
poplite vignette

Daniel Bottomly and Beth Wilmot

February 12, 2015

1 Introduction

Prior to utilizing a given database in a research context, it has to be designed, scripts written to format
existing data to fit into the tables, and the data has to be loaded. The loading can be as simple as just
inserting data into a given table or in addition it may need to respect columns from other tables. The
poplite package was developed originally to simplify the process of population and management of SQLite
databases using R. It provides a schema object and corresponding methods which allows a user to easily
understand the database structure as well as extend or modify it. The database can be populated using this
schema and the user can specify both raw data and a transformational function to apply prior to loading.
This functionality facilitates loading of large, non-data.frame type objects as is demonstrated below in the
’VCF Database’ section. It has since also incorportated and extended functionality from the dplyr package
[Wickham and Francois, 2014] to provide a convienient query interface using dplyr’s verbs. Notably, cross
table queries can be carried out automatically using the specified schema object.

2 Sample Tracking Database

We will start by working through a simple example that illustrates how to use poplite for many common
database tasks. Here we will create a sample tracking database for DNA specimens collected on patients
in a clinical research setting. Our example is a set of 3 data.frames which consists of randomly generated
values resembling commonly collected data. We first load the package and the example data, going through
each data.frame in turn.

2.1 Database Population

> library(poplite)

> data(clinical)

> ls()

[1] "clinical" "dna" "samples"

The clinical data.frame contains information on a group of patients including sex, age, disease status as
well as other variables/covariates.

> head(clinical)

sample_id sex age status var_wave_1 var_wave_2

1 1 M 12 0 0.7567748 0.26783502

2 2 F 7 0 -1.7267304 0.65325768

3 3 M 18 1 -0.6015067 -0.12270866

4 4 M 13 1 -0.3520465 -0.41367651

1

5 5 F 7 1 0.7035239 -2.64314895

6 6 M 8 0 -0.1056713 -0.09294102

>

The samples data.frame records whether a given patient, keyed by sample id was observed in one of several
’waves’ and whether they contributed a DNA sample.

> head(samples)

sample_id wave did_collect

1 1 1 Y

2 1 2 N

3 2 1 Y

4 2 2 N

5 3 1 N

6 3 2 Y

>

The dna data.frame provides some information (concentration in nanograms/microliter) on the DNA spec-
imen collected from a given patient during a given wave.

> head(dna)

sample_id wave lab_id ng.ul

1 1 1 dna_1_1 294.614119

3 2 1 dna_2_1 5.777775

6 3 2 dna_3_2 203.292147

10 5 2 dna_5_2 158.137716

12 6 2 dna_6_2 167.162274

15 8 1 dna_8_1 183.204669

>

As these data are already in table form, loading them should be relatively straightforward. The first step
is the creation of a schema object of class TableSchemaList whose name is descriptive of the data therein.
For data.frames a convenience function (makeSchemaFromData) is provided which does some basic checks
and creates an appropriate table based on the column names and inferred types.

> sample.tracking <- makeSchemaFromData(clinical, "clinical")

> sample.tbsl <- makeSchemaFromData(samples, "samples")

> sample.tracking <- append(sample.tracking, sample.tbsl)

> try(dna.tbsl <- makeSchemaFromData(dna, "dna"))

>

The error caused by attempting to create a schema object from the ’dna’ data.frame, is due to the formatting
of the column name of ’ng.ul’ which is a valid R name, but not a valid SQLite name. A convienient way to
fix this is to use the correct.df.names function as below. Note that this modified data.frame will be the
one that has to be provided to the populate method.

> new.dna <- correct.df.names(dna)

> dna.tbsl <- makeSchemaFromData(new.dna, "dna")

> sample.tracking <- append(sample.tracking, dna.tbsl)

>

At this point, the database can be created and populated using the schema defined in ’sample.tracking’ and
the data present in the respective data.frames. However, this requires anyone who wants to query across
the tables be able to determine the relationships between the tables. In some cases this can be determined
by column names alone, in other cases it may not be so clear. The poplite package allows the specification

2

of relationships between tables using the R formula syntax. This functionality is probably best illustrated
by example.

