
Vol. 7/2, October 2007 25

Random Survival Forests for R
Hemant Ishwaran and Udaya B. Kogalur

Introduction

In this article we introduce Random Survival Forests,
an ensemble tree method for the analysis of right
censored survival data. As is well known, con-
structing ensembles from base learners, such as trees,
can significantly improve learning performance. Re-
cently, Breiman showed that ensemble learning can
be further improved by injecting randomization into
the base learning process, a method called Random
Forests (Breiman, 2001). Random Survival Forests is
closely modeled after Breiman’s approach. In Ran-
dom Forests, randomization is introduced in two
forms. First, a randomly drawn bootstrap sample of
the data is used for growing the tree. Second, the tree
learner is grown by splitting nodes on randomly se-
lected predictors. While at first glance Random For-
est might seem an unusual procedure, considerable
empirical evidence has shown it to be highly effec-
tive. Extensive experimentation, for example, has
shown it compares favorably to state of the art en-
sembles methods such as bagging (Breiman, 1996)
and boosting (Schapire et al., 1998).

Random Survival Forests being closely patterned
after Random Forests naturally inherits many of its
good properties. Two features especially worth em-
phasizing are: (1) It is user-friendly in that only three,
fairly robust, parameters need to be set (the number
of randomly selected predictors, the number of trees
grown in the forest, and the splitting rule to be used).
(2) It is highly data adaptive and virtually model as-
sumption free. This last property is especially help-
ful in survival analysis. Standard analyses often
rely on restrictive assumptions such as proportional
hazards. Also, with such methods there is always
the concern whether associations between predictors
and hazards have been modeled appropriately, and
whether or not non-linear effects or higher order in-
teractions for predictors should be included. In con-
trast, such problems are handled seamlessly and au-
tomatically within a Random Forests approach.

While R currently has a Random Forests pack-
age for classification and regression problems (the
randomForest() package ported by Andy Liaw and
Matthew Wiener), there is currently no version avail-
able for analyzing survival data1. The need for a
Random Forests procedure separate from one that
handles classification and regression problems is
well motivated as survival data possesses unique
features not handled within a CART (Classification
and Regression Tree) paradigm. In particular, the no-

tion of what constitutes a good node split for grow-
ing a tree, what prediction means, and how to mea-
sure prediction performance, pose unique problems
in survival analysis.

Moreover, while a survival tree can in some
instances be reformulated as a classification tree,
thereby making it possible to use CART software
for a Random Forests analysis, we believe such ap-
proaches are merely stop-gap measures that will be
difficult for the average user to implement. For ex-
ample, Ishwaran et al. (2004) show under a propor-
tional hazards assumption that one can grow sur-
vival trees using the splitting rule of LeBlanc and
Crowley (1992) using the rpart() algorithm (Ther-
neau and Atkinson, 1997), hence making it possi-
ble to implement a relative risk forests analysis in R.
However, this requires extensive coding on the users
part, is limited to proportional hazard settings, and
the splitting rule used is only approximate.

The algorithm

It is clear that a comprehensive method with accom-
panying software is needed. To fill this need we in-
troduce randomSurvivalForest, an R software pack-
age for implementing Random Survival Forests. The
algorithm used by randomSurvivalForest is broadly
described as follows:

1. Draw ntree bootstrap samples from the origi-
nal data.

2. Grow a tree for each bootstrapped data set. At
each node of the tree randomly select mtry pre-
dictors (covariates) for splitting on. Split on a
predictor using a survival splitting criterion. A
node is split on that predictor which maximizes
survival differences across daughter nodes.

3. Grow the tree to full size under the constraint
that a terminal node should have no less than
nodesize unique deaths.

4. Calculate an ensemble cumulative hazard esti-
mate by combining information from the ntree
trees. One estimate for each individual in the
data is calculated.

5. Compute an out-of-bag (OOB) error rate for the
ensemble derived using the first b trees, where
b = 1, . . . , ntree.

Splitting rules

Node splits are a crucial ingredient to the algo-
rithm. The randomSurvivalForest package pro-

1We are careful to distinguish Random Forests procedures following Breiman’s methodology from other approaches. Readers, for
example, should be aware of the R party() package, which implements a random forests style analysis using conditional tree base learn-
ers (Hothorn et al., 2006).

