
Assigning alleles to isoloci in polysat

Lindsay V. Clark
University of Illinois, Urbana-Champaign

June 10, 2015

1 Introduction

This tutorial accompanies the R package polysat versions 1.4 and later, and
demonstrates how to use functions in polysat for recoding data from allopoly-
ploid or diploidized autopolyploid organisms such that each microsatellite marker
is split into multiple isoloci. The data can then be analyzed under the model of
random, Mendelian segregation; for example an allotetraploid organism can be
treated as diploid, giving the user access to a much greater number of analyses
both with polysat and with other software.

If you are not sure whether your organism is fully polysomic or whether
it has two or more subgenomes that segregate independently from each other,
keep reading. In the “Quality of clustering” section I illustrate what the results
look like if a locus (Loc7 in the example dataset) segratates in a polysomic
(autopolyploid) manner.

The methods described in this tutorial are designed for natural populations
of one hundred or more individuals. They will also work for certain types of
mapping populations, such as an F2 population derived from two inbred grand-
parents. They will be much less effective for small sample sizes, and for datasets
with multiple species or highly-diverged ecotypes. The methods in this tutorial
are also inappropriate for species that reproduce asexually. If you have duplicate
genotypes in your dataset (either as a result of asexual reproduction, vegata-
tive spread, or sampling the same individual multiple times) you should remove
them before starting.

It is assumed that the reader is already familiar with R and with polysat.
If you aren’t, please spend some time with “An Introduction to R” and with the
“polysat version 1.4 Tutorial Manual”. Additionally, there is a manuscript on
BioRxiv at http://dx.doi.org/10.1101/020610 that describes in detail the
rationale and limitations of the allele assignment tools described in this manual.
I’m always happy to answer questions over email, but I greatly appreciate it if
you have taken the time first to think carefully about your study system and
dataset, understand the methodology and assumptions of any software that you
want to use, check your work thoroughly, and in the case of problems with R,
consult with someone at your own institution who is experienced with R.

1

http://dx.doi.org/10.1101/020610

2 Data hygiene

Below I have some recommendations for generating and cleaning up datasets so
that they will have the greatest success with the allele assignment algorithm.

2.1 Before you begin genotyping

Choose your markers well. If your research group has previously run microsatel-
lite markers on your species of interest, choose markers that have given clear,
consistent, and easy-to-interpret patterns of amplification in the past. If a link-
age map has been published for your species, use markers that are on the map;
low quality markers would have given segregation distortion and would not have
been mappable. Lastly, dinucleotide repeat markers should be used with cau-
tion, as their high mutation rate increases the chance of homoplasy occuring,
and their high degree of stutter can make amplification patterns difficult to
interpret in polyploids. Markers with trinucleotide or larger repeats will give
cleaner results, despite not having as many alleles.

Avoid multiplexing several markers in one PCR reaction. Multiplexing in-
creases the probability of scoring error due to allelic dropout. Run each marker
in a separate reaction, then, if desired for your electrophoresis method, pool the
reactions post-PCR.

Use the highest resolution electrophoresis method available to you. Agarose
gels may lack the resolution to distinguish all alleles from each other. If using
acrylamide gels, make an allelic ladder by pooling PCR products from several
diverse individuals, then run the same ladder on each gel to ensure consistency
of scoring. If using a capillary sequencer, always use the same size standard,
and be consistent in terms of which fluorescent dye goes with which marker.

“Oh no! I’ve already run all of my microsatellite markers, and I’m on the
last semester of my research assistantship and I need to graduate, so I don’t
have time to re-do them!” It’s okay. Everything above was just a suggestion to
improve the probability that the method described in this vignette will work on
your dataset. The method may still work, and if it doesn’t, you can consider
whether failing to meet one of the above suggestions could have caused the
problem.

2.2 Scoring your microsatellite alleles

If you know someone in your lab or at your institution who has a lot of experi-
ence scoring microsatellites (and if you are not very experienced), get them to
sit down with you for a couple hours and demonstrate how they would score
the markers in your dataset. Understanding the additivity of overlapping stut-
ter and allele peaks is important, as is knowing how to distiguish true alleles
from PCR artifacts and dye blobs, and knowing how to check that the software
interpreted the size standard correctly.

Don’t trust any piece of software to score your markers. Most of them were
optimized for diploid species, and even then they have a lot of problems. After

2

the software (e.g. GeneMapper or STRand) has called the alleles, you need to
manually inspect every genotype, and you will probably correct a lot of them.

