two installations
of pbdPROF. This only provides the linking arguments, either /path_to_fpmpi/lib/libfpmpi.a or
-L/path_to_fpmpi/lib -lfpmpi, which is saved in Makeconf and installed to pbdPROF/etc/ for later
use by other packages, such as pbdMPI or Rmpi.

2.3.1 Linking pbdMPI with pbdPROF

Reinstall pbdMPI via

Shell Command
✞ ☎

R CMD INSTALL pbdMPI_1.0-0.tar.gz --configure -args="--enable -pbdPROF"
✝ ✆

Package developers who are directly interfacing with MPI functions (via C or Fortran) should note that
pbdMPI/R/get_conf.r and pbdMPI/R/get_lib.r are utilized in pbdMPI/configure.ac (used to generate
pbdMPI/configure) to determine an appropriate linking flag PROF_LDFLAGS based on preset flags in
pbdPROF/etc/Makeconf.

If the internal library is used in pbdPROF, then the path to pbdPROF/lib/libfpmpi.a is set in the flag
PKG_LIBS of pbdMPI/src/Makevars.in. If the external library is used in pbdPROF, then the linking
arguments either /path_to_fpmpi/lib/libfpmpi.a or -L/path_to_fpmpi/lib -lfpmpi is set in the
flag PKG_LIBS of pbdMPI/src/Makevars.in. Therefore, the pbdMPI can be intercepted by the fpmpi
library when MPI function calls are evoked.

No mater which library is used, internal or external, the PROF_LDFLAGS in pbdMPI/etc/Makefile provides
the linking information to the profiling library. It is also used in PKG_LIBS, which will be exported to
other pbdR packages at installation via the flag SPMD_LDFLAGS. Therefore there is no need for additional
flags in R CMD INSTALL when reinstalling packages for profiling.

2.3.2 Linking pbdBASE with pbdPROF

For further profiling, such as pbdBASE (Schmidt et al., 2012), one may reinstall the package, via

Shell Command
✞ ☎

R CMD INSTALL pbdBASE_0.2-2.tar.gz
✝ ✆

There is no need to provide any flag since pbdMPI/etc/Makefile has the information and installation of
pbdBASE already considers it. Note that since both packages (pbdMPI and pbdBASE) have MPI-using
C/Fortran functions involved, it is necessary to link with pbdPROF in order to profile communications
evoked by the package.

2 INSTALLATION

2.3.3 Linking Rmpi with pbdPROF

Reinstall Rmpi via

Shell Command
✞ ☎

wget https://github.com/snoweye/Rmpi_PROF/archive/master.zip

unzip master.zip

mv Rmpi_PROF -master Rmpi

find ./Rmpi -type f -perm 777 -print -exec chmod 644 {} \;

find ./Rmpi -type d -perm 777 -print -exec chmod 755 {} \;

chmod 755 ./Rmpi/configure

chmod 755 ./Rmpi/cleanup

chmod 755 ./Rmpi/inst/*.sh

R CMD build --no -resave -data Rmpi

R CMD INSTALL Rmpi_0.6-6.tar.gz --configure -args="--enable -pbdPROF"
✝ ✆

Note that 0.6-6 is not an official release of Rmpi. It is a modified version of 0.6-3 and it is currently
available at https://github.com/snoweye/Rmpi_PROF. The authors of Rmpi have plans to eventually
incorporate these changes, but this can be used as a temporary measure.

2.4 Installing pbdPROF with mpiP

We have to install mpiP externally from its source code to use it in pbdPROF. We can install pbdPROF
using the external mpiP library via

Shell Command
✞ ☎

R CMD INSTALL pbdPROF_0.2-0.tar.gz

--configure -args="--with -mpiP=’/path/to/your/mpiP/lib/libmpiP.a’ "
✝ ✆

Or

Shell Command
✞ ☎

R CMD INSTALL pbdPROF_0.2-0.tar.gz

--configure -args="--with -mpiP=’-L/path/to/your/mpiP/lib lmpiP ’ "
✝ ✆

Or the conventional method in R console

Shell Command
✞ ☎

install.packages("pbdPROF",

configure.args=c("--with -mpiP=/path/to/your/mpiP/lib/libmpiP.a"))
✝ ✆

Or

Shell Command
✞ ☎

install.packages("pbdPROF",

configure.args=c("--with -mpiP=-L/path/to/your/mpiP/lib -lmpiP"))
✝ ✆

pbdPROF/libs/ is empty, i.e., there is no need to build pbdPROF.so. The linking argument is saved in
Makeconf and installed to pbdPROF/etc/ for later use by other packages, such as pbdMPI or Rmpi. Since
mpiP has external dependency libfpmpi.a on libunwind so while installing mpiP you are suggested to
use the below command while configuring mpiP. This only provides the linking arguments, either