R News ISSN 1609-3631

Vol. 7/2, October 2007 26

vides four different survival splitting rules for the
user. These are: (i) a log-rank splitting rule,
the default splitting rule, invoked by the option
splitrule="logrank"; (ii) a conservation of events
splitting rule, splitrule="conserve"; (iii) a logrank
score rule, splitrule="logrankscore"; (iv) and a
fast approximation to the logrank splitting rule,
splitrule="logrankapprox".

Notation

Assume we are at node h of a tree during its growth
and that we seek to split h into two daughter nodes.
We introduce some notation to help discuss how the
the various splitting rules work to determine the best
split. Assume that within h are n individuals. Denote
their survival times and 0-1 censoring information by
(T1, δ1), . . . , (Tn, δn). An individual l will be said to
be right censored at time Tl if δl = 0, otherwise the
individual is said to have died at Tl if δl = 1. In the
case of death, Tl will be refered to as an event time,
and the death as an event. An individual l who is
right censored at Tl simply means the individual is
known to have been alive at Tl , but the exact time of
death is unknown.

A proposed split at node h on a given predictor x
is always of the form x ≤ c and x > c. Such a split
forms two daughter nodes (a left and right daugh-
ter) and two new sets of survival data. A good split
maximizes survival differences across the two sets of
data. Let t1 < t2 < · · · < tN be the distinct death
times in the parent node h, and let di, j and Yi, j equal
the number of deaths and individuals at risk at time
ti in the daughter nodes j = 1, 2. Note that Yi, j is the
number of individuals in daughter j who are alive at
time ti, or who have an event (death) at time ti. More
precisely,

Yi,1 = #{Tl ≥ ti , xl ≤ c}, Yi,2 = #{Tl ≥ ti , xl > c},

where xl is the value of x for individual l = 1, . . . , n.
Finally, define Yi = Yi,1 + Yi,2 and di = di,1 + di,2. Let
nj be the total number of observations in daughter j.
Thus, n = n1 + n2. Note that n1 = #{l : xl ≤ c} and
n2 = #{l : xl > c}.

Log-rank splitting

The log-rank test for a split at the value c for predic-
tor x is

L(x, c) =

N

∑
i=1

(
di,1 − Yi,1

di

Yi

)
√

N

∑
i=1

Yi,1

Yi

(
1 − Yi,1

Yi

) (
Yi − di

Yi − 1

)
di

.

The value |L(x, c)| is the measure of node separation.
The larger the value for |L(x, c)|, the greater the dif-
ference between the two groups, and the better the

split is. In particular, the best split at node h is deter-
mined by finding the predictor x∗ and split value c∗
such that |L(x∗, c∗)| ≥ |L(x, c)| for all x and c.

Conservation of events splitting

The log-rank test for splitting survival trees is a
well established concept (Segal, 1988), having been
shown to be robust in both proportional and non-
proportional hazard settings (LeBlanc and Crowley,
1993). However, one criticism often heard is that it
tends to favor continuous predictors and often suf-
fers from an end-cut preference (favoring uneven
splits). However, in our experience with Random
Survival Forests we have not found this to be a seri-
ous deficiency. Nevertheless, to address this poten-
tial problem we introduce another important class
of test statistics for splitting that are related to con-
servation of events; a concept introduced in Naftel
et al. (1985) (our simulations have indicated these
tests may be much less susceptible to the aforemen-
tioned problems).

Under fairly general conditions, conservation of
events asserts that the sum of the estimated cumula-
tive hazard function over the observed time points
(deaths and censored values) must equal the total
number of deaths. This applies to a wide collection
of estimates including the the Nelson-Aalen estima-
tor. The Nelson-Aalen cumulative hazard estimator
for daughter j is

Ĥj(t) = ∑
ti, j≤t

di, j

Yi, j

where ti, j are the ordered death times for daughter j
(note: we define 0/0 = 0).

Let (Tl, j, δl, j), for l = 1, . . . , nj, denote all survival
times and censoring indicator pairs for daughter j.
Conservation of events asserts that

nj

∑
l=1

Ĥj(Tl, j) =
nj

∑
l=1

δl, j. (1)

In other words, the total number of deaths is con-
served in each daughter.