Consistency is crucial. One allele may give a pattern of multiple peaks, so
you need to decide which peak to score, and whether to round up or down to get
the size in nucleotides. If using software that performs “binning”, go through
and correct all of the allele calls before using them to make bins. Using STRand,
I like to take screenshots to indicate how I score each marker, then I can easily
look at them months later when I genotype additional individuals.

2.3 Preliminary analysis of the data

In this section I’ll use a simulated dataset to demonstrate how to clean up your
data and split it into subpopulations if necessary. The same simulated dataset
will be used throughout the rest of this manual.

> library(polysat)

> data(AllopolyTutorialData)

> summary(AllopolyTutorialData)

Dataset with allele copy number ambiguity.

Simulated allotetraploid dataset.

Number of missing genotypes: 5

303 samples, 7 loci.

1 populations.

Ploidies: NA

Length(s) of microsatellite repeats: 3 4 5

> # make a copy of the dataset to modify

> mydata <- AllopolyTutorialData

Note that datasets can be imported using any of the normal import functions
for polysat (like read.GeneMapper). The data function here is used only
because this is an example dataset installed with the package.

First, any questionable genotypes should be removed. If an electropherogram
or banding pattern was unclear, it is best to replace that genotype with missing
data. Any duplicate or highly similar genotypes that likely represent the same
individual (or a group of asexually derived individuals) should be removed, such
that each genotype is only represented once in the dataset. (The assignClones

function might be useful for identifying duplicates if you haven’t already done
so.) Since this is an allotetraploid, let’s also make sure that no genotypes have
more than four alleles, and eliminate any that do.

> # Calculate the length of each genotype vector (= the number of alleles) and

> # construct a TRUE/FALSE matrix of whether that number is greater than four.

> tooManyAlleles <- apply(Genotypes(mydata), c(1,2), function(x) length(x[[1]])) > 4

> # Find position(s) in the matrix that are TRUE.

> which(tooManyAlleles, arr.ind=TRUE) # 43rd sample, second locus

3

http://www.vgl.ucdavis.edu/informatics/strand.php/

row col

43 43 2

> # Look at the identified genotype, then replace it with missing data.

> Genotype(mydata, 43, 2)

[1] 143 146 149 152 161

> Genotype(mydata, 43, 2) <- Missing(mydata)

> Genotype(mydata, 43, 2)

[1] -9

Next, we’ll want to look at population structure in the dataset. We’ll make
a square matrix of genotype dissimilarities using a simple band-sharing metric,
then make a neighbor-joining tree.

> mydist <- meandistance.matrix(mydata, distmetric=Lynch.distance,

+ progress=FALSE)

> require(ape)

> mynj <- nj(mydist)

> plot(mynj, type="unrooted")

1 2

3 4

5

6

7

8

9
10

11

12

13

14

15

16
1718

19

20

21

22
23

24 2526

27

28

29
30

31

32

33

34
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53 54

55

56
57

58
59

60

61

62

6364

6566

67

68

69

7071
72

73 74

75

76
77

78

79
80

81

82

83

84

8586

87

88

89
90

91

92

93 94
95

96

97
98

99

100

101

102103104
105

106

107

108
109110

111

112

113

114

115 116

117118
119

120

121

122
123

124125

126
127128

129

130

131

132133

134

135

136
137

138

139

140
141

142

143
144

145
146147

148
149

150

151
152

153

154

155

156

157

158
159160

161 162

163

164

165

166

167

168169

170

171

172

173

174
175 176177

178

179
180

181182

183

184
185

186
187

188189

190

191

192

193
194

195
196

197

198

199

200

201

202
203

204
205 206

207

208209

210

211

212
213

214

215

216

217

218

219

220

221

222

223

224

225

226

227228
229 230

231

232

233

234

235

236
237

238

239

240
241242

243

244

245

246

247

248

249
250

251

252

253

254

255

256 257

258

259

260

261

262

263

264

265

266

267

268

269
270

271

272
273 274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289
290

291

292

293

294

295

296

297298299 300
301302303

4

You can see that individuals 301, 302, and 303 are highly dissimilar from
the rest. This is what it looks like when some individuals are a different species.
Because of the fast rate at which microsatellites mutate, allele assignments that
we make in one species are very unlikely to apply to another species. We will
remove these three individuals from the dataset.