R Script

https://github.com/snoweye/Rmpi_PROF

2 INSTALLATION

✞ ☎

./configure --disable -libunwind CPPFLAGS="-fPIC -I/usr/lib/openmpi/include"

LDFLAGS="-L/usr/lib/openmpi/lib -lmpi"
✝ ✆

since one has changed the linking so need to reinstall packages depend on CodepbdPROF

2.4.1 Linking pbdMPI with pbdPROF

Reinstall pbdMPI via

Shell Command
✞ ☎

R CMD INSTALL pbdMPI_1.0-0.tar.gz --configure -args="--enable -pbdPROF"
✝ ✆

Package developers who are directly interfacing with MPI functions (via C or Fortran) should note that
pbdMPI/R/get_conf.r and pbdMPI/R/get_lib.r are utilized in pbdMPI/configure.ac (used to generate
pbdMPI/configure) to determine an appropriate linking flag PROF_LDFLAGS based on preset flags in
pbdPROF/etc/Makeconf.

If your pbdMPI is correctly installed with all correct linking you will have the screenshot just similar to
below output during installation of pbdMPI or else you might get error

✞ ☎

******************* Results of pbdMPI package configure *****************

>> TMP_INC = /usr/local/include

>> TMP_LIB = /usr/local/lib

>> MPI_ROOT =

>> MPITYPE = OPENMPI

>> MPI_INCLUDE_PATH = /usr/local/include

>> MPI_LIBPATH = /usr/local/lib

>> MPI_LIBS = -lutil -lpthread

>> MPI_DEFS = -DMPI2

>> MPI_INCL2 =

>> PKG_CPPFLAGS = -I/usr/local/include -DMPI2 -DOPENMPI

>> PKG_LIBS = /home/g/Documents/new_life/lib/libmpiP.a -L/usr/local/lib -lmpi

-lutil -lpthread

>> PROF_LDFLAGS = /home/g/Documents/new_life/lib/libmpiP.a

✝ ✆

No mater which library is used, internal or external, the PROF_LDFLAGS in pbdMPI/etc/Makefile provides
the linking information to the profiling library. It is also used in PKG_LIBS, which will be exported to
other pbdR packages at installation via the flag SPMD_LDFLAGS. Therefore there is no need for additional
flags in R CMD INSTALL when reinstalling packages for profiling.

2.4.2 Linking pbdBASE with pbdPROF

For further profiling, such as pbdBASE (Schmidt et al., 2012), one may reinstall the package, via

Shell Command
✞ ☎

R CMD INSTALL pbdBASE_0.2-2.tar.gz
✝ ✆

There is no need to provide any flag since pbdMPI/etc/Makefile has the information and installation of
pbdBASE already considers it. Note that since both packages (pbdMPI and pbdBASE) have MPI-using

3 TESTING PBDPROF INSTALLATION

C/Fortran functions involved, it is necessary to link with pbdPROF in order to profile communications
evoked by the package.

2.4.3 Linking Rmpi with pbdPROF

Reinstall Rmpi via

Shell Command
✞ ☎

wget https://github.com/snoweye/Rmpi_PROF/archive/master.zip

unzip master.zip

mv Rmpi_PROF -master Rmpi

find ./Rmpi -type f -perm 777 -print -exec chmod 644 {} \;

find ./Rmpi -type d -perm 777 -print -exec chmod 755 {} \;

chmod 755 ./Rmpi/configure

chmod 755 ./Rmpi/cleanup

chmod 755 ./Rmpi/inst/*.sh

R CMD build --no -resave -data Rmpi

R CMD INSTALL Rmpi_0.6-4.tar.gz --configure -args="--enable -pbdPROF"
✝ ✆

Note that 0.6-4 is not an official release of Rmpi. It is a modified version of 0.6-3 and it is currently
available at https://github.com/snoweye/Rmpi_PROF. The authors of Rmpi have plans to eventually
incorporate these changes, but this can be used as a temporary measure.

3 Testing pbdPROF Installation

Here, we provide two simple R scripts, one for pbdMPI and one for Rmpi, to test the installation and
profiling capabilities of pbdPROF. Assuming all went well, then a profiler output file will be produced (in
the directory where you executed the above command). The name of the file depends on how pbdPROF
was built:

• fpmpi: the profiler output file will always be called fpmpi_profile.txt.