The ’clinical’ table is the starting point of this database as both the ’samples’ and ’dna’ tables refer back to it.
In the case of both the ’samples’ and ’dna’ tables, the ’clinical’ table can be refered to using the ’sample id’
column. In addition, the ’dna’ table can be referred to by the ’samples’ table using a combination of
’sample id’ and ’wave’ and vice versa. These types of relationship can be created by the following:

> relationship(sample.tracking, from="clinical", to="samples") <- sample_id~sample_id

> relationship(sample.tracking, from="clinical", to="dna") <-sample_id~sample_id

> relationship(sample.tracking, from="samples", to="dna") <- sample_id+wave~sample_id+wave

Now that our schema is complete, we are now ready to populate our database. First, we create a Database

object which simply contains both the schema as well as the file path to where the database resides. We
then call the populate method and provide it with our named data.frames.

> sample.tracking.db <- Database(sample.tracking, tempfile())

> populate(sample.tracking.db, dna=new.dna, samples=samples, clinical=clinical)

>

2.2 Querying

As mentioned in the introduction, the query interface utilizes the approach of the dplyr package, whereby a
small set of verbs are used to perform common queries. In addition to utilizing the single table verbs defined
in dplyr, poplite defines multi-table versions of the select and filter verbs. The select verb allows the
user to select columns from a table-like object, in this case an SQLite database. As the poplite version of
select and filter can be used for any of the tables in the defined schema, the most important requirement
is for the user to make sure the column(s) are unambigous in terms of the tables. This can be done in several
ways:

(1) Only for the select statement, the .tables argument allows selecting all or part of the columns of a
given table(s). If multiple tables are provided, then they are first joined (an ’inner join’ in SQL terminology)
using the specified relationships in the schema. This provides a convienent way to retrieve a combined version
of the data in the database.

> select(sample.tracking.db, .tables="dna")

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: dna [106 x 5]

dna_ind sample_id wave lab_id ng_ul

1 1 1 1 dna_1_1 294.614119

2 2 2 1 dna_2_1 5.777775

3 3 3 2 dna_3_2 203.292147

4 4 5 2 dna_5_2 158.137716

5 5 6 2 dna_6_2 167.162274

6 6 8 1 dna_8_1 183.204669

7 7 9 1 dna_9_1 96.772302

8 8 9 2 dna_9_2 113.345676

9 9 10 1 dna_10_1 46.179612

10 10 15 1 dna_15_1 40.964460

..

> select(sample.tracking.db, sample_id:lab_id, .tables="dna")

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: dna [106 x 3]

3

sample_id wave lab_id

1 1 1 dna_1_1

2 2 1 dna_2_1

3 3 2 dna_3_2

4 5 2 dna_5_2

5 6 2 dna_6_2

6 8 1 dna_8_1

7 9 1 dna_9_1

8 9 2 dna_9_2

9 10 1 dna_10_1

10 15 1 dna_15_1

..

> select(sample.tracking.db, .tables=c("clinical","dna"))

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: <derived table> [?? x 11]

clinical_ind sample_id sex age status var_wave_1 var_wave_2 dna_ind wave

1 1 1 M 12 0 0.7567748 0.26783502 1 1

2 2 2 F 7 0 -1.7267304 0.65325768 2 1

3 3 3 M 18 1 -0.6015067 -0.12270866 3 2

4 5 5 F 7 1 0.7035239 -2.64314895 4 2

5 6 6 M 8 0 -0.1056713 -0.09294102 5 2

6 8 8 F 18 0 1.6844357 0.53539884 6 1

7 9 9 F 20 1 0.9113913 -0.55527835 7 1

8 9 9 F 20 1 0.9113913 -0.55527835 8 2

9 10 10 M 12 1 0.2374303 1.77950291 9 1

10 14 15 F 3 0 0.6837455 -0.45033862 10 1

..

Variables not shown: lab_id (chr), ng_ul (dbl)

>

(2) If a column or set of columns uniquely identifies a table, then no further information is needed to execute
the query.

> select(sample.tracking.db, sample_id:lab_id)

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: dna [106 x 3]

sample_id wave lab_id

1 1 1 dna_1_1

2 2 1 dna_2_1

3 3 2 dna_3_2

4 5 2 dna_5_2

5 6 2 dna_6_2

6 8 1 dna_8_1

7 9 1 dna_9_1

8 9 2 dna_9_2

9 10 1 dna_10_1

10 15 1 dna_15_1

..

