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This vignette attempts to give some background on the robust estimation method imple-
mented in “rlmer”. Moreover, two example analyses are included that aim to facilitate the first
time user to start working with this package. The text presented here is basically a summary
of Koller (2013). In said reference, a detailed derivation of the methods underlying “rlmer” can
be found.

The model and some notation is introduced in Section 1. The robust estimating equations
are given in Section 2. Then two examples are analyzed in Sections 3 and 4. Both datasets are
also analyzed in Bates (2011). For the convenience of the reader, the description of the datasets
found there has been included here. Finally, in Section 5 we provide tables of tuning constants
and the definition of the smoothed Huber ψ-function.

1 The Model

Following Bates (2011), we work with the formulation of mixed effects models in terms of
spherical random effects,

y = Xβ +ZUb (θ) b∗ +Ueε
∗ ,

b∗ ∼N
(
0, σ2Iq

)
, ε∗ ∼N

(
0, σ2In

)
, b∗ ⊥ ε∗ ,

(1)

where q is the number of random effects (the length of b∗) and n is the number of observations
(length of y). The vector θ parameterizes the lower triangular part Ub (θ) of the Cholesky de-
composition of the covariance matrix of the random effects V b (θ), i.e., V b (θ) = Ub (θ)Ub (θ) ᵀ.
We assume the random effects to be ordered in a way such that correlated random effects are
grouped toghether. The covariance matrix V b (θ) is therefore block diagonal. We use the index
i for observations, j for random effects and k for blocks of random effects. For notatinal sim-
plicity, we assume that there is only one type of blocks. Generalizing the estimating equations
given below is straightforward and left to the reader.

2 Robust Estimating Equations

2.1 Fixed and Random Effects

Let k(j) be a function that maps random effect j to the corresponding block k, then the squared
Mahalanobis distances of the estimated random effects are

d =
(
d
(
bk(j)/σ

))
j=1,...,q

, where d(bk) = b∗ᵀk b
∗
k .
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Then we may define the robustness weight for the jth random effect as wb(dj). We use standard
(location and linear regression) robustness weights:

wb (d) =

{
ψb

(√
d
)
/
√
d if d 6= 0 ,

ψ′b (0) if d = 0 .

It is convenient to represent the robustness weights as (diagonal) weighting matrix,

Wb (d) = Diag
(
wb
(
dk(j)

))
j=1,...,q .

The robust estimating equations are then

XᵀU−
ᵀ

e ψe (ε̂*/σ) = 0 ,

Uᵀ
bZ

ᵀU−
ᵀ

e ψe (ε̂*/σ) −ΛbWb

(
d̂
)
b̂*/σ = 0 ,

(2)

where Λb = Diag(λe/λb,j) j=1,...,q is a diagonal matrix with elements depending on the block

size sk(j) , λe = E0 [ψ′e (ε∗)] and λb,j = λ̃
(
sk(j)

)
,

λ̃(s) = E0

[
∂

∂b∗1
(wb (b

∗ᵀb∗) b∗1)

]
b∗ ∼N (0, Is) .

2.2 Scale

We apply the Design Adaptive Scale approach following Koller and Stahel (2011). We get

n∑
i=1

τ2e,iw
(σ)
e

(
ε̂∗i
τe,iσ̂

) [(
ε̂∗i
τe,iσ̂

)2

− κ(σ)e

]
= 0 , (3)

where the superscript ·(σ) is used to distinguish the weighting functions used for the scale and
covariance parameters from the ones for the fixed effects. Just as in the linear regression case, we
define τe,i as the value that zeroes the expectation of the i-th summand in (3). The expectation
is

E

[
w(σ)
e

(
ε̂∗i
τe,iσ̂

)(
ε̂∗i
τe,iσ̂

)2

− κ(σ)e w(σ)
e

(
ε̂∗i
τe,iσ̂

)]
= 0 , (4)

where the distribution of the residuals is approximated using a linear expansion of β̂ and b̂*

around their true values (Koller, 2013, Appendix C), and κ
(σ)
e is

κ(σ)e = E0

[
w(σ)
e (ε) ε2

]/
E0

[
w(σ)
e (ε)

]
.

