
Vignette for R package rodeo

David Kneis, david.kneis [at] tu-dresden.de

April 23, 2016

Contents

1 When to use this package 2

2 Example problem 2

3 Basic use 5
3.1 Creating and inspecting a model object 5
3.2 Defining functions and supplying data 5
3.3 Computing the stoichiometry matrix 6
3.4 Translating the model into source code 6
3.5 Solving the ODE system . 7

4 Advanced topics 8
4.1 Spatially distributed systems (multi-box models) 8
4.2 Increasing performance by means of Fortran 8
4.3 Forcings (time-varying parameters) 11

4.3.1 Two alternative options 11
4.3.2 The ’functions-of-time’ approach with Fortran models . . 12

4.4 Generating model documentation 14
4.4.1 Exporting formatted tables 14
4.4.2 Visualizing the stoichiometry matrix 15

5 Writing rodeo-compatible Fortran functions 18
5.1 Reference example . 18
5.2 Common pitfalls . 19

5.2.1 Double precision variables and constants 19
5.2.2 Integers in numeric expressions 19
5.2.3 Continuation lines . 20

5.3 More information on Fortran programming 20

6 Practical issues 20
6.1 Managing tabular input data . 20

1

1 When to use this package

The rodeo package facilitates the implementation of ODE-based models. These
are models that describe the dynamics of a set of n state variables by integrating
a set of n ordinary differential equations. The package is particularly useful
in conjunction with the deSolve package (http://cran.r-project.org/web/
packages/deSolve/index.html) providing numerical solvers for initial value
problems. The advantages from using rodeo are:

• Models are defined using plain tabular text files or spreadsheets. Thus,
the model is formulated independent from source code. This facilitates
documentation, portability, and re-use.

• You are forced to provide the model in stoichiometry matrix notation (see
http://en.wikipedia.org/wiki/Petersen_matrix). Although this is a
restriction, it is a very useful one and benefit is almost guaranteed.

• Owing to the matrix notation, redundant terms are eliminated from the
differential equations. This contributes to comprehensibility and increases
computational efficiency. The stoichiometry matrix can also be visualized
to better communicate the model to users or non-modelers.

• rodeo provides a code generator which supports R and Fortran as target
languages. Using compiled Fortran can speed up numerical integration
by 1 or 2 orders of magnitude (compared to plain R).

• The generated source code is applicable to an arbitrary number of boxes
(control volumes). This allows even partial differential equations (e. g.
reactive transport problems) to be tackled by means of semi-discretization
(see http://en.wikipedia.org/wiki/Method_of_lines).

2 Example problem

The functioning of the package is best illustrated by an example. In this doc-
ument, we consider a continuous flow stirred tank reactor (CFSTR) containing
a degradable organic matter (concentration c_z) and dissolved oxygen, c_do

(Fig. 1). Due to mixing, the reactors contents is spatially homogeneous, hence
the concentrations are scalars. Changes in concentrations are triggered by

1. the loads in the reactor’s inflow,

2. aerobic degradation of the organic matter (1st order) which consumes
dissolved oxygen,

3. exchange of oxygen with the atmosphere.

Some specific aspects of the model are as follows:

2

Figure 1: Sketch of considered system.

Table 1: Declaration of identifiers (data set ’exampleIdentifiers’). The type
column indicates whether an item is a state variable (v), parameter (p), or
function (f).

name type unit description tex html

c_do v mg/l dissolved O2 c_{DO} c_{DO}

c_z v mg/l degradable org. matter Z c_Z c_Z

v v m3 water volume in reactor v v

q_in p m3/s inflow rate q_{in} q_{in}

q_ex p m3/s outflow rate q_{ex} q_{ex}

kd p 1/d decay rate k_d k_d

s_do_z p g/g stoichiometry (O2/Z) s_{DO,Z} s_{DO,Z}

h_do p g/m3 half-saturation O2 h_{DO} h_{DO}

temp p degC temperature T T

wind p m/s wind speed W W

depth p m water depth D D

O2sat f mg/l O2 saturation, f(temp) O2_{sat} O2_{sat}

ka f 1/d aeration, f(wind, depth) k_a k_a

monod f - monod model monod monod

c_z_in f g/m3 Z in inflow, f(time) c_{Z,in} c_{Z,in}

c_do_in f g/m3 O2 in inflow, f(time) c_{DO,in} c_{DO,in}

• The dependence of aerobic degradation on available oxygen is described
with a Monod term (Michaelis-Menten model).