> head(filter(sample.tracking.db, sex == "M" & var_wave_1 > 0))

clinical_ind sample_id sex age status var_wave_1 var_wave_2

4

1 1 1 M 12 0 0.75677476 0.2678350

2 10 10 M 12 1 0.23743027 1.7795029

3 12 13 M 5 0 0.66082030 1.2722668

4 18 19 M 6 1 0.00729009 -1.4385066

5 19 20 M 12 0 1.01755864 -0.1905168

6 21 23 M 18 1 1.51921771 -1.0056363

> filter(sample.tracking.db, sample_id == 97 & var_wave_1 > 0)

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: clinical [1 x 7]

Filter: sample_id == 97 & var_wave_1 > 0

clinical_ind sample_id sex age status var_wave_1 var_wave_2

1 85 97 M 2 1 0.7564064 -2.070751

>

Whereas the following fails because ’sample id’ is defined in several tables.

> try(filter(sample.tracking.db, sample_id == 97))

>

(3) A table can be specified in the query using a ’.’ similar to how it is done in SQL, i.e. tableX.ColumnY.
This only should be done once per statement for select statments, but per variable for filter statements
as is shown below. This restriction reflects how the queries are carried out. Each grouping of statements
statements are applied to the specified or inferred table prior to joining. Note that for the poplite filter

verb cross-table ’OR’ statements are currently not supported.

> select(sample.tracking.db, dna.sample_id)

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: dna [106 x 1]

sample_id

1 1

2 2

3 3

4 5

5 6

6 8

7 9

8 9

9 10

10 15

.. ...

> select(sample.tracking.db, dna.sample_id:lab_id)

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: dna [106 x 3]

sample_id wave lab_id

1 1 1 dna_1_1

2 2 1 dna_2_1

3 3 2 dna_3_2

4 5 2 dna_5_2

5 6 2 dna_6_2

6 8 1 dna_8_1

5

7 9 1 dna_9_1

8 9 2 dna_9_2

9 10 1 dna_10_1

10 15 1 dna_15_1

..

> filter(sample.tracking.db, clinical.sample_id == 97)

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: clinical [1 x 7]

Filter: sample_id == 97

clinical_ind sample_id sex age status var_wave_1 var_wave_2

1 85 97 M 2 1 0.7564064 -2.070751

> filter(sample.tracking.db, clinical.status == 1 & dna.wave==2)

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4ecd3c66d]

From: <derived table> [?? x 11]

Filter: status == 1 & wave == 2

clinical_ind sample_id sex age status var_wave_1 var_wave_2 dna_ind wave

1 3 3 M 18 1 -0.60150671 -0.12270866 3 2

2 5 5 F 7 1 0.70352390 -2.64314895 4 2

3 9 9 F 20 1 0.91139129 -0.55527835 8 2

4 18 19 M 6 1 0.00729009 -1.43850664 14 2

5 20 21 F 15 1 -1.18843404 0.37842390 18 2

6 21 23 M 18 1 1.51921771 -1.00563626 22 2

7 22 24 M 15 1 0.37738797 0.01925927 24 2

8 24 27 M 8 1 -0.20078102 1.08477509 28 2

9 28 32 M 2 1 1.67105483 0.65990264 34 2

10 29 33 F 5 1 0.05601673 -0.19988983 35 2

..

Variables not shown: lab_id (chr), ng_ul (dbl)

>

The poplite query interface is ’opt-in’, meaning that more complex queries can always be carried out directly
using the methodology provided in the dplyr package or plain SQL statements after first connecting to the
database file using RSQLite. Below are three approaches of performing the same query:

> #poplite + dplyr

> wave.1.samp.pop <- filter(select(sample.tracking.db, .tables=c("samples", "dna")), wave == 1)

> #dplyr

> src.db <- src_sqlite(dbFile(sample.tracking.db), create = F)

> samp.tab <- tbl(src.db, "samples")

> dna.tab <- tbl(src.db, "dna")

> wave.1.samp.dplyr <- inner_join(filter(samp.tab, wave == 1), dna.tab,

+ by=c("sample_id", "wave"))

> library(RSQLite)

> #RSQLite

> samp.db <- dbConnect(SQLite(), dbFile(sample.tracking.db))