• mpiP: the profiler output file will be named according to the scheme R.ncores.PID.1.mpiP, where
ncores is the actual number of cores used, and PID is the job PID that was used.

Here again, mpiP has several advantages over fpmpi. For one, fpmpi will always overwrite old profiler
output in the same directory. Additionally, fpmpi profiler outputs give no context to the calling command,
whereas mpiP gives the calling command (and whence, which R script was used to generate the profiler
output) on the second line of the profiler output.

If you followed the instructions found in Section 2, but no profiler output is produced, then please see
the troubleshooting guide, Appendix A.

For the remainder, we will be using fpmpi in examples.

3.1 Test with pbdMPI

Below we provide sample scripts to test that the installation of pbdPROF was successful. For pbdMPI,
use:

Test script for pbdMPI

https://github.com/snoweye/Rmpi_PROF

3 TESTING PBDPROF INSTALLATION

✞ ☎

1 ### Save this in a file: prof_pbdMPI.r

2 library(pbdMPI , quiet = TRUE)

3 init()

4

5 set.seed(comm.rank())

6 x <- allreduce(rnorm (100) , op = "sum")

7

8 finalize ()
✝ ✆

and run this code by

R Script
✞ ☎

mpiexec -np 2 Rscript prof_pbdMPI.r
✝ ✆

The fpmpi profiling output from the file fpmpi_profile.txt may contain:

✞ ☎

Details for each MPI routine

Average of sums over all processes

% by message length

(max over 0.........1........1........

processes [rank]) K M

MPI_Allreduce:

Calls : 2 2 [0] 0500000005000000000000000000

Time : 3.61e-05 3.72e-05 [0] 0700000003000000000000000000

Data Sent : 804 804 [0]

SyncTime : 0.00149 0.00287 [0] 0*0000000.000000000000000000

By bin : 1-4 [1,1] [2.5e-05, 2.72e-05] [4.1e-05, 0.00286]

: 513 -1024 [1,1] [1e-05, 1e-05] [1.1e-05,

7.61e-05]
✝ ✆

In this R script, one MPI C function MPI_Allreduce is called twice and 804 bytes are sent that a hundred
of double precision (8 bytes) for 100 normal random variables, and one integer (4 bytes) for checking data
type to call the corresponding S4 method.

3.2 Test with Rmpi

For Rmpi, use:

Test script for pbdMPI
✞ ☎

1 ### Save this in a file: prof_Rmpi.r

2 library(Rmpi , quiet = TRUE)

3 mpi.comm.dup(0, 1)

4

5 set.seed(mpi.comm.rank())

6 x <- mpi.allreduce(rnorm (100) , type = 2, op = "sum")

7

8 mpi.quit()
✝ ✆

and run this code by

R Script
✞ ☎

mpiexec -np 2 Rscript prof_Rmpi.r
✝ ✆

4 PROFILING WITH FPMPI

The fpmpi profiling output from the file fpmpi_profile.txt may contain:

✞ ☎

Details for each MPI routine

Average of sums over all processes

% by message length

(max over 0.........1........1........

processes [rank]) K M

MPI_Allreduce:

Calls : 1 1 [0] 000000000*000000000000000000

Time : 4.01e-05 4.41e-05 [1] 000000000*000000000000000000

Data Sent : 800 800 [0]

SyncTime : 0.00103 0.00204 [1] 000000000*000000000000000000

By bin : 513 -1024 [1,1] [3.6e-05, 4.41e-05] [2.79e-05, 0

.00204]

MPI_Comm_dup:

Calls : 1

Time : 5.81e-05

SyncTime : 0.000211
✝ ✆

Two MPI C functions MPI_Allreduce and MPI_Comm_dup are called one time for each.

Part II

Profiling

In this part, we will profile some much more substantive examples. This assumes that pbdPROF has been
correctly configured and installed. Make sure you can produce profiler outputs as described in Section 3
before proceeding. If not, please see Appendix A.

4 Profiling with fpmpi

4.1 Demo of pbdMPI

The allreduce.r script is originally in pbdMPI/demo/ and can be profiled by

R Script
✞ ☎

mpiexec -np 2 Rscript -e "demo(allreduce ,’pbdMPI ’,ask=F,echo=F)"
✝ ✆

which will provide an output file fpmpi_profile.txt. Part of output is listed in the next as

✞ ☎

Processes: 2

Execute time: 1.176

Timing Stats: [seconds] [min/max] [min rank/max rank]

wall -clock: 1.176 sec 1.171488 / 1.180277 0 / 1

user: 0.378 sec 0.360000 / 0.396000 0 / 1

sys: 0.07 sec 0.040000 / 0.100000 1 / 0

Average of sums over all processes

Routine Calls Time Msg Length %Time by message length

4 PROFILING WITH FPMPI

0.........1........1........