• The rate of oxygen exchange between water and atmosphere is described
as an empirical function of water depth and wind speed.

• The model does not assume steady flow conditions, hence the volume of
the reactor is a state variable too.

Using rodeo, the model can be described using just tabular text files (Ta-
bles 1 – 3). These files are shipped with the package and can be loaded with R’s
data method.

3

Table 2: Specification of processes (data set ’exampleProcesses’).

name unit description expression

flow m3/s water balance q_in - q_ex

flushing 1/s flushing rate q_in / v

decay g/m3/s decay of z kd * c_z * monod(c_do, h_do)

aeration g/m3/s O2-exchange ka(wind,depth) * (O2sat(temp) - c_do)

Table 3: Specification of stoichiometric factors (data set ’exampleStoichiome-
try’).

variable process expression

v flow 1

c_z flushing c_z_in(time) - c_z

c_z decay -1

c_do flushing c_do_in(time) - c_do

c_do decay -s_do_z

c_do aeration 1

4

3 Basic use

3.1 Creating and inspecting a model object

We start by creating a new object with new. This requires us to supply the
name of the class as well as a set of data frames for initialization.

library(rodeo, quietly=TRUE)

Load sample data frames (contents shown above)

data(exampleIdentifiers, exampleProcesses, exampleStoichiometry)

Instantiate new object

model= new("rodeo", vars=subset(exampleIdentifiers,type=="v"),

pars=subset(exampleIdentifiers,type=="p"),

funs=subset(exampleIdentifiers,type=="f"),

pros=exampleProcesses, stoi=exampleStoichiometry)

To inspect the object’s contents, we can use the following:

Built-in method

model$show()

Show stoichiometry information as a matrix

print(model$stoichiometry())

3.2 Defining functions and supplying data

In order to work with the object, we need to define functions that are referenced
in the model’s mathematical expressions. This includes the forcings which are
functions of a special argument with the reserved name ’time’. See Sect. 4.3 for
details.

'normal' functions

O2sat= function(t) {

14.652 - 0.41022*t + 0.007991*t^2 - 0.000077774*t^3

}

ka= function(u, d) {

(0.728*sqrt(u) - 0.317*u + 0.0372*u^2) / d / 86400

}

monod= function(s,h) {

s / (s + h)

}

forcings are functions of special variable 'time'
c_z_in= function(seconds) {

0.1 * seconds/(7*86400 + seconds)

}

c_do_in= function(seconds) {

10. # taken as constant

}

5

We also need to set the values of parameters and state variables (initial
values). We first define both parameters and initial values as lists. These lists
are then coerced into named vectors using the dedicated methods arrangePars
and arrangeVars. Use of these methods guarantees that the vector elements
appear in proper order. Proper order is essential when the vector elements are
accessed by position rather than by name.

pars= list(kd=5.78e-7, h_do=0.5, s_do_z=2.76, wind=1, depth=2,

temp=20, q_in=1, q_ex=1)

vars= list(c_z=1, c_do=9.022, v=1.e6)

p= model$arrangePars(pars)

v= model$arrangeVars(vars)

3.3 Computing the stoichiometry matrix

Having defined all functions and having set the values of variables and parame-
ters, one can compute the stoichiometric factors. In general, explicitly comput-
ing these factors is not necessary, it may be helpful in debugging however. To
do so, the stoichiometry method needs to be supplied with values of all state
variables, parameters, as well as a time value (in the case of non-autonomous
models).

m= model$stoichiometry(c(v, p, time=0))

print(signif(m, 3))

c_do c_z v

flow 0.000 0 1

flushing 0.978 -1 0

decay -2.760 -1 0

aeration 1.000 0 0

The stoichiometry matrix is also a good means to communicate a model be-
cause it shows the interactions between processes and variables in a concise way.
How the stoichiometry matrix can be visualized graphically is demonstrated in
Sect. 4.4.2.