The conservation of events splitting rule is moti-
vated by (1). First, order the time points within each
daughter node such that

T(1), j ≤ T(2), j ≤ · · · ≤ T(nj), j.

Let δ(l), j be the censoring indicator function for the
ordered value T(l), j. Define

Mk, j =
k

∑
l=1

Ĥj(T(l), j) −
k

∑
l=1

δ(l), j, k = 1, . . . , nj.

One can think of Mk, j as “residuals” that measure ac-
curacy of conservation of events. The proposed test
statistic takes the sum of the absolute values of Mk, j

for k = 1, . . . , nj for each daughter j, and weights
these values by the number of individuals at risk

R News ISSN 1609-3631

Vol. 7/2, October 2007 27

within each group. Observe that Mnj , j = 0, but noth-

ing can be said about Mk, j for k < nj. Thus, by
considering Mk, j for each k, the proposed test mea-
sures how evenly distributed conservation of events
is over all deaths. The measure of conservation of
events for the split on x at the value c is

Conserve(x, c) =
1

Y1,1 + Y1,2

2

∑
j=1

Y1, j

n j−1

∑
k=1

|Mk, j|.

This value is small if the two groups are well sepa-
rated. Because we want to maximize survival differ-
ences due to a split, we use the transformed value
1/(1 + Conserve(x, c)) as our measure of node sep-
aration.

The preceding expression for Conserve(x, c) can
be quite expensive to compute as it involves sum-
ming over all survival times within the daughter
nodes. However, we can greatly reduce the amount
of work by compressing the sums to involve only
event times. With some work, one can show that
Conserve(x, c) is equivalent to:

1

Y1,1 + Y1,2

2

∑
j=1

Y1, j

N−1

∑
k=1

{
Nk, jYk+1, j

k

∑
l=1

dl, j

Yl, j

}
,

where Ni, j = Yi, j − Yi+1, j equals the number of ob-
servations in daughter j with observed time falling
within the interval [ti , ti+1) for i = 1, . . . , N where
tN+1 = ∞.

Log-rank score splitting

Another useful splitting rule available within the
randomSurvivalForest package is the log-rank
score test of Hothorn and Lausen (2003). To describe
this rule, assume the predictor x has been ordered so
that x1 ≤ x2 ≤ · · · ≤ xn. Now, compute the “ranks”
for each survival time Tl ,

al = δl −
Γl

∑
k=1

δk

n − Γk + 1

where Γk = #{t : Tt ≤ Tk}. The log-rank score test is
defined as

S(x, c) =
∑xl≤c al − n1a√
n1

(
1 − n1

n

)
s2

a

where a and s2
a are the sample mean and sample vari-

ance of {al : l = 1, . . . , n}. Log-rank score splitting
defines the measure of node separation by |S(x, c)|.
Maximizing this value over x and c yields the best
split.

Approximate logrank splitting

An approximate log-rank test can be used in place of
L(x, c) to greatly reduce computations. To derive the

approximation, first rewrite the numerator of L(x, c)
in a form that uses the Nelson-Aalen estimator for
the parent node. The Nelson-Aalen estimator is

Ĥ(t) = ∑
ti≤t

di

Yi
.

As shown in LeBlanc and Crowley (1993) one can
write

N

∑
i=1

(
di,1 − Yi,1

di

Yi

)
= D1 −

n

∑
l=1

I{xl ≤ c}Ĥ(Tl),

where Dj = ∑N
i=1 di, j for j = 1, 2. Because the

Nelson-Aalen estimator is computed on the parent
node, and not daughter nodes, this yields an efficient
way to compute the numerator of L(x, c).

Now to simplify the denominator, we approxi-
mate the variance of the numerator of L(x, c) as in
Section 7.7 of Cox and Oakes (1988) (this approxi-
mation was suggested to us by Michael LeBlanc in
personal communication). Setting D = ∑N

i=1 di, we
get the following approximation to the log-rank test
L(x, c):

D1/2

(
D1 −

n

∑
l=1

I{xl ≤ c}Ĥ(Tl)

)
√√√√{

n

∑
l=1

I{xl ≤ c}Ĥ(Tl)

}{
D −

n

∑
l=1

I{xl ≤ c}Ĥ(Tl)

} .