K M

MPI_Allreduce : 10 0.000118 188 0610030000000000000000000000

MPI_Barrier : 21 0.0054

Details for each MPI routine

Average of sums over all processes

% by message length

(max over 0.........1........1........

processes [rank]) K M

MPI_Allreduce:

Calls : 10 10 [0] 0510040000000000000000000000

Time : 0.000118 0.000119 [0] 0610030000000000000000000000

Data Sent : 188 188 [0]

SyncTime : 0.000312 0.000453 [0] 07.0020000000000000000000000

By bin : 1-4 [5,5] [7.01e-05, 7.01e-05] [0.000117 , 0.000343]

: 5-8 [1,1] [7.87e-06, 9.06e-06] [9.06e-06, 9.06e-06]

: 33-64 [4,4] [3.91e-05, 4.03e-05] [4.51e-05, 0.0001]

MPI_Barrier:

Calls : 21

Time : 0.0054
✝ ✆

TwoMPI C functions MPI_Allreduce and MPI_Barrier are evoked inside this R code. The MPI_Allreduce
is called 10 times, span 0.000118 seconds, and 188 bytes are sent. The MPI_Barrier is called 21 times
and span 0.0054 seconds.

4.2 Demo of pbdDMAT

The svd.r is originally in pbdDMA/demo/ (Schmidt et al., 2012) and can be profiled by

R Script
✞ ☎

mpiexec -np 2 Rscript -e "demo(svd ,’pbdDMAT ’,ask=F,echo=F)"
✝ ✆

which will provide an output file fpmpi_profile.txt. Part of output is listed in the next as

✞ ☎

Processes: 2

Execute time: 1.774

Timing Stats: [seconds] [min/max] [min rank/max rank]

wall -clock: 1.774 sec 1.766181 / 1.781962 1 / 0

user: 0.962 sec 0.956000 / 0.968000 1 / 0

sys: 0.046 sec 0.044000 / 0.048000 0 / 1

Average of sums over all processes

Routine Calls Time Msg Length %Time by message length

0.........1........1........

K M

MPI_Allreduce : 12 0.000108 72 0640000000000000000000000000

MPI_Barrier : 8 0.000784

Details for each MPI routine

Average of sums over all processes

% by message length

(max over 0.........1........1........

processes [rank]) K M

MPI_Allreduce:

4 PROFILING WITH FPMPI

Calls : 12 12 [0] 0550000000000000000000000000

Time : 0.000108 0.000113 [0] 0640000000000000000000000000

Data Sent : 72 72 [0]

SyncTime : 0.000143 0.00016 [1] 0640000000000000000000000000

By bin : 1-4 [6,6] [5.44e-05, 6.91e-05] [6.91e-05, 8.89e-05]

: 5-8 [6,6] [4.36e-05, 4.79e-05] [5.72e-05, 7.08e-05]

MPI_Barrier:

Calls : 8

Time : 0.000784
✝ ✆

TwoMPI C functions MPI_Allreduce and MPI_Barrier are evoked inside this R code. The MPI_Allreduce
is called 12 times, span 0.000108 seconds, and 72 bytes are sent. The MPI_Barrier is called 8 times and
span 0.000784 seconds.

4.3 Demo of Rmpi

The masterSlavePI.r is originally in Rmpi/demo/ and can be profiled by

R Script
✞ ☎

mpiexec -np 4 Rscript -e "demo(masterslavePI ,’Rmpi ’,ask=F,echo=F)"
✝ ✆

which will provide an output file fpmpi_profile.txt. Part of output is listed in the next as

✞ ☎

Processes: 1

Execute time: 0.05362

Timing Stats: [seconds] [min/max] [min rank/max rank]

wall -clock: 0.05362 sec 0.053622 / 0.053622 0 / 0

user: 0.236 sec 0.236000 / 0.236000 0 / 0

sys: 0.052 sec 0.052000 / 0.052000 0 / 0

Average of sums over all processes

Routine Calls Time Msg Length %Time by message length

0.........1........1........