3.4 Translating the model into source code

In order to use the model for simulation, we need to transfer it into source
code. This is also known as code generation. Specifically, we want the code
generator to create a function that returns the derivatives of the state variables
with respect to time. In addition to the derivatives, the generated function also
returns the values of all process rates (as diagnostic variables).

After generating the code, we need to make it executable. In R, we can use
a combination of eval and parse. Alternatively, the generated code could be
for loaded with source after exporting it to a file (e.g. using write). The latter
method is needed if one wants to inspect the generated code (or even modify it,
which rarely makes sense).

6

code= model$generate(name="derivs",lang="r")

derivs= eval(parse(text=code))

3.5 Solving the ODE system

We are now ready to compute the evolution of the state variables over time by
means of numerical integration. At this point, the proper order of the elements
in the vectors v and p is essential since the generated function code uses by-index
access! Therefore, v and p should always be set by calls to the arrangeVars

and arrangePars method, respectively.
In addition to the dynamics of the state variables, we also get the dynamics

of the process rates.

library(deSolve)

t= seq(0, 30*86400, 3600)

out= ode(y=v, times=t, func=derivs, parms=p, NLVL=1)

layout(matrix(1:9, ncol=3, byrow=TRUE))

plot(out, mfrow=NULL)

layout(1)

0 1000000 2500000

9.
00

9.
15

c_do

time

0 1000000 2500000

0.
2

0.
6

1.
0

c_z

time

0 1000000 2500000

60
00

00
12

00
00

0

v

time

0 1000000 2500000

−
1.

0
0.

0
1.

0

pro1

time

0 1000000 2500000

6.
0e

−
07

1.
2e

−
06

pro2

time

0 1000000 2500000

1e
−

07
4e

−
07

pro3

time

0 1000000 2500000

−
6e

−
07

0e
+

00

pro4

time

7

4 Advanced topics

4.1 Spatially distributed systems (multi-box models)

A zero-dimensional case (single reactor) has been considered so far. We will now
extend the model for multiple spatial levels, i. e. for a collection of (isolated)
reactors.

First, we need to provide vectors (instead of scalars) for one variable and
one parameter, at least. Variables and parameters with scalar values will be
replicated to vectors of the required length. In the example, we initialize every
modeled reactor with a different concentration of organic matter.

Second, we need to pass the actual number of reactors to the derivatives
function in the NLVL argument.

nbox= 3

pars= list(kd=rep(5.78e-7, nbox), h_do=0.5, s_do_z=2.76, wind=1,

depth=2, temp=20, q_in=1, q_ex=1)

vars= list(c_z=seq(from=0, to=50, length.out=nbox), c_do=9.022,

v=1.e6)

p= model$arrangePars(pars)

v= model$arrangeVars(vars)

out= ode(y=v, times=t, func=derivs, parms=p, NLVL=nbox)

layout(matrix(1:nbox, nrow=1))

plot(out, which=paste("c_do",1:nbox,sep="."), mfrow=NULL)

0 1000000 2500000

9.
05

9.
15

9.
25

c_do.1

time

0 1000000 2500000

4
5

6
7

8
9

c_do.2

time

0 1000000 2500000

2
4

6
8

c_do.3

time

4.2 Increasing performance by means of Fortran

Real-world models usually consist of many and lengthy mathematical expres-
sions. Also, depending on the studied problem, the ODE solver may need to use
(very) short time steps. Then, computation times become of serious concern.
In those time-critical cases, it is recommended to generate source code for a
fast, compilable language rather than for (slower) R. The compilable language
supported by rodeo is Fortran.