> mydata <- deleteSamples(mydata, c("301","302","303"))

Now let’s examine the rest of the dataset for population structure using
principal coordinates analysis.

> par(mfrow=c(2,1))

> mypca <- cmdscale(mydist[Samples(mydata), Samples(mydata)])

> plot(mypca[,1], mypca[,2])

> hist(mypca[,1], breaks=30)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−
0.

3
0.

0
0.

3

mypca[, 1]

m
yp

ca
[,

2]

Histogram of mypca[, 1]

mypca[, 1]

F
re

qu
en

cy

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
5

15

We can see a slightly bimodal distribution of individuals, indicating mod-
erate population structure. Since population structure can interfere with allele
assignment, we will assign individuals to two populations that we can analyze
separately.

> pop1ind <- Samples(mydata)[mypca[,1] <= 0]

> pop2ind <- Samples(mydata)[mypca[,1] > 0]

5

3 The polysat algorithm for allele assignment

3.1 General considerations and parameters

There are two functions in polysat that are intended to be used one after the
other for assigning alleles to isoloci. alleleCorrelations looks for negative
correlations between alleles and uses those correlations to make preliminary
assignments, then testAlGroups adjusts those assignments if necessary after
checking them against individual genotypes. testAlGroups has some parame-
ters that affect its accuracy depending on the ploidy of the organism, the size of
the population, the rate of meiotic error (pairing between homeologs or paralogs
during meiosis), the presence of null alleles, and homoplasy (different alleles with
identical amplicon size) between isoloci. Below are some recommendations for
adjusting arguments from the defaults depending on particular issues in the
dataset.

Ploidy greater than tetraploid Increase rare.al.check

Small sample size Increase rare.al.check

Meiotic error Increase tolerance

Null alleles null.weight = 0

Homoplasy rare.al.check = 0

Because you may not know whether the last three issues are present in your
dataset, I recomment trying several parameter sets.

3.2 Running the algorithm

Below, I create a loop to run the algorithm on both populations and all seven
loci, using a few different parameter sets. If your data are not tetraploid, please
see ?alleleCorrelations and ?testAlGroups for how you should adjust the
n.subgen and SGploidy arguments.

> nloc <- length(Loci(mydata)) # 7 loci

> # lists to contain results of alleleCorrelations

> CorrPop1 <- CorrPop2 <- list()

> length(CorrPop1) <- length(CorrPop2) <- nloc

> names(CorrPop1) <- names(CorrPop2) <- Loci(mydata)

> # lists to contain results of testAlGroups

> TAGpop1param1 <- list()

> length(TAGpop1param1) <- nloc

> names(TAGpop1param1) <- Loci(mydata)

> TAGpop1param2 <- TAGpop1param3 <- TAGpop1param1

> TAGpop2param1 <- TAGpop2param2 <- TAGpop2param3 <- TAGpop1param1

> # loop through loci

> for(L in Loci(mydata)){

+ # allele correlations

6

+ CorrPop1[[L]] <- alleleCorrelations(mydata, samples=pop1ind, locus = L)

+ CorrPop2[[L]] <- alleleCorrelations(mydata, samples=pop2ind, locus = L)

+ # default parameter set

+ TAGpop1param1[[L]] <- testAlGroups(mydata, CorrPop1[[L]], samples=pop1ind)

+ TAGpop2param1[[L]] <- testAlGroups(mydata, CorrPop2[[L]], samples=pop2ind)

+ # optimized for homoplasy

+ TAGpop1param2[[L]] <- testAlGroups(mydata, CorrPop1[[L]], samples=pop1ind,

+ rare.al.check=0)

+ TAGpop2param2[[L]] <- testAlGroups(mydata, CorrPop2[[L]], samples=pop2ind,

+ rare.al.check=0)

+ # optimized for null alleles

+ TAGpop1param3[[L]] <- testAlGroups(mydata, CorrPop1[[L]], samples=pop1ind,

+ null.weight=0)

+ TAGpop2param3[[L]] <- testAlGroups(mydata, CorrPop2[[L]], samples=pop2ind,

+ null.weight=0)

+ }

Warning: Significant positive correlations between alleles at locus Loc6 ; population structure or scoring error may bias results.

Warning: Significant positive correlations between alleles at locus Loc6 ; population structure or scoring error may bias results.

3.3 Inspecting the results

3.3.1 Warnings about positive correlations

We got a warning about Loc6 for both the populations. If population structure
were a serious problem, we would have gotten warnings about most or all loci.
Let’s take a look at which alleles had positive correlations for Loc6, to see if
there may have been a scoring problem.