K M

MPI_Reduce : 1 6.51e-05 8 00*0000000000000000000000000

Details for each MPI routine

Average of sums over all processes

% by message length

(max over 0.........1........1........

processes [rank]) K M

MPI_Reduce:

Calls : 1 1 [0] 00*0000000000000000000000000

Time : 6.51e-05 6.51e-05 [0] 00*0000000000000000000000000

Data Sent : 8 8 [0]

By bin : 5-8 [1,1] [6.51e-05, 6.51e-05]
✝ ✆

One MPI C function MPI_Reduce is evoked inside this R code. The MPI_Reduce is called only 1 time,
span 6.51e− 05 seconds, and 8 bytes are sent. Note that there is only one processor (master in comm=0)
profiled by fpmpi, and the other three processors (slaves in comm=1) are not.

5 PROFILING WITH MPIP

5 Profiling with mpiP

5.1 Demo of pbdMPI

The allreduce.r is originally in pbMPI/demo and can be profiled by

R Script
✞ ☎

mpiexec -np 2 Rscript -e "demo(allreduce ,’pbdMPI ’,ask=F,echo=F)"
✝ ✆

which will produce an output file allreduce.r.mpiP part of file is listed below

✞ ☎

@ Collector Rank : 0

@ Collector PID : 24033

@ Final Output Dir : .

@ Report generation : Single collector task

@ MPI Task Assignment : 0

@ MPI Task Assignment : 1

@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%

0 0.153 0.00207 1.35

1 0.155 0.0284 18.35

* 0.308 0.0305 9.90

@--- Callsites: 6 ---

ID Lev File/Address Line Parent_Funct MPI_Call

1 0 0x7f335d1108c3 [unknown] Allreduce

2 0 0x7f335d110acb [unknown] Barrier

3 0 0x7f335d1107f3 [unknown] Allreduce

4 0 0x7f2ded6f68c3 [unknown] Allreduce

5 0 0x7f2ded6f6acb [unknown] Barrier

6 0 0x7f2ded6f67f3 [unknown] Allreduce

@--- Aggregate Time (top twenty , descending , milliseconds) ----------------

Call Site Time App% MPI% COV

Barrier 5 28.1 9.13 92.21 0.00

Barrier 2 1.63 0.53 5.36 0.00

Allreduce 3 0.322 0.10 1.06 0.00

Allreduce 6 0.217 0.07 0.71 0.00

Allreduce 1 0.117 0.04 0.38 0.00

Allreduce 4 0.083 0.03 0.27 0.00

@--- Aggregate Sent Message Size (top twenty , descending , bytes) ----------

Call Site Count Total Avrg Sent%

Allreduce 1 4 160 40 42.55

Allreduce 4 4 160 40 42.55

Allreduce 3 6 28 4.67 7.45

Allreduce 6 6 28 4.67 7.45
✝ ✆

The above statistics shows various criteria for the program run. The “MPI Time” shows running time

5 PROFILING WITH MPIP

per process while executing the allreduce.r. There are four columns:

• Task which is the rank of the processor,

• AppTime which is the application level runtime having values 0.153 and 0.155 seconds for the first
(0) and second (1) ranks, respectively,

• MPITime which is the MPI level runtime of code having values 0.00207 seconds for the first rank
and 0.0284 seconds for the second rank, and

• MPI% which is the percentage of MPITime in AppTime having values 1.35% and 18.35% for rank 0
processor and rank 1, respectively.

The * shows the sums of total ranks in respective columns.

The “Callsites” division shows 6 MPI calls in these two processors are evoked. One Barrier and two
types of Allreduce (one for integer and one for double) for each processor. The general allreduce()
function in pbdMPI is a S4 method which checks data type first (matrix, array, integer, or double)
using MPI_Allreduce, then bases on the data type to evoke the corresponding S3 function using the other
call to MPI_Allreduce. The Barrier is mainly evoked from comm.cat() and comm.print() in pbdMPI.

Furthermore, the mpiP library provides deeper analyses of each MPI Calls like “Aggregate Time” and
“Aggregate Sent Message Size”. In “Aggregate Time” division, the Call column shows information of
MPI calls, Barrier called twice and Allreduce called four times. Note that for longer runs, only top
twenty records are reported. The Barrier calls at the site 5 (ID 5 in the “Callsites” division) ran for
28.1 milliseconds of which 9.13% is application level aggregate time percentage and 92.21% is MPI level
aggregate time percentage. Similarly, in “Aggregate Sent Message Size” division, per bytes information
of each MPI call is elaborated. For example, for Allreduce at the site 1 has the count value of 4 while
total message size is 160 bytes, on average 40 bytes are there. Also, the sent percentage is 42.55% for
Allreduce at the site 1.