Ensemble estimation

The randomSurvivalForest package produces an
ensemble estimate for the cumulative hazard func-
tion. This is our predictor and key deliverable. Error
rate performance is calculated based on this value.
The ensemble is derived as follows. First, for each
tree grown from a bootstrap data set we estimate the
cumulative hazard function for the tree. This is ac-
complished by grouping hazard estimates by termi-
nal nodes. Consider a specific node h. Let {tl,h} be
the distinct death times in h and let dl,h and Yl,h equal
the number of deaths and individuals at risk at time
tl,h. The cumulative hazard estimate for node h is de-
fined as

Ĥh(t) = ∑
tl,h≤t

dl,h

Yl,h
.

Each tree provides a sequence of such estimates,
Ĥh(t). If there are M terminal nodes in the tree,
then there are M such estimates. To compute Ĥ(t|xi)
for an individual i with predictor xi, simply drop xi

down the tree. The terminal node for i yields the de-
sired estimator. More precisely,

Ĥ(t|xi) = Ĥh(t), if xi ∈ h. (2)

Note this value is computed for all individuals i in the
data.

R News ISSN 1609-3631

Vol. 7/2, October 2007 28

The estimate (2) is based on one tree. To produce
our ensemble we average (2) over all ntree trees. Let
Ĥb(t|x) denote the cumulative hazard estimate (2)
for tree b = 1, . . . , ntree. Define Ii,b = 1 if i is an
OOB point for b, otherwise set Ii,b = 0. The OOB
ensemble cumulative hazard estimator for i is

Ĥ∗
e (t|xi) =

∑ntree
b=1 Ii,bĤb(t|xi)

∑ntree
b=1 Ii,b

.

Observe that the estimator is obtained by averag-
ing over only those bootstrap samples in which i is
excluded (i.e., those datasets in which i is an OOB
value). The OOB estimator is in contrast to the
ensemble cumulative hazard estimator that uses all
samples:

Ĥe(t|xi) =
1

ntree

ntree

∑
b=1

Ĥb(t|xi).

Concordance error rate

Given the OOB estimator Ĥ∗
e (t|x), it is a simple mat-

ter to compute the error rate. We measure error us-
ing Harrell’s concordance index (Harrell et al., 1982).
Unlike other measures of survival performance, Har-
rell’s C-index does not depend on choosing a fixed
time for evaluation of the model and specifically
takes into account censoring of individuals (May
et al., 2004). The method has quickly become quite
popular in the literature as a means for assessing
prediction performance in survival analysis settings.
See Kattan et al. (1998) and references therein.

To compute the concordance index we must de-
fine what constitutes a worse predicted outcome. We
take the following approach. Let t∗1, . . . , t∗N denote all
unique event times in the data. Individual i is said to
have a worse outcome than j if

N

∑
k=1

Ĥ∗
e (t∗k |xi) >

N

∑
k=1

Ĥ∗
e (t∗k |x j).

The concordance error rate is computed as follows:

1. Form all possible pairs of observations over all
the data.

2. Omit those pairs where the shorter event time
is censored. Also, omit pairs i and j if Ti = Tj

unless δi = 1 and δ j = 0 or δi = 0 and δ j = 1.
The last restriction only allows ties if one of
the observations is a death and the other a cen-
sored observation. Let Permissible denote the
total number of permissible pairs.

3. Count 1 for each permissible pair in which the
shorter event time had the worse predicted out-
come. Count 0.5 if the predicted outcomes are
tied. Let Concordance denote the total sum
over all permissible pairs.

4. Define the concordance index C as

C =
Concordance

Permissible
.

5. The error rate is Error = 1 − C. Note that
0 ≤ Error ≤ 1 and that Error = 0.5 cor-
responds to a procedure doing no better than
random guessing, whereas Error = 0 indicates
perfect accuracy.