The weighting functions used for the scale estimates are the squared robustness weights used

for the estimation of the fixed and random effects, w
(σ)
e (x) = (ψ

(σ)
e (x)/x)2, w

(σ)
e (0) = ψ

(σ)
e
′(0),

for convex ρ-functions. For redescending ρ-functions, it is not necessary to use the squared
robustness weights, using the same weights as for the fixed and random effects still gives robust
estimates (assuming ψ(x)x is bounded). When using the squared weights, it is crucial to use a
different set of tuning parameters for estimating the scale and covariance parameters. Tables of
tuning parameters can be found in Section 5.

2.3 Covariance Parameters

For the covariance parameters, we have to treat the diagonal and the non-diagonal Ub case
separately.

2



2.3.1 Diagonal Case

In the case of diagonal Ub (θ), the estimation of θ̂ is essentially a scale estimation problem on
b̂*. It can be robustified just like the estimating equation for σ̂ (3). The robust estimating
equations are

q∑
j=1

τ2b,jw
(σ)
b

(
b̂∗j
τb,iσ̂

)( b̂∗j
τb,j σ̂

)2

− κ(σ)b

 = 0 , (5)

with τb,i such that

E

w(σ)
b

(
b̂∗i
τb,iσ̂

)( b̂∗i
τb,iσ̂

)2

− κ(σ)b

 = 0 ,

and normalizing constant

κ
(σ)
b = E0

[
w

(σ)
b (b∗) b∗2

]/
E0

[
w

(σ)
b (b∗)

]
.

2.3.2 Non-diagonal Case

For non-diagonal Ub (θ) we have to take care of the block structure. The normalizing constant
τ2b,i has to be replaced by a matrix Tb,k which is defined for each block k. Analogue to the
estimator for the covariance matrix and location problem, we have to use two different weight

functions, one for the size of the matrix w
(τ)
b and another one for the shape w

(η)
b . For details, we

refer to Stahel (1987) and Hampel et al. (1986, Chapter 5). As is done in the cited references,

we introduce a third weight function w
(δ)
b to simplify notation. For block types with dimension

s > 1, let

w
(δ)
b (d) =

(
dw

(η)
b (d) −

(
d− sκ(τ)b

)
w

(τ)
b

(
d− sκ(τ)b

))/
s ,

where κ
(τ)
b is defined such that

E
[(
u− sκ(τ)b

)
w

(τ)
b

(
u− sκ(τ)b

)]
= 0 for u ∼ χ2

s.

Remark. The optimalB-robust estimator derived in Stahel (1987) is given by w
(τ)
b (d) = min(1/bτ , 1/d)

and w
(η)
b (d) = min(1/bη, 1/d). Other weight functions may be chosen, as long as ψ(d) = dw(d) is a ψ-

function. For w
(τ)
b and w

(η)
b given above, this would be the Huber ψ-function. For low dimensions s one

may choose w
(τ)
b = w

(η)
b . In higher dimensions, the efficiency loss for the estimated size is negligible.

Hence one may choose a smaller tuning parameter for w
(η)
b . For s = 2, and Huber or smoothed Huber ψ-

functions (see Section 5), one may use the squared tuning parameter of ρ
(σ)
e for w

(τ)
b to get approximately

the same efficiency for θ̂ as for σ̂. Tables of tuning parameters for higher dimensions for the Huber and
the lqq ψ-functions can be found in Section 5.

The robust estimating equation in the non-diagonal case can then be defined as follows. For
l = 1, . . . , r,

K∑
k=1

[
w

(η)
b

(
d
(
T
−1/2
b,k b̂*k/σ̂

))
b̂
∗ᵀ
k Ql,k(θ̂)b̂*k/σ̂

2

−w(δ)
b

(
d
(
T
−1/2
b,k b̂*k/σ̂

))
tr
(
Tb,kQl,k(θ̂)

) ]
= 0 ,

(6)

where Ql,k(θ̂) is the s× s submatrix of Ql(θ̂) which acts on block k and T
−1/2
b,k is the inverse of

any square root of the s× s matrix Tb,k . As in the diagonal case, we define the matrix Tb,k such
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that each summand has expectation zero. For l = 1, . . . , r,

E
[
w

(η)
b

(
d
(
T
−1/2
b,k b̂*k/σ

))
b̂
∗ᵀ
k Ql,k(θ̂)b̂*k/σ

2

−w(δ)
b

(
d
(
T
−1/2
b,k b̂*k/σ

))
tr
(
Tb,kQl,k(θ̂)

) ]
= 0 .