> wave.1.samp.sql <- dbGetQuery(samp.db, 'SELECT * FROM samples JOIN dna

+ USING (sample_id, wave) WHERE wave == 1')
> dbDisconnect(samp.db)

[1] TRUE

6

> all.equal(as.data.frame(wave.1.samp.pop), wave.1.samp.sql)

[1] TRUE

> all.equal(as.data.frame(wave.1.samp.dplyr), wave.1.samp.sql)

[1] TRUE

>

2.3 Additional Features

Instead of directly cross referencing columns as we did for the database above in our relationships (e.g.
sample id - sample id) we can also specify that we instead want to use the ’primary key’ of a given table
instead of one or more columns. Where the primary key is a column of integer values that uniquely identifies
each row and by default it was added automatically by makeSchemaFromData. This approach is commonly
used for lookup tables, for instance say we wanted a seperate table for gender and to only maintain an integer
value specifying whether a patient was male, female or unknown for the clinical table. We could do this as
follows where ’.’ is a shortcut that indicates that the primary key for the table should be used:

> gender <- data.frame(sex=unique(clinical$sex), stringsAsFactors=F)

> gend.tbsl <- makeSchemaFromData(gender, "gender")

> sample.tracking <- append(gend.tbsl, sample.tracking)

> relationship(sample.tracking, from="gender", to="clinical") <- .~sex

> sample.tracking.db <- Database(sample.tracking, tempfile())

> populate(sample.tracking.db, dna=new.dna, samples=samples, clinical=clinical, gender=gender)

> select(sample.tracking.db, .tables="gender")

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4e2ce72147]

From: gender [2 x 2]

gender_ind sex

1 1 M

2 2 F

> head(select(sample.tracking.db, .tables="clinical"))

clinical_ind sample_id age status var_wave_1 var_wave_2 gender_ind

1 1 1 12 0 0.7567748 0.26783502 1

2 2 2 7 0 -1.7267304 0.65325768 2

3 3 3 18 1 -0.6015067 -0.12270866 1

4 4 4 13 1 -0.3520465 -0.41367651 1

5 5 5 7 1 0.7035239 -2.64314895 2

6 6 6 8 0 -0.1056713 -0.09294102 1

> select(sample.tracking.db, .tables=c("clinical", "gender"))

Source: sqlite 3.8.6 [/var/folders/xf/6sc0vfxj5dj4_0dt0r9jm_jdnrv5h3/T//RtmpgBsUA1/file1e4e2ce72147]

From: <derived table> [?? x 8]

clinical_ind sample_id age status var_wave_1 var_wave_2 gender_ind sex

1 1 1 12 0 0.7567748 0.26783502 1 M

2 2 2 7 0 -1.7267304 0.65325768 2 F

3 3 3 18 1 -0.6015067 -0.12270866 1 M

4 4 4 13 1 -0.3520465 -0.41367651 1 M

5 5 5 7 1 0.7035239 -2.64314895 2 F

6 6 6 8 0 -0.1056713 -0.09294102 1 M

7 7 7 4 1 -1.2586486 0.43028470 1 M

7

8 8 8 18 0 1.6844357 0.53539884 2 F

9 9 9 20 1 0.9113913 -0.55527835 2 F

10 10 10 12 1 0.2374303 1.77950291 1 M

..

>

It is important to note that currently specifying a relationship between two tables in this manner will result
in the ’to’ table being limited to only those values in common between the specified columns in the two tables.
So do not use this approach unless you expect that the two tables are consistent with each other.

3 Variant Call Format Database

One of the the most useful features of poplite is that databases can be created from any R object that can
be coerced to a data.frame and they can be populated iteratively. This more complex example involves the
parsing and loading of a variant call format (VCF) file. This type of file was devised to encode DNA variations
from a reference genome for a given set of samples. In addition, it can also provide numerical summaries
on the confidence that the variant exists as well as other summary stats and annotations. For more details,
see the following specifications: http://ga4gh.org/#/fileformats-team. As parsing is already provided
by the VariantAnnotation package [Obenchain et al., 2014] in Bioconductor [Gentleman et al., 2004], we
will focus on the population of a database using this data. We will use the example dataset from the
VariantAnnotation package and read it into memory as a VCF object as shown in the VariantAnnotation

vignette.