> CorrPop1[["Loc6"]]$significant.pos

300 303 306 327 330 336 339 345 348

300 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

303 FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE

306 FALSE FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE

327 FALSE FALSE FALSE NA TRUE FALSE FALSE FALSE FALSE

330 FALSE FALSE FALSE TRUE NA FALSE FALSE FALSE FALSE

336 FALSE FALSE FALSE FALSE FALSE NA TRUE FALSE FALSE

339 FALSE FALSE FALSE FALSE FALSE TRUE NA FALSE FALSE

345 FALSE FALSE FALSE FALSE FALSE FALSE FALSE NA TRUE

348 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE NA

> CorrPop2[["Loc6"]]$significant.pos

300 303 306 327 330 336 339 345 348

300 NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

303 FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE

7

306 FALSE FALSE NA FALSE FALSE FALSE FALSE FALSE FALSE

327 FALSE FALSE FALSE NA TRUE FALSE FALSE FALSE FALSE

330 FALSE FALSE FALSE TRUE NA FALSE FALSE FALSE FALSE

336 FALSE FALSE FALSE FALSE FALSE NA TRUE FALSE FALSE

339 FALSE FALSE FALSE FALSE FALSE TRUE NA FALSE FALSE

345 FALSE FALSE FALSE FALSE FALSE FALSE FALSE NA TRUE

348 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE NA

We see positive correlations between alleles 330 and 327, 339 and 336, and
348 and 345. Since these are trinucleotide repeats, it looks like some of the
larger alleles (which would tend to have more stutter) had stutter peaks mis-
called as alleles. If this were a real dataset, I would say to go back to the gels
or elecropherograms and call the alleles more carefully. Since this is a simulated
dataset, we will simply exclude Loc6 from further analysis.

> mydata <- deleteLoci(mydata, loci="Loc6")

3.3.2 Quality of clustering

It is a good idea to manually inspect the results at each locus. Let’s start with
the first one.

> # Population 1

> heatmap(CorrPop1[["Loc1"]]$heatmap.dist, symm=TRUE)

23
0

23
3

22
4

23
9

23
6

22
7

227

236

239

224

233

230

8

> # A plot to show how the colors correspond to p-values in the

> # heat map; you can repeat this for the other heat maps in this

> # tutorial if you wish.

> plot(x=seq(min(CorrPop1[["Loc1"]]$heatmap.dist),

+ max(CorrPop1[["Loc1"]]$heatmap.dist), length.out=12),

+ y=rep(1,12), xlab="P-values", ylab="", bg=heat.colors(12),

+ pch=22, cex=3)

0.0 0.2 0.4 0.6 0.8

0.
6

1.
0

1.
4

P−values

> CorrPop1[["Loc1"]]$Kmeans.groups

224 227 230 233 236 239

[1,] 1 0 1 1 0 0

[2,] 0 1 0 0 1 1

> CorrPop1[["Loc1"]]$UPGMA.groups

224 227 230 233 236 239

[1,] 1 0 1 1 0 0

[2,] 0 1 0 0 1 1

> TAGpop1param1[["Loc1"]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

> TAGpop1param2[["Loc1"]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 1 1

> TAGpop1param3[["Loc1"]]$assignments

224 227 230 233 236 239

[1,] 1 1 1 1 0 0

[2,] 0 1 0 0 1 1

9

> # Population 2

> heatmap(CorrPop2[["Loc1"]]$heatmap.dist, symm=TRUE)

22
7

23
9

23
3

22
4

23
0

23
6

236

230

224

233

239

227

> CorrPop2[["Loc1"]]$Kmeans.groups

224 227 230 233 236 239

[1,] 0 1 0 0 0 1

[2,] 1 0 1 1 1 0

> CorrPop2[["Loc1"]]$UPGMA.groups

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 0 0 1

> TAGpop2param1[["Loc1"]]$assignments

224 227 230 233 236 239

[1,] 0 1 0 1 1 1

[2,] 1 0 1 0 1 0

> TAGpop2param2[["Loc1"]]$assignments

10

224 227 230 233 236 239

[1,] 0 1 0 0 1 1

[2,] 1 0 1 1 1 0

> TAGpop2param3[["Loc1"]]$assignments

224 227 230 233 236 239

[1,] 1 1 0 1 0 1

[2,] 1 0 1 0 1 0

Although the different assignments are not in complete agreement with each
other among populations and parameter sets, we always see one homoplasious
allele in the results from testAlGroups, which suggests that the second param-
eter set will be the most accurate. (Note that homoplasious alleles will never
show up in the output of alleleCorrelations.) Using the second parameter
set, identical assignments were produced in both populations, and those assign-
ments are consistent with the clustering that we see in the heatmaps for both
populations. Let’s start a list of assignments that we will use when we recode
the dataset.