To generate code to compute the state variables’ derivatives in Fortran, one
would use:

8

code= model$generate(name="derivs",lang="f95")

Optionally display generated code

#cat(code)

The generated Fortran subroutine with assumed name derivs has a simple,
quite universal interface

subroutine derivs(time, var, par, NLVL, dydt, pro)

In order to use the numerical solvers from the packages http://cran.r-project.
org/package=deSolve or http://cran.r-project.org/package=rootSolve,
however, a different interface is required

subroutine derivs (neq, t, y, ydot, yout, ip)

and an additional subroutine for parameter initialization (initmod) must
to be supplied as well (see the deSolve vignette http://cran.r-project.

org/web/packages/deSolve/vignettes/compiledCode.pdf, page 6). Conse-
quently, a suitable wrapper code must be written.

In order to make the use of Fortran as simple as possible, the rodeo package
provides a high-level class method compile that combines

1. generation of the basic Fortran code via the generate method (see above),

2. generation of wrapper code for compatibility with deSolve and rootSolve,

3. compilation of all Fortran sources into a shared library using the R CMD SHLIB

command,

4. clean-up of any intermediate files from compilation.

The compile method takes two arguments. First comes the name of a file
holding the Fortran implementation of functions being referenced in the par-
ticular model’s mathematical expressions (consult Sect. 5 for guidelines). This
can actually be a vector of file names if the source code is split. The second
argument NLVL is an integer, specifying the desired number of spatial levels (see
Sect. 4.1; default is NLVL=1).

lib= model$compile(fileFun="functionsCode.f95", NLVL=nbox)

The return value of compile is a vector of character strings holding the name
of the generated library (in element libName), the full file path of the library
(in element libFile) as well as the name of the callable subroutine within that
library (in element libFunc).

A suitable Fortran implementation of the functions used in the example
(contents of file ’functionsCode.f95’) is shown below. Note that all the functions
are collected in a single Fortran module with implicit typing turned off. The
name of this module (functions) is mandatory and cannot be changed. Note
that a module can import other modules which helps to structure the source
code. Also note that the user-supplied source files need to reside in directories
with write-access to allow the creation of intermediate files during compilation.

9

module functions

implicit none

contains

double precision function O2sat(t)

double precision, intent(in):: t

O2sat= 14.652d0 - 0.41022d0*t + 7.991d-3*(t**2d0) - &

7.7774d-5*(t**3d0)

end function

double precision function ka(u, d)

double precision, intent(in):: u, d

ka= (0.728d0*sqrt(u) - 0.317d0*u + 0.0372d0*(u**2.d0)) / &

d / 86400.d0

end function

double precision function monod(s, h)

double precision, intent(in):: s, h

monod= s / (s + h)

end function

double precision function c_z_in(seconds)

double precision, intent(in):: seconds

c_z_in= 0.1d0 * seconds/(7d0*86400d0 + seconds)

end function

double precision function c_do_in(seconds)

double precision, intent(in):: seconds

c_do_in= 10.d0

end function

end module

We are now prepared to load the shared library and run the simulation based
on the Fortran code. Note the additional arguments dllname, initfunc, and
nout being passed to the numerical solver (open the help page for lsoda to see
the documentation for them). Setting a wrong value for nout easily makes R

crash.
Also note that, in contrast to the R-based version (see Sect. 3.5), the number

of reactors (boxes) is not passed to the solver as an additional parameter NLVL.
In the case of Fortran, this number is rather supplied to the compile method
(see above) and it is thus hard-coded in the compiled code.

nbox= 3

10

pars= list(kd=rep(5.78e-7, nbox), h_do=0.5, s_do_z=2.76, wind=1,

depth=2, temp=20, q_in=1, q_ex=1)

vars= list(c_z=seq(from=0, to=50, length.out=nbox), c_do=9.022,

v=1.e6)

p= model$arrangePars(pars)

v= model$arrangeVars(vars)

dyn.load(lib["libFile"])

out= ode(y=v, times=t, func=lib["libFunc"], parms=p,

dllname=lib["libName"], initfunc="initmod", nout=model$lenPros()*nbox)

layout(matrix(1:nbox, nrow=1))

dyn.unload(lib["libFile"])

plot(out, which=paste("c_do",1:nbox,sep="."), mfrow=NULL)