Remarks. The symmetric matrix Tb,k is fully defined for unstructured covariance matrices only, where
r = s(s+ 1)/2. For other covariance matrix structures we can replace Tb,k by the variance of the linear
approximation of b∗.

Since in the classical case, the linear approximations for b̂* and ε̂* are exact, the estimating equation
(6) reduces to the REML estimating equations. A similar argument is valid for the estimating equation
for σ̂ (3).

3 Penicillin Example

The dataset, shown in Figure 1, was originally published by Davies and Goldsmith (1972). They
describe it as data coming from an investigation to

assess the variability between samples of penicillin by the B. subtilis method. In
this test method a bulk-inoculated nutrient agar medium is poured into a Petri dish
of approximately 90 mm. diameter, known as a plate. When the medium has set,
six small hollow cylinders or pots (about 4 mm. in diameter) are cemented onto the
surface at equally spaced intervals. A few drops of the penicillin solutions to be
compared are placed in the respective cylinders, and the whole plate is placed in an
incubator for a given time. Penicillin diffuses from the pots into the agar, and this
produces a clear circular zone of inhibition of growth of the organisms, which can
be readily measured. The diameter of the zone is related in a known way to the
concentration of penicillin in the solution.

The datasets contains the measurements of 6 samples and 24 plates.
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Figure 1: Diameters of growth inhibition zones of 6 samples applied to each of 24 agar plates to
assess penicillin concentration in the B. subtilis method. The lines join the observations of the
same sample. The plates have been reordered by their means.

The raw data for the Penicillin example is shown in Figure 1. In R , the data is provided as
part of the R package “lme4”. It is a data.frame with three columns:
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> str(Penicillin)

'data.frame': 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 ...

$ plate : Factor w/ 24 levels "g","s","x","u",..: 18 18 18 18 18 18 19 19 ...

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 ...

The column “diameter” is the response and the two factors “plate” and “sample” indicate
where the observation was measured. As Bates (2011), we fit a linear mixed effects model with
an intercept and two random effects for the two factors.

We fit the classical linear mixed effects model using the function “lmer” of the R package
“lme4”. The random effects are specified in brackets. The pipe symbol “—” is used to split
the factors and covariables from the grouping variable. In this case, we only have a random
intercept “1” that varies by group “plate” and “sample”, respectively.

> st(classical <- lmer(diameter ~ 1 + (1|plate) + (1|sample),

+ Penicillin))

user system elapsed

0.062 0.001 0.064

The “st” function is just a shortcut to “system.time”, a function that measures the time
required to evaluate the expression given as argument.

The robust mixed effects model is fit using the function “rlmer”. The call is quite similar
to “lmer”’s call. By default, it uses the smoothed Huber ψ-function with tuning parameter k =
1.345 and s = 10. Since we are mainly interested in the estimates of the variance components,
we adjust the the tuning parameter for the ψ(σ)

. functions to k = 2.28 and specify that squared
weights are used. This makes sure that the variance components are estimated with an efficiency
of about 95%. One can do this with one call to the function “psi2propII”. Afterwards, we have
a look at the summary of the fitted object

> st(robust <- rlmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin,

+ rho.sigma.e = psi2propII(smoothPsi, k = 2.28),

+ rho.sigma.b = psi2propII(smoothPsi, k = 2.28)))

user system elapsed

1.836 0.042 1.878

> summary(robust)

Robust linear mixed model fit by DAStau

Formula: diameter ~ 1 + (1 | plate) + (1 | sample)

Data: Penicillin

Scaled residuals:

Min 1Q Median 3Q Max

-2.1966 -0.6584 0.0681 0.5775 3.3886

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.7582 0.8707

sample (Intercept) 3.8865 1.9714

Residual 0.2997 0.5475

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 23.0419 0.8466 27.21

Robustness weights for the residuals:

124 weights are ~= 1. The remaining 20 ones are summarized as

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.397 0.670 0.837 0.809 0.955 0.993
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Robustness weights for the random effects:

25 weights are ~= 1. The remaining 5 ones are

1 2 3 24 30

0.836 0.836 0.938 0.802 0.858

Rho functions used for fitting:

Residuals:

eff: smoothed Huber (k = 1.345, s = 10)

sig: smoothed Huber, Proposal II (k = 2.28, s = 10)

Random Effects, variance component 1 (plate):

eff: smoothed Huber (k = 1.345, s = 10)

vcp: smoothed Huber, Proposal II (k = 2.28, s = 10)

Random Effects, variance component 2 (sample):

eff: smoothed Huber (k = 1.345, s = 10)

vcp: smoothed Huber, Proposal II (k = 2.28, s = 10)

The first half of the summary shows information about the model that was fitted and displays
the parameter estimates including standard errors for the fixed effects. After that, a summary
of the robustness weights is shown. In this case, we can see that some of the observations have
been downweighted, but practically none of the random effects. Finally there is a table that
gives details about which ψ-functions were used to fit the model.

Remark. Note that the column “Std.Dev.” contains the estimated standard deviances, i.e., just the
square roots of the estimated variances. A common mistake is to interpret them as the standard errors
of the variance component estimates. The same table is shown for the summary of an lme4 object and
to ease the transition from “lmer” to “rlmer”, we use the same convention here.

Alternatively, one might be interested in a model that does not downweight the random
effects of “sample” – for example because there might be structural outliers and one is interested
in the variability including these. To enable this, “rlmer” accepts list input for the arguments
“rho.b” and “rho.sigma.b”. The list entries correspond to the ψ-functions used for the variance
components as shown in the summary output. The call to fit a model that does uses the classical
estimates for the “sample” variance components is as follows.

> st(robust2 <- rlmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin,

+ rho.sigma.e = psi2propII(smoothPsi, k = 2.28),

+ rho.b = list(smoothPsi, cPsi),

+ rho.sigma.b = list(psi2propII(smoothPsi, k = 2.28),

+ cPsi)))

user system elapsed

1.622 0.017 1.640

classical robust robust2
Coefficients (Std. Error)

(Intercept) 23 (0.809) 23 (0.847) 23 (0.807)
Variance components

(Intercept) | plate 0.847 0.871 0.871
(Intercept) | sample 1.932 1.971 1.921

σ 0.55 0.547 0.547
REML 331

Table 1: Comparison table of the fitted models for the Penicillin example.

The results of the three fits are summarized in Table 1. The differences are minimal. Inter-
estingly, the estimated variance for “sample” is a little smaller for “robust2” than for “robust”.
The common residual analysis plots, Tukey-Anscombe and qq-normal, are shown in Figure 2 for
the “robust” object. The points that got a lower robustness weight are indicated by a darker
color. The rest of the observations seem to follow the central model quite nicely. In Figure 3 we
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Figure 2: Residual analysis plots for the “robust” object of the Penicillin example.
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Figure 3: Diameters of growth inhibition zones of 6 samples applied to each of 24 agar plates
to assess penicillin concentration in the B. subtilis method. The lines join the observations of
the same sample. The plates have been reordered by their means. The sizes of the data points
show the robustness weights.

again show a plot of the data, this time highlighting the observations that got a low robustness
weight.

4 Sleepstudy Example

This dataset is a subset of data gathered by Belenky et al. (2003) for a study of the effects of
sleep deprivation time. The 18 subjects were chosen from a population of long distance drivers
that were allowed to sleep for only three hours each night. Each subject’s reaction time was
measured several times on each day of the trial. The measurements were made over a course of
10 days. The data are shown in Figure 4.

The data.frame consists of three columns:

> str(sleepstudy)

'data.frame': 180 obs. of 3 variables:

$ Reaction: num 250 259 251 321 ...

$ Days : num 0 1 2 3 4 5 6 7 ...

$ Subject : Factor w/ 18 levels "309","310","370",..: 7 7 7 7 7 7 7 7 ...

As in Bates (2011), we will fit a random intercept and slope model. This is an extension
of a linear regression model with Reaction as response and Days as predictor. In this model,
the coefficients for each subject are split into a population average (fixed) and a subject specific
(random) part.

The calls to “lmer” and “rlmer” are quite similar. This time, we omit the optional “1”
for the intercept in both the fixed and the random part. The random effect specification
(Days|Subject) is interpreted as (1+Days|Subject). Specified in this way, the fitted model
also includes a correlation term. To get uncorrelated random effects, one would have to use two
terms, namely (1|Subject) + (0+Days|Subject). The 0 tells the method not to include an
intercept term. Since the random effects now have a non-diagonal covariance matrix Ub (θ), we
have to use another tuning constant for “rho.sigma.b”. It corresponds roughly to the square of
the one used in the diagonal case.