5.2 Demo of pbdDMAT

The svd.r is originally in pbdDMA/demo/ (Schmidt et al., 2012) and can be profiled by

R Script
✞ ☎

mpiexec -np 2 Rscript -e "demo(svd ,’pbdDMAT ’,ask=F,echo=F)"
✝ ✆

which will provide an output file svd.r.mpiP. Part of output is listed in the next as

✞ ☎

@ Collector Rank : 0

@ Collector PID : 25363

@ Final Output Dir : .

@ Report generation : Single collector task

@ MPI Task Assignment : 0

@ MPI Task Assignment : 1

@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%

0 0.768 0.000527 0.07

1 0.784 0.00195 0.25

* 1.55 0.00248 0.16

5 PROFILING WITH MPIP

@--- Callsites: 6 ---

ID Lev File/Address Line Parent_Funct MPI_Call

1 0 0x7f676ef298c3 [unknown] Allreduce

2 0 0x7f676ef29acb [unknown] Barrier

3 0 0x7f676ef297f3 [unknown] Allreduce

4 0 0x7fa461caf8c3 [unknown] Allreduce

5 0 0x7fa461cafacb [unknown] Barrier

6 0 0x7fa461caf7f3 [unknown] Allreduce

@--- Aggregate Time (top twenty , descending , milliseconds) ----------------

Call Site Time App% MPI% COV

Barrier 5 1.55 0.10 62.40 0.00

Allreduce 6 0.295 0.02 11.90 0.00

Barrier 2 0.256 0.02 10.33 0.00

Allreduce 3 0.177 0.01 7.14 0.00

Allreduce 4 0.11 0.01 4.44 0.00

Allreduce 1 0.094 0.01 3.79 0.00

@--- Aggregate Sent Message Size (top twenty , descending , bytes) ----------

Call Site Count Total Avrg Sent%

Allreduce 1 6 48 8 33.33

Allreduce 4 6 48 8 33.33

Allreduce 3 6 24 4 16.67

Allreduce 6 6 24 4 16.67
✝ ✆

The above statistics shows various criteria the code has been profiled for the program svd.r. The
interpretation is similar to that of allreduce.r above. However, these MPI_Allreduce functions are
mainly called by functions of ScaLAPACK (Blackford et al., 1997) via pbdBASE (Schmidt et al., 2012)
and pbdSLAP (Chen et al., 2012c).

5.3 Demo of Rmpi

The masterSlavePI.r is originally in Rmpi/demo/ and can be profiled by

R Script
✞ ☎

mpiexec -np 4 Rscript -e "demo(masterslavePI ,’Rmpi ’,ask=F,echo=F)"
✝ ✆

which will provide an output file masterSlavePI.r.mpiP. Part of output is listed in the next as

✞ ☎

@ Collector Rank : 0

@ Collector PID : 25839

@ Final Output Dir : .