0 1000000 2500000

9.
05

9.
15

9.
25

c_do.1

time

0 1000000 2500000

4
5

6
7

8
9

c_do.2

time

0 1000000 2500000

2
4

6
8

c_do.3

time

4.3 Forcings (time-varying parameters)

4.3.1 Two alternative options

In general, there are two options for dealing with time-variable forcings:

functions-of-time: In this approach one needs to define the forcings as func-
tions of a single argument representing time. In rodeo this argument must have
the reserved name time. Use of this approach is most convenient if the forcings
are easily described as parametric functions of time (e.g. seasonal change of
solar radiation). It can also be used with tabulated time series data, but this
requires some extra coding. In any case, it is essential for rescrict the integration
step size of the solver (e.g. using the hmax argument of deSolve::lsoda) so
that short-term variations in the forcings cannot be ’missed’.

stop-and-go: In this approach forcings are implemented as normal parame-
ters. To allow for their variation in time, the ODE solver is interrupted every
time when the forcing data change. The solver is then re-started with the up-
dated parameters (i.e. forcing data) using the states computed in the previous
call as initial values. Hence, the calls to the ODE solver must be embedded
within a time-loop. With this approach, setting a limit on the solver’s inte-
gration step size (through argument hmax) is not required since the solver is
interrupted at the ’critical times’ anyway.

11

In real-world applications, the ’stop-and-go’ approach is often simpler to use
and the overhead due to interruption and re-start of the solvers seems to be
rather small. It also facilitates the generation of useful traceback information
in case of exceptions (e.g. due to corrupt time series data).

4.3.2 The ’functions-of-time’ approach with Fortran models

This section demonstrates how the ’functions-of-time’ approach can be used in
Fortran-based models assuming that information on forcings is stored in de-
limited text files. Such files can be created, for example, with any spreadsheet
software, data base system, or R. Assume that we have time series of two mete-
orological variables exported to a text file ’meteo.txt’:

dat= data.frame(time=1:10, temp=round(rnorm(n=10, mean=20, sd=3)),

humid=round(runif(10)*100))

write.table(x=dat, file="meteo.txt", col.names=TRUE,

row.names=FALSE, sep="\t", quote=FALSE)

print(dat)

time temp humid

1 1 24 9

2 2 19 26

3 3 23 91

4 4 17 8

5 5 26 98

6 6 20 61

7 7 20 17

8 8 21 65

9 9 24 19

10 10 19 40

We can now call forcingFunctions to generate the appropriate forcing
function in Fortran. In this example, we request linear interpolation via the
method’s mode argument.

dat= data.frame(name=c("temp","humid"),

column=c("temp","humid"), file="meteo.txt", mode=-1, default=FALSE)

code= forcingFunctions(dat)

write(x=code, file="forc.f95")

Optionally inspect generated code

cat(code)

In order to use the generated code, it is necessary to

1. write it to disk (e. g. using write as above),

2. declare all forcings as functions in rodeo’s respective input table,

12

3. insert the statement use forcings at the top (e. g. line 2) of the Fortran
module functions,

4. pass the generated file to the compiler along with all other Fortran source
files.

The following Fortran code demonstrates how the user-defined forcings can
be tested/debugged outside of the rodeo environment. The shown utility pro-
gram can be compiled, for example, using a command like

gfortran <generated_module_file> <file_with_program> -o test

Note that the subroutines rwarn and rexit are available automatically if the
code is used to build a shared library with R CMD SHLIB, i. e. the subroutines
must not be defined then.