> AssignToUse <- list()

> AssignToUse[[1]] <- TAGpop1param2[["Loc1"]]

I will leave it as an exercise for the reader to inspect all of the remaining loci
in the same way. Below are the assignment sets that I chose.

> AssignToUse[[2]] <- TAGpop1param1[["Loc2"]]

> AssignToUse[[3]] <- TAGpop1param1[["Loc3"]]

> AssignToUse[[4]] <- TAGpop1param1[["Loc4"]]

> AssignToUse[[5]] <- TAGpop1param1[["Loc5"]]

Loc7 looks a bit different from the others.

> heatmap(CorrPop1[["Loc7"]]$heatmap.dist, symm=TRUE)

11

12
5

14
5

13
5

14
0

15
0

13
0

130

150

140

135

145

125

> heatmap(CorrPop2[["Loc7"]]$heatmap.dist, symm=TRUE)

12

15
0

14
0

13
0

13
5

14
5

12
5

125

145

135

130

140

150

> TAGpop1param1[["Loc7"]]$assignments

125 130 135 140 145 150

[1,] 0 1 1 1 1 1

[2,] 1 1 1 0 0 1

> TAGpop1param2[["Loc7"]]$assignments

125 130 135 140 145 150

[1,] 0 1 1 1 1 1

[2,] 1 1 1 0 0 1

> TAGpop1param3[["Loc7"]]$assignments

125 130 135 140 145 150

[1,] 0 1 1 1 1 1

[2,] 1 1 1 0 0 1

> TAGpop2param1[["Loc7"]]$assignments

125 130 135 140 145 150

[1,] 1 1 1 0 1 0

[2,] 0 1 0 1 1 1

13

> TAGpop2param2[["Loc7"]]$assignments

125 130 135 140 145 150

[1,] 1 1 1 0 1 0

[2,] 0 1 0 1 1 1

> TAGpop2param3[["Loc7"]]$assignments

125 130 135 140 145 150

[1,] 1 1 1 0 1 0

[2,] 1 0 1 1 0 1

On the heatmaps, we don’t see clustering of alleles into two distinct groups.
When we look at allele assignments we see a lot of homoplasy, as well as dis-
agreement between the results for the two populations. This is what it looks like
when a marker is not actually segregating as multiple isoloci. When I simulated
this locus, I simulated it as being a single tetrasomic locus instead of a pair of
disomic isoloci. If you have a large sample size and no positive correlations be-
tween alleles, but the results for all of your loci look like this, you can probably
treat the data as being autopolyploid (polysomic). Since for our dataset it was
just one locus, we will exclude this locus from analysis.

> mydata <- deleteLoci(mydata, loci="Loc7")

3.4 Merging assignments across populations

Although it was not necessary with this dataset, note that it is possible to merge
allele assignments across data from two populations. This may be especially
useful if some populations have alleles that are absent in other populations. For
example, if we wanted to merge the different allele assignments from Loc1 using
the first parameter set:

> Loc1Param1Merged <- mergeAlleleAssignments(list(TAGpop1param1[["Loc1"]],

+ TAGpop2param1[["Loc1"]]))

> Loc1Param1Merged[[1]]$assignments

224 227 230 233 236 239

[1,] 1 0 1 1 1 0

[2,] 0 1 0 1 1 1

You can put assignments for multiple loci within the list that is passed
to mergeAlleleAssignments, and the list that it returns will have one set of
assignments per locus.

3.5 Testing assignment accuracy using simulated datasets

The simulated data in this tutorial, as well as the simulations for the manuscript,
were created using the simAllopoly function. If you have a different ploidy,

14

number of individuals, or number of alleles from the datasets simulated in the
manuscript, you can run your own simulations to estimate the accuracy of allele
assignment. By default, the alleles are given names that start with A, B, etc.
to indicate to which isolocus they belong, so that it is easy to see whether the
output of testAlGroups is correct. See ?simAllopoly for more information.
The tables_figs.R file that is included as supplementary information for the
manuscript can serve as a guide for how to run a large number of simulations
and test their accuracy.