The first table we will create is a representation of the chromosome, location and reference positions where
at least one variant was observed. To do this we will create a function that takes a VCF object as input
and returns a data.frame. This function and a subset of the VCF object is passed to the makeSchemaFrom-

Function helper function. What this helper function does is execute the desired function on the provided
VCF object, determine the table structure from the returned data.frame and package the results in a Ta-

bleSchemaList object. It is important that the name(s) for the input objects match between the provided
function, makeSchemaFromFunction and ultimately populate.

> populate.ref.table <- function(vcf.obj)

+ {

+ ref.dta <- cbind(

+ seqnames=as.character(seqnames(vcf.obj)),

+ as.data.frame(ranges(vcf.obj))[,c("start", "end")],

+ ref=as.character(ref(vcf.obj)),

+ stringsAsFactors=FALSE

+)

+ return(ref.dta)

+ }

> vcf.sc <- makeSchemaFromFunction(populate.ref.table, "reference", vcf.obj=vcf[1:5])

>

Each variant position in our ’reference’ table can have multiple alternatives (termed alleles) which were
determined by the genotyping program which generated the VCF file. The ’alleles’ table can be formed as
follows:

> populate.allele.table <- function(vcf.obj)

+ {

+ exp.obj <- expand(vcf.obj)

+ ref.dta <- cbind(

+ seqnames=as.character(seqnames(exp.obj)),

+ as.data.frame(ranges(exp.obj))[,c("start", "end")],

8

http://ga4gh.org/#/fileformats-team

+ ref=as.character(ref(exp.obj)),

+ alt=as.character(alt(exp.obj)),

+ stringsAsFactors=FALSE

+)

+ return(ref.dta)

+ }

> allele.sc <- makeSchemaFromFunction(populate.allele.table, "alleles", vcf.obj=vcf[1:5])

> vcf.sc <- poplite::append(vcf.sc, allele.sc)

>

Finally we can form a table that records the number of alternative alleles for each sample. Implementation
Note: the ’allele count’ column is very simple due to fact that this example dataset only contains one
alternative allele for each variant. Multi-alleleic cases would have to be dealt with differently as we would
need to be sure that the appropriate allele was counted for each genotype.

> populate.samp.alt.table <- function(vcf.obj)

+ {

+ temp.vrange <- as(vcf.obj, "VRanges")

+

+ ret.dta <- cbind(

+ seqnames=as.character(seqnames(temp.vrange)),

+ as.data.frame(ranges(temp.vrange))[,c("start", "end")],

+ ref=ref(temp.vrange),

+ alt=alt(temp.vrange),

+ sample=as.character(sampleNames(temp.vrange)),

+ allele_count=sapply(strsplit(temp.vrange$GT, "\\|"),

+ function(x) sum(as.integer(x), na.rm=T)),

+ stringsAsFactors=F

+)

+

+ return(ret.dta[ret.dta$allele_count > 0,])

+ }

> geno.all.sc <- makeSchemaFromFunction(populate.samp.alt.table, "sample_alleles", vcf.obj=vcf[1:5])

> vcf.sc <- poplite::append(vcf.sc, geno.all.sc)

>

Our relationships can be specified as before. One wrinkle here is that there is a dependence in the table
structures that is more complicated than in the ’Sample Tracking Database’ section above. The first rela-
tionship statement below will create a final ’alleles’ table with the primary key of ’reference’ and the ’alt’
column. As ’sample allleles’ contains the full column structure of ’alleles’ plus the ’sample’ and ’allele count’
columns it has to be first joined with reference to retrieve its primary key, then joined with the new ’alleles’
table to get ’alleles’ primary key with the final table resembling: ’alt ind’, ’sample’ and ’allele count’. Just
as ’.’ on the left hand side indicates the primary key of the ’from’ table the ’.reference’ variable indicates
the primary key of the reference table.

> relationship(vcf.sc, from="reference", to="alleles") <- .~seqnames+start+end+ref

> relationship(vcf.sc, from="reference", to="sample_alleles") <- .~seqnames+start+end+ref

> relationship(vcf.sc, from="alleles", to="sample_alleles") <- .~.reference+alt

>

Now that our schema is complete, we can populate our three tables in the database. In this case, we can
populate the entire database with one statement, however for demonstration purposes we will divide the VCF

object into several pieces and populate them one at a time to simulate reading from a large file in chunks or
iterating over several files. Also note that the ’constraint<-’ method is available to provide a mechanism to
enforce uniqueness of a subset of columns for a given table which is especially useful if the database is being
populated from many files which may have duplicate data.