! auxiliary routines for testing outside R

subroutine rwarn(x)

character(len=*),intent(in):: x

write(*,*)x

end subroutine

subroutine rexit(x)

character(len=*),intent(in):: x

write(*,*)x

stop

end subroutine

! test program

program test

use forcings ! imports generated module with forcing functions

implicit none

integer:: i

double precision, dimension(5):: times= &

dble((/ 1., 1.5, 2., 2.5, 3. /))

do i=1, size(times)

write(*,*) times(i), temp(times(i)), humid(times(i))

end do

end program

13

4.4 Generating model documentation

4.4.1 Exporting formatted tables

One can use e.g. exportDF to export the object’s basic information in a format
which is suitable for inclusion in HTML or LATEX documents. The code section

Select columns to export

df= model$getVars()[,c("tex","unit","description")]

Define formatting functions

bold= function(x){paste0("\\textbf{",x,"}")}

mathmode= function(x) {paste0("$",x,"$")}

Export

tex= exportDF(x=df, tex=TRUE,

colnames=c(tex="symbol"),

funHead=setNames(replicate(ncol(df),bold),names(df)),

funCell=list(tex=mathmode)

)

cat(tex)

generates the following LATEX code holding tabular information on the model’s
state variables.

\begin{tabular}{lll}\hline

\textbf{symbol} & \textbf{unit} & \textbf{description} \\ \hline

c_{DO} & mg/l & dissolved O2 \\

c_Z & mg/l & degradable org. matter Z \\

v & m3 & water volume in reactor \\ \hline

\end{tabular}

Alternatively, a markdown compatible dataframe can be generated and used
with the knitr function kable. This will work with html, pdf or even Word
(.docx) output. The following code section would create a table of the model’s
state variables (output not shown).

to_markdown= function(dat, which_cols){

cols= which(names(dat) %in% which_cols)

for(i in cols){

dat[, i]= ifelse(dat[, i] != "", paste0("$", dat[, i], "$"), "")

}

return(dat)

}

ids= model$getVars()[,c("tex", "unit", "description")]

names(ids)= c("Symbol", "Unit", "Description")

kable(to_markdown(ids, which_cols=c("Symbol")),

caption = "State variables")

14

Thanks to Andrew Dolman for the latter example.

4.4.2 Visualizing the stoichiometry matrix

A graphical representation of the stoichiometry matrix is often a good means to
communicate a model. To create such a graphics, one typically wants to replace
the stoichiometry factors’ numeric values by symbols encoding their sign only.

Option 1: Plain R graphics One can use the class method plotStoichiometry

to visualize the matrix using standard R graphic facilities as demonstrated be-
low. In practice, one needs to fiddle around a bit with the dimensions of the
plot and the font size to get an acceptable scaling of symbols and text. Also,
it is hardly possible to nicely display row and column names containing special
things like sub- or superscripts.

pars= list(kd=5.78e-7, h_do=0.5, s_do_z=2.76, wind=1, depth=2,

temp=20, q_in=1, q_ex=1)

vars= list(c_z=1, c_do=9.022, v=1.e6)

p= model$arrangePars(pars)

v= model$arrangeVars(vars)

model$plotStoichiometry(values=c(v, p, time=0), cex=0.3)

15

c_
do

c_
z

v

flow

flushing

decay

aeration

Option 2: TEX The following example generates suitable code for inclusion
in LATEX documents.

pars= list(kd=5.78e-7, h_do=0.5, s_do_z=2.76, wind=1, depth=2,

temp=20, q_in=1, q_ex=1)

vars= list(c_z=1, c_do=9.022, v=1.e6)

p= model$arrangePars(pars)

v= model$arrangeVars(vars)

signsymbol= function(x) {

if (as.numeric(x) > 0) return("\\textcolor{orange}{$\\blacktriangle$}")

if (as.numeric(x) < 0) return("\\textcolor{cyan}{$\\blacktriangledown$}")

return("")