Usage in R

The user interface to randomSurvivalforest is sim-
ilar in many aspects to randomForest and as the
reader may have already noticed, many of the argu-
ment names are also the same. This was done de-
liberately in order to promote compatibility between
the two packages. The primary R function call to the
randomSurvivalforest package is rsf(). The on-
line documentation describes rsf() in great detail
and there is no reason to repeat this information here.
Different R wrapper functions are provided with the
randomSurvivalforest package to aid in interpret-
ing the object produced by rsf(). The examples
given below illustrate how some of these wrappers
work, and also indicate how rsf() might be used in
practice.

Lung-vet data

For our first example, we use the well known
veteran’s administration lung cancer data from
Kalbfleisch and Prentice (Kalbfleisch and Prentice,
1980). This is an example data set available within
the package. In total there are 6 predictors in the
data. We first focus on analysis that includes only
Karnofsky score as a predictor:

> library("randomSurvivalForest")
> data(veteran,package="randomSurvivalForest")
> ntree <- 1000
> v.out <- rsf(Survrsf(time,status) ~ karno,

veteran, ntree=ntree, forest=T)
> print(v.out)

Call:
rsf.default(formula = Survrsf(time, status)

~ karno, data = veteran, ntree = ntree)

Sample size: 137
Number of deaths: 128
Number of trees: 1000

Minimum terminal node size: 3
Average no. of terminal nodes: 8.437

No. of variables tried at each split: 1
Total no. of variables: 1

Splitting rule: logrank
Estimate of error rate: 36.28%

R News ISSN 1609-3631

Vol. 7/2, October 2007 29

The error rate is significantly smaller than 0.5, the
benchmark value associated with a procedure no bet-
ter than flipping a coin. This is very strong evidence
that Karnofsky score is predictive.

We can investigate the effect of Karnofsky score
more closely by considering how the ensemble esti-
mated mortality varies as a function of the predictor:

> plot.variable(v.out, partial=T)

Figure 1, produced by the above command, is a par-
tial plot of Karnofsky score. The vertical axis repre-
sents expected number of deaths.

20 40 60 80 100

20
40

60
80

12
0

karno

Figure 1: Partial plot of Karnofsky score. Vertical axis
is mortality ∑N

k=1 Nk Ĥe(t∗k |x) for a given Karnofsky
value x and represents expected number of deaths.

Now we run an analysis with all six predictors
under each of the four splitting rules. For each split-
ting rule we run 100 replications and record the mean
and standard deviation of the concordance error rate
(as before ntree equals 1000):

> splitrule <- c("logrank", "conserve",
"logrankscore", "logrankapprox")

> nrep <- 100
> err.rate <- matrix(0, 4, nrep)
> names(err.rate) <- splitrule
> v.f <-

as.formula("Survrsf(time,status) ~ .")
> for (j in 1:4) {
> for (k in 1:nrep) {
> err.rate[j,k] <- rsf(v.f,

veteran,ntree=ntree,
splitrule=splitrule[j])$err.rate[ntree]

> }
> }
> err.rate <- rbind(

mean=apply(err.rate, 1, mean),
std=apply(err.rate, 1, sd))

> colnames(err.rate) <- splitrule
> print(round(err.rate,4))

logrank conserve logrankscore logrankapx
mean 0.2982 0.3239 0.2951 0.3170
std 0.0027 0.0034 0.0027 0.0046

The analysis shows that logrankscore has the best
predictive performance (logrank is a close second).
Standard deviations in all cases are reasonably small.
It is interesting to observe that the mean error rates
are not substantially smaller than our previous anal-
ysis which used only Karnofsky score, thus indicat-
ing the predictor is highly influential. Our next ex-
ample illustrates further techniques for studying the
informativeness of a predictor.

Primary biliary cirrhosis (PBC) of the liver

Next we consider the PBC data set found in appendix
D.1 of Fleming and Harrington (Fleming and Har-
rington, 1991). This is also an example data set avail-
able in the package. Similar to the previous analysis
we analyzed the data by running a forest analysis for
each of the four splitting rules, repeating the analy-
sis 100 times independently (as before ntree was set
to 1000). The R code is similar as before and sup-
pressed:

logrank conserve logrankscore logrankapx
mean 0.1703 0.1677 0.1719 0.1602
std 0.0014 0.0014 0.0015 0.0020

As can be seen, the error rates are between 16-17%
with logrankapprox having the lowest value.