9

> vcf.db <- Database(vcf.sc, tempfile())

> populate(vcf.db, vcf.obj=vcf[1:1000])

> populate(vcf.db, vcf.obj=vcf[1001:2000])

> pop.res <- as.data.frame(poplite::select(vcf.db, .tables=tables(vcf.db)))

> vrange.tab <- as(vcf[1:2000], "VRanges")

> vrange.dta <- data.frame(seqnames=as.character(seqnames(vrange.tab)),

+ start=start(vrange.tab),

+ end=end(vrange.tab),

+ ref=as.character(ref(vrange.tab)),

+ alt=as.character(alt(vrange.tab)),

+ sample=as.character(sampleNames(vrange.tab)),

+ allele_count=sapply(strsplit(vrange.tab$GT, "\\|"),

+ function(x) sum(as.integer(x), na.rm=T)),

+ stringsAsFactors=F)

> vrange.dta <- vrange.dta[vrange.dta$allele_count > 0,]

> vrange.dta <- vrange.dta[do.call("order", vrange.dta),]

> sub.pop.res <- pop.res[,names(vrange.dta)]

> sub.pop.res <- sub.pop.res[do.call("order", sub.pop.res),]

> all.equal(sub.pop.res, vrange.dta, check.attributes=F)

[1] TRUE

>

> sessionInfo()

R Under development (unstable) (2015-02-03 r67717)

Platform: x86_64-apple-darwin12.6.0/x86_64 (64-bit)

Running under: OS X 10.8.5 (Mountain Lion)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] VariantAnnotation_1.13.28 Rsamtools_1.19.27

[3] Biostrings_2.35.7 XVector_0.7.4

[5] GenomicRanges_1.19.36 GenomeInfoDb_1.3.12

[7] IRanges_2.1.38 S4Vectors_0.5.19

[9] BiocGenerics_0.13.4 RSQLite_1.0.0

[11] DBI_0.3.1 poplite_0.99.16

[13] dplyr_0.4.1

loaded via a namespace (and not attached):

[1] Rcpp_0.11.4 GenomicFeatures_1.19.18 bitops_1.0-6

[4] base64enc_0.1-2 iterators_1.0.7 BatchJobs_1.5

[7] tools_3.2.0 zlibbioc_1.13.1 biomaRt_2.23.5

[10] digest_0.6.8 BSgenome_1.35.16 checkmate_1.5.1

[13] foreach_1.4.2 igraph_0.7.1 rtracklayer_1.27.7

[16] stringr_0.6.2 Biobase_2.27.1 R6_2.0.1

[19] AnnotationDbi_1.29.17 XML_3.98-1.1 fail_1.2

[22] BiocParallel_1.1.13 sendmailR_1.2-1 magrittr_1.5

[25] BBmisc_1.9 codetools_0.2-10 GenomicAlignments_1.3.27

10

[28] assertthat_0.1 brew_1.0-6 RCurl_1.95-4.5

[31] lazyeval_0.1.10

References

Robert C Gentleman, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel Dettling, Sandrine Dudoit,
Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, et al. Bioconductor: open software development
for computational biology and bioinformatics. Genome biology, 5(10):R80, 2004.

Valerie Obenchain, Michael Lawrence, Vincent Carey, Stephanie Gogarten, Paul Shannon, and Mar-
tin Morgan. Variantannotation: a bioconductor package for exploration and annotation of genetic
variants. Bioinformatics, 30(14):2076–2078, 2014. doi: 10.1093/bioinformatics/btu168. URL http:

//bioinformatics.oxfordjournals.org/content/30/14/2076.abstract.

Hadley Wickham and Romain Francois. dplyr: A Grammar of Data Manipulation, 2014. URL http:

//CRAN.R-project.org/package=dplyr. R package version 0.3.0.2.

11

http://bioinformatics.oxfordjournals.org/content/30/14/2076.abstract
http://bioinformatics.oxfordjournals.org/content/30/14/2076.abstract
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=dplyr

	Introduction
	Sample Tracking Database
	Database Population
	Querying
	Additional Features

	Variant Call Format Database