}

rot90= function(x) { paste0("\\rotatebox{90}

{$",gsub(pattern="*", replacement="\\cdot ", x=x, fixed=TRUE),"$}") }

16

m= model$stoichiometry(c(v, p, time=0))

tbl= cbind(data.frame(process=rownames(m), stringsAsFactors=FALSE),

as.data.frame(m))

tex= exportDF(x=tbl, tex=TRUE,

colnames= setNames(c("",model$getVars()$tex[match(colnames(m),

model$getVars()$name)]), names(tbl)),

funHead= setNames(replicate(ncol(m),rot90), colnames(m)),

funCell= setNames(replicate(ncol(m),signsymbol), colnames(m)),

lines=TRUE

)

tex= paste0("%\n% THIS IS A GENERATED FILE\n%\n", tex)

write(tex, file="/home/dkneis/temp/stoichiometry.tex")

The contents of the variable tex must be written to a text file and this file
is then imported in LATEX with the input directive. The result looks as follows:

c D
O

c Z v
flow N
flushing N H
decay H H
aeration N

Option 3: HTML The following example generates suitable code for inclu-
sion in HTML documents.

signsymbol= function(x) {

if (as.numeric(x) > 0) return("△")

if (as.numeric(x) < 0) return("▽")

return("")

}

m= model$stoichiometry(c(v, p, time=0))

tbl= cbind(data.frame(process=rownames(m), stringsAsFactors=FALSE),

as.data.frame(m))

html= exportDF(x=tbl, tex=FALSE,

colnames= setNames(c("Process",model$getVars()$html[match(colnames(m),

model$getVars()$name)]), names(tbl)),

funCell= setNames(replicate(ncol(m),signsymbol), colnames(m))

)

html= paste("<html>", html, "</html>", sep="\n")

write(html, file="/home/dkneis/temp/stoichiometry.html")

To test this, one needs to write the contents of the variable html to a text
file and open that file in a web browser. In some cases, automatic conversion
of the generated HTML into true graphics formats may be possible, e. g. using
auxiliary tools like html2ps and convert (on Linux systems).

17

Option 4: Markdown A markdown compatible can be generated with the
knitr function kable as shown below (contributed by Andrew Dolman; output
not displayed).

signsymbol= function(x) {

if (as.numeric(x) > 0) return("$\\blacktriangle$")

if (as.numeric(x) < 0) return("$\\blacktriangledown$")

return("")

}

stoi_mat= model$stoichiometry(c(v, p, time=0))

stoi_mat= data.frame(apply(stoi_mat, MARGIN = c(1, 2), signsymbol))

stoi_mat= setNames(stoi_mat, paste0("$",

model$getVars()$tex[match(colnames(stoi_mat),

model$getVars()$name)], "$"))

stoi_mat= cbind(Process=rownames(stoi_mat), stoi_mat)

kable(stoi_mat, row.names= FALSE, caption= "Stoichiometric matrix")

5 Writing rodeo-compatible Fortran functions

5.1 Reference example

As a reference, the following example code can be used which declares a func-
tion of two arguments. Comments have been added to explain the individual
statements. In Fortran, comments are generally initiated with the exclamation
mark (!). They may appear right after statements or on separate lines.

1 double precision function FUNCNAME (ARG1, ARG2) ! declare the function

2 implicit none ! force declarations

3 double precision, intent(in):: ARG1, ARG2 ! declare arguments

4 double precision:: LOCAL ! declare local var.

5 double precision, parameter:: CONST=1.d0 ! declare local const.

6 LOCAL= ARG1 * CONST + ARG2 ! local computation(s)

7 FUNCNAME= LOCAL ! set return value

8 end function ! closes the function

For compatibility with rodeo, the function result must be a scalar of type
double precision (a floating point number of typically 8 byte). There are
several ways to achieve this but the simplest and recommended syntax is put
the type declaration double precision right before the function’s name (line
1). Then, the return value must be set by an assignment to the function’s name
(line 7). This is best done at a single location in the body code, typically at the
very end.

It is a good habit to always put implicit none in the first line of the
function body (line 2). This is to disable so-called implicit typing (a rather

18

dangerous technique of automatic data type assignment). With this statement,
all arguments (line 3) and local variables or constants (lines 4 and 5) need to
be explicitly declared. The repetition of the argument’s names in lines 1 and 3
may be a bit annoying (but one can use copy and paste). All declarations need
to be made at the top of the function’s body (right after the implicit none)
before any other statements.