0 200 600 1000

0.
20

0.
25

0.
30

Number of Trees

E
rr

or
 R

at
e

alk

treatment

trig

sgot

platelet

sex

hepatom

stage

spiders

ascites

chol

albumin

edema

copper

prothrombin

bili

age

0.000 0.010

Importance

Figure 2: Error rate for PBC data as a function of trees
(left-side) and out-of-bag importance values for pre-
dictors (right-side).

We now consider the informativeness of each pre-
dictor under the logrankapprox splitting rule:

> data("pbc",package="randomSurvivalForest")
> pbc.f <- as.formula("Survrsf(days,status)~.")
> pbc.out <- rsf(pbc.f, pbc, ntree=ntree,

splitrule = "logrankapprox", forest=T)
> plot(pbc.out)

Figure 2 depicts the importance values for all 17 pre-
dictors. From the plot we see that “age” and “bili”
are clearly predictive and have substantially larger
importance values than all other predictors. The par-
tial plots for the top six predictors are displayed in

R News ISSN 1609-3631

Vol. 7/2, October 2007 30

Figure 3. The figure was produced using the com-
mand:

> plot.variable(pbc.out,3,partial=T,n.pred=6)

We now consider the incremental effect of each
predictor using a nested analysis. We sort predictors
by their importance values and consider the nested
sequence of models starting with the top variable,
followed by the model with the top 2 variables, then
the model with the top three variables, and so on:

> imp <- pbc.out$importance
> pnames <- pbc.out$predictorNames
> pnames.order <- pnames[rev(order(imp))]
> n.pred <- length(pnames)
> pbc.err <- rep(0, n.pred)
> for (k in 1:n.pred){
> rsf.f <- "Survrsf(days,status)~"
> rsf.f <- as.formula(paste(rsf.f,
> paste(pnames.order[1:k],collapse="+")))
> pbc.err[k] <- rsf(rsf.f, pbc, ntree=ntree,
> splitrule="logrankapprox")$err.rate[ntree]
> }
> pbc.imp.out <- as.data.frame(
> cbind(round(rev(sort(imp)),4),
> round(pbc.err,4),
> round(-diff(c(0.5,pbc.err)),4)),
> row.names=pnames.order)
>colnames(pbc.imp.out) <-
> c("Imp","Err","Drop Err")
> print(pbc.imp.out)

Imp Err Drop Err
age 0.0130 0.3961 0.1039
bili 0.0081 0.1996 0.1965
prothrombin 0.0052 0.1918 0.0078
copper 0.0042 0.1685 0.0233
edema 0.0030 0.1647 0.0038
albumin 0.0026 0.1569 0.0078
chol 0.0022 0.1606 -0.0037
ascites 0.0014 0.1570 0.0036
spiders 0.0013 0.1601 -0.0030
stage 0.0013 0.1557 0.0043
hepatom 0.0008 0.1570 -0.0013
sex 0.0006 0.1549 0.0021
platelet 0.0000 0.1565 -0.0016
sgot -0.0012 0.1538 0.0027
trig -0.0017 0.1545 -0.0007
treatment -0.0019 0.1596 -0.0052
alk -0.0040 0.1565 0.0032

The first column is the importance value of a predic-
tor in the full model. The kth value in the second col-
umn is the error rate for the kth nested model, while
the kth value in the third column is the difference be-
tween the error rate for the kth and (k − 1)th nested
model, where the error rate for the null model, k = 0,
is 0.5. One can see not much is gained by using more
than 6-7 predictors and that the top 3-4 predictors ac-
count for much of the predictive power.

Large scale problems

In terms of computationally challenging problems,
we have applied randomSurvivalForest success-
fully to several large survival datasets. For exam-
ple, we have considered data collected at the Cleve-
land Clinic involving over 20,000 records and well
over 60 predictors. We have also analyzed a data set
containing 1,000 records and with almost 250 predic-
tors. Our success with these applications is consis-
tent with that seen for Random Forests: namely, that
the methodology has been shown to scale up very
nicely, even in very large predictor spaces and with
large sample sizes. In terms of computational speed,
we have found that logrankapprox is almost always
fastest. After that, conserve is second fastest. For
very large datasets, discretizing continuous predic-
tors and/or the observed survival times can greatly
speed up computational times. Discretization does
not have to be overly granular for substantial gains
to be seen.