3.6 Recoding the data

Now that we’ve chosen sets of allele assignments to use and thrown away loci
that had problems, we can recode the dataset.

> recodedData <- recodeAllopoly(mydata, AssignToUse)

> summary(recodedData)

Dataset with allele copy number ambiguity.

Simulated allotetraploid dataset.

Number of missing genotypes: 520

300 samples, 10 loci.

1 populations.

Ploidies: 2 1 3

Length(s) of microsatellite repeats: 3 4 5

You’ll notice that we have twice as many loci now that each marker has been
split into two isoloci. We also have a lot of missing data, since homoplasy can
lead to uncertainty about what the true genotype is. We had homoplasy for
Loc1 and Loc 4.

> for(L in Loci(recodedData)){

+ proportionmissing <- mean(isMissing(recodedData, loci=L))

+ cat(paste(L,":",proportionmissing,"missing"),sep="\n")

+ }

Loc1-1 : 0.52 missing

Loc1-2 : 0.513333333333333 missing

Loc2-1 : 0.00333333333333333 missing

Loc2-2 : 0.00333333333333333 missing

Loc3-1 : 0.00333333333333333 missing

Loc3-2 : 0.00333333333333333 missing

Loc4-1 : 0.343333333333333 missing

Loc4-2 : 0.323333333333333 missing

Loc5-1 : 0.01 missing

Loc5-2 : 0.01 missing

You’ll also notice that not the entire dataset is diploid. That is because there
is some meiotic error in the dataset, and we used allowAneuoploidy = TRUE

in recodeAllopoly. Most genotypes are diploid though.

15

> table(Ploidies(recodedData))

1 2 3

3 2994 3

The recoded data may now be analyzed with any polysat function, or
exported to other software using any of the various write functions in polysat.

4 The Catalán method of allele assignment

An alternative method of allele assignment available in polysat is that by
Catalán et al. (2006; http://dx.doi.org/10.1534/genetics.105.042788).
The Catalán method does not allow for homoplasy, null alleles, or meiotic error,
but may perform better than the polysat method in cases of strong population
structure. Let’s try it on our example dataset.

> catResults <- list()

> length(catResults) <- length(Loci(mydata))

> names(catResults) <- Loci(mydata)

> for(L in Loci(mydata)){

+ cat(L, sep="\n")

+ catResults[[L]] <- catalanAlleles(mydata, locus=L, verbose=TRUE)

+ }

Loc1

$locus

[1] "Loc1"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles: some genotypes have too few alleles"

Loc2

Allele assignments:

140 143 146 149 152 155 158 161

[1,] 0 0 0 0 1 1 0 0

[2,] 1 1 1 1 0 0 1 1

Inconsistent genotypes:

[[1]]

[1] 143 155 158 161

[[2]]

[1] 140 143 149 155

16

http://dx.doi.org/10.1534/genetics.105.042788

$locus

[1] "Loc2"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles"

Loc3

Allele assignments:

98 102 106 110 114 118 122 126 130

[1,] 1 1 1 1 1 0 0 0 0

[2,] 0 0 0 0 0 1 1 1 1

Inconsistent genotypes:

[[1]]

[1] 102 106 110 118

$locus

[1] "Loc3"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles"

Loc4

$locus

[1] "Loc4"

$SGploidy

[1] 2

$assignments

[1] "Homoplasy or null alleles: some genotypes have too few alleles"

Loc5

$locus

[1] "Loc5"

$SGploidy

[1] 2

$assignments

250 255 260 265 270 275

17

[1,] 1 1 0 1 0 0

[2,] 0 0 1 0 1 1

Assignments are returned for Loc5 only. For Loc2 and Loc3, the algorithm
found the correct allele assignments, but did not return them since some geno-
types were inconsistent with those assignments due to meiotic error.

The results of catalanAlleles can be passed to recodeAllopoly in the
same way as the results of testAlGroups.

18

	Introduction
	Data hygiene
	Before you begin genotyping
	Scoring your microsatellite alleles
	Preliminary analysis of the data

	The polysat algorithm for allele assignment
	General considerations and parameters
	Running the algorithm
	Inspecting the results
	Warnings about positive correlations
	Quality of clustering

	Merging assignments across populations
	Testing assignment accuracy using simulated datasets
	Recoding the data

	The Catalán method of allele assignment