In Fortran, identifier names are not case-sensitive (as opposed to R). This
applies to the name of the function itself as well as to the names of arguments
and local variables or parameters.

Note: It is actually sufficient to use the implicit none statement at the
beginning of the module that contains all function declarations (see example in
Sect. 4.2). Repetition of the statement in the individual functions does not do
any harm, however.

5.2 Common pitfalls

5.2.1 Double precision variables and constants

Fortran has several types to represent floating point numbers that vary in
precision but rodeo generally uses the type double precision. Thus, any
local variables and parameters should also be declared as double precision.
To declare a numeric constant of this type, e. g. ’pi’, one needs to use the syntax
3.1415d0, i. e. the conventional ’e’ in scientific notation is replaced by ’d’. An
alternative but less portable syntax exists but it is not mentioned here.

double precision, parameter:: pi= 3.1415d0, e= 2.7183d0 ! math constants

double precision, parameter:: kilograms_per_gram = 1.d-3 ! 1/1000

double precision, parameter:: distance_to_moon = 3.844d+5 ! 384400 km

Note the parameter keyword used to inform the compiler that the declared
item(s) are constants rather than variables.

5.2.2 Integers in numeric expressions

It is recommended to avoid integers in arithmetic expressions as the result may
be unexpected. Use double precision constants instead of integer constants
or, alternatively, explicitly convert integer constants to double precision by
means of the dble intrinsic function.

average= (value1 + value2) / 2d0 ! does not use an integer at all

average= (value1 + value2) / dble(2) ! explicit type conversion

19

It is often even better not to use any literal constants, leading to a code like

double precision, parameter:: TWO= 2.d0

! possibly other statements

average= (value1 + value2) / TWO

Using uppercase names for constants is a widespread habit but this is a
matter of style only.

5.2.3 Continuation lines

Source code lines should not exceed 80 characters (though some Fortran com-
pilers support longer lines). If an expression does not fit on a single line, the
ampersand (&) must be used to indicate continuation lines. It is recommended
to put the & at the end of any unfinished line as in the following example:

a = term1 + term2 + &

term3 + term4 + &

term5

Missing & characters are a frequent cause of compile time errors sometimes
being rather obscure.

5.3 More information on Fortran programming

The examples in Sect. 4.2 may serve as a starting point. The website http:

//fortranwiki.org/fortran/show/HomePage is a good source of additional
information, providing links to standard documents, books, etc.

6 Practical issues

6.1 Managing tabular input data

The tabular input data can be held in either plain text files or spreadsheets.
The two alternatives have their own pros and cons as described below:

Spreadsheet software is specialized on displaying tabular data in a convenient
way. Nevertheless, there are some practical issues. For example, spreadsheet
programs allow for cell formatting. Formatting rules and automatisms often
lead to unwanted results (e.g. in the case of logical columns). This also depends
on the used format (e.g. ’xlsx’ or ’odt’). As of now, R does not have native
support for spreadsheets in ’odt’ format. Conversion between ’odt’ and ’xlsx’ is
possible, but the exact result seems to be unpredictable.

20

Delimited text files are much simpler in concept. They can be edited with
any editor and platform dependence is a minor issue because line endings and
character encodings are easy to change. Good programs provide powerful edit-
ing commands, e.g. using regular expressions, and they can highlight matching
parenthesis. Text files are perfect for use with version control systems. Never-
theless, normal editors are unable to display tabular data in a nice way.

It is a good compromise to store the tabular data in delimited text files (e.g.
separated by TAB or semicolon) and to open them either in a spreadsheet pro-
gram or editor, depending on the actual task. Note that the conventional ’csv’
is not recommended since mathematical expressions involving multi-argument
functions and text descriptions may contain commas (hence, they need to be
quoted). Using TAB-delimited text is probably the best option.

21