Acknowledgements

The authors are extremely grateful to Eugene H.
Blackstone and Michael S. Lauer for their tremen-
dous support, feedback, and generous time given to
us throughout this project. Without their help this
project would surely never have been completed. We
also thank the referee of the paper and Paul Murrell
for their constructive and helpful comments. This re-
search was supported by the National Institutes of
Health RO1 grant HL-072771.

Bibliography

L. Breiman. Random forests. Machine Learning, 45:
5–32, 2001.

L. Breiman. Bagging predictors. Machine Learning,
26:123–140, 1996.

D.R. Cox and D. Oakes. Analysis of Survival Data.
Chapman and Hall, London, 1998.

T. Fleming and D. Harrington. Counting Processes and
Survival Analysis. Wiley, New York, 1991.

F. Harrell, R. Califf, D. Pryor, K. Lee, and R. Rosati.
Evaluating the yield of medical tests. J. Amer. Med.
Assoc., 247:2543–2546, 1982.

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased
recursive partitioning: A conditional inference
framework. J. Comp. Graph. Statist., 15:651–674,
2006.

T. Hothorn, and B. Lausen. On the exact distribu-
tion of maximally selected rank statistics. Comput.
Statist. Data Analysis, 43:121–137, 2003.

R News ISSN 1609-3631

Vol. 7/2, October 2007 31

10000 20000

90
10
0

11
0

age

0 5 10 15 20 25

90
10
0

12
0

bili

10 12 14 16

90
95

10
0

11
0

prothrombin

0 200 400 600

90
10
0

11
0

12
0

copper

90
95

10
0

10
5

edema

0.0 0.5 1.0 2.0 2.5 3.0 3.5 4.0

90
95

10
5

11
5

albumin

Figure 3: Partial plots for top six predictors from PBC data. Values on the vertical axis represent expected
number of deaths for a given predictor, after adjusting for all other predictors. Dashed red lines for continuous
predictors are ± 2 standard error bars.

H. Ishwaran, E. Blackstone, M. Lauer, and C. Pothier.
Relative risk forests for exercise heart rate recovery
as a predictor of mortality. J. Amer. Stat. Assoc., 99:
591–600, 2004.

J. Kalbfleisch and R. Prentice. The Statistical Analysis
of Failure Time Data. Wiley, New York, 1980.

M. Kattan, K. Hess, and J. Beck. Experiments to
determine whether recursive partitioning (CART)
or an artificial neural network overcomes theoreti-
cal limitations of Cox proportional hazards regres-
sion. Computers and Biomedical Research, 31:363–
373, 1998.

M. LeBlanc and J. Crowley. Relative risk trees for cen-
sored survival data. Biometrics, 48:411–425, 1992.

M. LeBlanc and J. Crowley. Survival trees by good-
ness of split. J. Amer. Stat. Assoc., 88:457–467, 1993.

M. May, P. Royston, M. Egger, A.C. Justice and
J.A.C. Sterne. Development and validation of a
prognostic model for survival time data: applica-
tion to prognosis of HIV positive patients treated
with antiretroviral therapy. Statist. Medicine., 23:
2375–2398, 2004.

D. Naftel, E. Blackstone, and M. Turner. Conserva-
tion of events, 1985. Unpublished notes.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boost-
ing the margin: a new explanation for the effective-
ness of voting methods. Ann. Statist., 26(5):1651–
1686, 1998.

M.R. Segal. Regression trees for censored data. Bio-
metrics, 44:35–47, 1988.

T. Therneau and E. Atkinson. An introduction to re-
cursive partitioning using the rpart routine. Tech-
nical Report 61, 1997. Section of Biostatistics, Mayo
Clinic, Rochester.

Hemant Ishwaran
Department of Quantitative Health Sciences
Cleveland Clinic, Cleveland, U.S.A.
hemant.ishwaran@gmail.com
Udaya B. Kogalur
Kogalur Shear Corporation
Clemmons, U.S.A.
ubk@kogalur-shear.com

R News ISSN 1609-3631