@ Report generation : Single collector task

@ MPI Task Assignment : 0

@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%

0 0.0303 0.00125 4.12

* 0.0303 0.00125 4.12

6 PLOTTING

@--- Callsites: 4 ---

ID Lev File/Address Line Parent_Funct MPI_Call

1 0 0x7f8cdbc03628 [unknown] Comm_free

2 0 0x7f8cdbc03a2e [unknown] Intercomm_merge

3 0 0x7f8cdbc02ce6 [unknown] Reduce

4 0 0x7f8cdbc0398b [unknown] Comm_free

@--- Aggregate Time (top twenty , descending , milliseconds) ----------------

Call Site Time App% MPI% COV

Intercomm_merge 2 1.06 3.52 85.47 0.00

Reduce 3 0.102 0.34 8.19 0.00

Comm_free 4 0.053 0.18 4.25 0.00

Comm_free 1 0.026 0.09 2.09 0.00

@--- Aggregate Sent Message Size (top twenty , descending , bytes) ----------

Call Site Count Total Avrg Sent%

Reduce 3 1 8 8 100.00

@--- Callsite Time statistics (all , milliseconds): 4 ----------------------

Name Site Rank Count Max Mean Min App% MPI%

Comm_free 1 0 1 0.026 0.026 0.026 0.09 2.09

Comm_free 1 * 1 0.026 0.026 0.026 0.09 2.09

Comm_free 4 0 1 0.053 0.053 0.053 0.18 4.25

Comm_free 4 * 1 0.053 0.053 0.053 0.18 4.25

Intercomm_merge 2 0 1 1.06 1.06 1.06 3.52 85.47

Intercomm_merge 2 * 1 1.06 1.06 1.06 3.52 85.47

Reduce 3 0 1 0.102 0.102 0.102 0.34 8.19

Reduce 3 * 1 0.102 0.102 0.102 0.34 8.19

@--- Callsite Message Sent statistics (all , sent bytes) -------------------

Name Site Rank Count Max Mean Min Sum

Reduce 3 0 1 8 8 8 8

Reduce 3 * 1 8 8 8 8
✝ ✆

The above statistics shows various criteria the code has been profiled for the program masterSlavePI.r.
Three main MPI calls are used in this program: MPI_Intercomm_merge, MPI_Reduce and MPI_Comm_free

since Rmpi uses the master/workers framework.

6 Plotting

The plotting utilities of pbdPROF have been moved to the pbdSCRIBE package.

A PBDPROF TROUBLESHOOTING

Part III

Appendix

A pbdPROF Troubleshooting

A.1 Installation

Problem 1: If you have downloaded the package from github and tried to using R CMD INSTALL
pbdPROF and you see an error similar to this

✞ ☎

ERROR: ’configure ’ exists but is not executable -- see the ’R Installation and

Administration Manual ’
✝ ✆

Solution: You have to make the configure executable which means giving it permission , which can done
by

✞ ☎

chmod +x configure
✝ ✆

after changing the folder to package’s main directory.

Problem 2: If you are using fpmpi (Gropp, 2000) externally and during it’s installation you get an error
similar to this

✞ ☎

error :checking for library containing MPI_Init ... (cached) no configure:

error: Could not find MPI library
✝ ✆

Solution: You probably need to specify the path to MPI library using this in command line in the fpmpi
main directory

✞ ☎

./configure CPPFLAGS="-fPIC -I/usr/lib/openmpi/include"

LDFLAGS="-L/usr/lib/openmpi/lib -lmpi"
✝ ✆

Problem 3: If you are using mpiP externally and during it’s installation you get an error similar to this

✞ ☎

libmpiP.a(wrappers.o): relocation R_X86_64_32 against ‘.rodata.str1.1’ can not

be used when making a shared object; recompile with -fPIC

libmpiP.a: could not read symbols: Bad value collect2: error: ld returned 1

exit status
✝ ✆

Solution: You probably need to specify the path to MPI library using this in command line when installing
mpiP

✞ ☎

./configure CPPFLAGS="-fPIC -I/usr/lib/openmpi/include"

LDFLAGS="-L/usr/lib/openmpi/lib -lmpi"
✝ ✆

A PBDPROF TROUBLESHOOTING

Problem 4: If you are using mpiP externally and during pbdMPI installation you get an error similar to
this

✞ ☎

Error : .onLoad failed in loadNamespace () for ’pbdMPI ’, details:

call: dyn.load(file , DLLpath = DLLpath , ...)

error: unable to load shared object ’pbdMPI.so’:

pbdMPI/libs/pbdMPI.so: undefined symbol: _Ux86_64_getcontext
✝ ✆

Solution: You probably need to disable some external library prerequisite bympiP, using this in command
line when installing mpiP

R Script
✞ ☎

./configure --disable -libunwind CPPFLAGS="-fPIC -I/usr/lib/openmpi/include"

LDFLAGS="-L/usr/lib/openmpi/lib -lmpi"
✝ ✆

A.2 Running

Problem 5: No profiler output is produced.

Solution: If no profiler output is produced, then it is almost certainly the case that pbdPROF and/or
the MPI-using R package (e.g., pbdMPI, Rmpi, etc.) was/were not set up and installed correctly. Please
refer to Section 2 and the relevant package’s installation documentation and reinstall.

Problem 6: While running Rmpi code for profiling, if you encounter the error below:

✞ ☎

error: mpiexec was unable to launch the specified application as it could not

access

or execute an executable:

Executable: /path/to/R/package_installation_directory/2.15/Rmpi/Rslaves.sh

Node: "Your_node"

while attempting to start process rank 0.
✝ ✆

Solution: You need to make executable of the shell scripts in the inst/ directory of Rmpi main directory
using the following command from command line in inst/ directory:

R Script
✞ ☎

chmod +x *.sh
✝ ✆

Problem 7: While running Rmpi code for profiling, if you encounter the error below:

✞ ☎

[G:12221] [[39704 ,0] ,0] ORTE_ERROR_LOG: Not found in file

../../../../../orte/mca/plm/base/plm_base_launch_support.c at line 758

--

mpiexec was unable to start the specified application as it encountered an

error.