8



●

● ● ● ●
● ● ●

●

●

● ●

● ● ●
●

●

●
●

●

●
● ● ●

●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ● ●

● ●

●

●

●

●
●

●

●
●

●
●

●

● ●

●
●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ● ● ●
●

●

●

309 310 370 349 350 334

308 371 369 351 332 335

372 333 331 330 337 352

200

300

400

200

300

400

200

300

400

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Days of sleep deprivation

A
ve

ra
ge

 r
ea

ct
io

n 
tim

e 
(m

s)

Figure 4: The average reaction time of subjects versus days of sleep deprivation. Each subject is
shown in a separate facet. The lines show the robust linear regression fit to the subject’s data.
The subjects have been ordered by increasing intercept. The robust fits were computed using
the method lmrob of the R package robustbase (Rousseeuw et al., 2012) using setting=”KS2011”.
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> st(classical <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))

> st(robust <-

+ rlmer(Reaction ~ Days + (Days|Subject), sleepstudy,

+ rho.sigma.e = psi2propII(smoothPsi, k = 2.28),

+ rho.sigma.b = chgDefaults(smoothPsi, k = 5.11, s=10)))

> summary(robust)

The model takes some time to be fitted and the above chunk is therefore not evaluated by
default. In order to reduce straining CRAN’s computing facilities and rules, we stop with the
example here. For the full example, pease go back to version 1.6 of the package.
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5 ψ-functions and Tables of Tuning Constants

The smoothed Huber ψ-function is defined as

ψ(x, k, s) =

{
x |x| ≤ c
sign(x)

(
k − 1

(|x|−d)s

)
otherwise

, (7)

where c = k − s
−s
s+1 and d = c − s

1
s+1 . We have always used s = 10 for our simulations. With

this value, the asymptotic properties of the regular Huber function and the smoothed Huber
function are almost identical. We can therefore safely use the same tuning parameter k for both
ψ-functions. A comparison of the two ψ-functions is shown in Figure 5. Useful tables of tuning
constants for this and the lqq ψ-function are given in Tables 2 to 5.

0.0

0.5

1.0

0 1 2 3
x

ψ
(x

)

ψ−function Huber Smoothed

Figure 5: Comparison of the Huber and the smoothed Huber ψ-function for k = 1.345 and
s = 10.
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efficiency k for µ̂ k for σ̂(3) k for σ̂(3), Prop. II
0.80 0.53 0.50 1.49
0.85 0.73 0.71 1.69
0.90 0.98 1.08 1.94
0.95 1.345 1.66 2.28

Table 2: Tuning parameters k for scale estimates such that they reach the same asymptotic
efficiency as the location estimate. For the Huber ψ-function.

dimension s
2 3 4 5 6 7

bη 5.66 6.41 7.14 7.87 8.58 9.28
bτ 5.15 5.55 5.91 6.25 6.55 6.84
bµ 1.5 1.63 1.73 1.81 1.87 1.9

Table 3: Tuning parameters for the optimal B-estimator to yield 95% efficiency, non-diagonal
case. For the Huber ψ-function.

efficiency cc for µ̂ cc for σ̂(3)
0.80 (0.946,0.631) (1.414,0.942)
0.85 (1.058,0.705) (1.57,1.05)
0.90 (1.214,0.809) (1.79,1.19)
0.95 (1.474,0.982) (2.19,1.46)

Table 4: Tuning parameters for lqq ψ-function for the location and scale estimates such that
they reach the given asymptotic efficiency. The third parameter is always taken to be 1.5.

dimension s
2 3 4 5 6

ccη (6.44,4.29) (7.23,4.82) (8.01,5.34) (8.77,5.85) (9.52,6.35)
ccτ (5.95,3.97) (6.41,4.27) (6.82,4.55) (7.2,4.8) (7.55,5.03)
ccµ (1.63,1.09) (1.77,1.18) (1.88,1.26) (1.99,1.32) (2.08,1.39)

Table 5: Tuning parameters for the lqq weight function to yield 95% efficiency, non-diagonal
case. The third parameter is always taken to be 1.5.
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