More information may be available above.

--
✝ ✆

A PBDPROF TROUBLESHOOTING

Solution:

1. You need to check whether your Rmpi is working without the pbdPROF. If yes try running your
Rmpi code on single process only.

2. If above does not help, then you may need .Rprofile in Rmpi/inst/ to run your code from inst/

directory.

3. If still your code does not run, you need to update your OpenMPI version to the latest one. You
can check your OpenMpi version http://www.open-mpi.org/software/ompi/ through

✞ ☎

ompi_info
✝ ✆

4. If further you came to this far and luck is not with you somehow (pun intended), there might some
configuration problem in your machine.

http://www.open-mpi.org/software/ompi/

B REFERENCES

B References

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1997. ISBN 0-89871-397-8 (paperback). URL
http://netlib.org/scalapack/slug/scalapack_slug.html/.

D. Chen, W.-C. Schmidt, G. Sehrawat, P. Patel, and G Ostrouchov. pbdPROF: Programming with big
data – MPI profiling tools, 2013. URL http://cran.r-project.org/package=pbdPROF. R Package.

W.-C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. pbdMPI: Programming with big data –
interface to MPI, 2012a. URL http://cran.r-project.org/package=pbdMPI. R Package.

W.-C. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu. A Quick Guide for the pbdMPI package,
2012b. URL http://cran.r-project.org/package=pbdMPI. R Vignette.

W.-C. Chen, D. Schmidt, G. Ostrouchov, and P. Patel. pbdSLAP: Programming with big data – scalable
linear algebra packages, 2012c. URL http://cran.r-project.org/package=pbdSLAP. R Package.

W.D. Gropp. Fpmpi-2: Fast profiling library for mpi, 2000. URL http://www.mcs.anl.gov/research/

projects/fpmpi/WWW/.

G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with big data in R, 2012. URL
http://r-pbd.org/.

D. Schmidt, W.-C. Chen, G. Ostrouchov, and P. Patel. pbdBASE: Programming with big data – core
pbd classes and methods, 2012. URL http://cran.r-project.org/package=pbdBASE. R Package.

Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int. J. High Perform.

Comput. Appl., 20(2):287–311, May 2006. ISSN 1094-3420. doi: 10.1177/1094342006064482. URL
http://dx.doi.org/10.1177/1094342006064482.

Jeffrey S. Vetter and Michael O. McCracken. Statistical scalability analysis of communication operations
in distributed applications. In Proceedings of the eighth ACM SIGPLAN symposium on Principles and

practices of parallel programming, PPoPP ’01, pages 123–132, New York, NY, USA, 2001. ACM. ISBN
1-58113-346-4. doi: 10.1145/379539.379590. URL http://doi.acm.org/10.1145/379539.379590.

Hao Yu. Rmpi: Parallel statistical computing in r. R News, 2(2):10–14, 2002. URL http://cran.

r-project.org/doc/Rnews/Rnews_2002-2.pdf.

http://netlib.org/scalapack/slug/scalapack_slug.html/
http://cran.r-project.org/package=pbdPROF
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdSLAP
http://www.mcs.anl.gov/research/projects/fpmpi/WWW/
http://www.mcs.anl.gov/research/projects/fpmpi/WWW/
http://r-pbd.org/
http://cran.r-project.org/package=pbdBASE
http://dx.doi.org/10.1177/1094342006064482
http://doi.acm.org/10.1145/379539.379590
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf

	Acknowledgement
	I Installation
	Introduction
	Supported MPI Profilers
	Choice of Profiler

	Installation
	System Requirements
	The Big Picture
	Installing pbdPROF with fpmpi
	Linking pbdMPI with pbdPROF
	Linking pbdBASE with pbdPROF
	Linking Rmpi with pbdPROF

	Installing pbdPROF with mpiP
	Linking pbdMPI with pbdPROF
	Linking pbdBASE with pbdPROF
	Linking Rmpi with pbdPROF

	Testing pbdPROF Installation
	Test with pbdMPI
	Test with Rmpi

	II Profiling
	Profiling with fpmpi
	Demo of pbdMPI
	Demo of pbdDMAT
	Demo of Rmpi

	Profiling with mpiP
	Demo of pbdMPI
	Demo of pbdDMAT
	Demo of Rmpi

	Plotting

	III Appendix
	pbdPROF Troubleshooting
	Installation
	Running

	References

