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1 Example 1

This is an example of using the calib function for calibration and nonresponse adjustment
(with response homogeneity groups).

We create the population data frame (the population size is N = 250):

� there are four variables: state, region, income and sex;

� the state variable has 2 categories: ’A’ and ’B’; the region variable has 3 categories:
1, 2, 3 (regions within states);

� the income and sex variables are randomly generated using the uniform distribution.

> data = rbind(matrix(rep("A", 150), 150, 1, byrow = TRUE),

+ matrix(rep("B", 100), 100, 1, byrow = TRUE))

> data = cbind.data.frame(data, c(rep(1, 60), rep(2,50), rep(3, 60), rep(1, 40), rep(2, 40)),

+ 1000 * runif(250))

> sex = runif(nrow(data))

> for (i in 1:length(sex)) if (sex[i] < 0.3) sex[i] = 1 else sex[i] = 2

> data = cbind.data.frame(data, sex)

> names(data) = c("state", "region", "income", "sex")

> summary(data)

state region income sex

A:150 Min. :1.00 Min. : 14.96 Min. :1.000

B:100 1st Qu.:1.00 1st Qu.:215.88 1st Qu.:1.000

Median :2.00 Median :460.86 Median :2.000

Mean :1.84 Mean :479.63 Mean :1.708

3rd Qu.:2.00 3rd Qu.:723.32 3rd Qu.:2.000

Max. :3.00 Max. :997.52 Max. :2.000

We compute the population stratum sizes:

> table(data$state)
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A B

150 100

We select a stratified sample. The state variable is used as a stratification variable. The
sample stratum sizes are 25 and 20, respectively. The method is ’srswor’ (equal probability,
without replacement).

> s=strata(data,c("state"),size=c(25,20), method="srswor")

We obtain the observed data:

> s=getdata(data,s)

The status variable is used in the rhg_strata function. The status column is added to s (1
- sample respondent, 0 otherwise); it is randomly generated using the uniform distribution.
The response probability for all units is 0.3.

> status=runif(nrow(s))

> for(i in 1:length(status))

+ if(status[i]<0.3) status[i]=0 else status[i]=1

> s=cbind.data.frame(s,status)

We compute the response homeogeneity groups using the region variable:

> s=rhg_strata(s,selection="region")

We select only the sample respondents:

> sr=s[s$status==1,]

We create the population data frame of sex and region indicators:

> X=cbind(disjunctive(data$sex),disjunctive(data$region))

We compute the population totals for each sex and region:

> total=c(t(rep(1,nrow(data)))%*%X)

The first method consists in calibrating with all strata. The respondent data frame of sex
and region indicators is created. The initial weights using the inclusion prob. and the
response probabilities are computed.

> Xs = X[sr$ID_unit,]

> d = 1/(sr$Prob * sr$prob_resp)

> summary(d)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

7.500 7.500 7.500 8.333 7.800 14.000

We compute the g-weights using the linear method:

> g = calib(Xs, d, total, method = "linear")

> summary(g)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5118 0.5118 0.5118 0.9840 1.5000 2.5570

The final weights are:

> w=d*g

> summary(w)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.838 3.992 3.992 8.333 11.250 35.800

We check the calibration:

> checkcalibration(Xs, d, total, g)

$message

[1] "the calibration is done"

$result

[1] TRUE

$value

[1] 1e-06

The second method consists in calibrating in each stratum. The respondent data frame of
sex and region indicators is created in each stratum. The initial weights using the inclusion
prob. and response probabilities are computed in each stratum.

> cat("stratum 1\n")

stratum 1

> data1=data[data$state=='A',]

> X1=X[data$state=='A',]

> total1=c(t(rep(1, nrow(data1))) %*% X1)

> sr1=sr[sr$Stratum==1,]

> Xs1=X[sr1$ID_unit,]

> d1 = 1/(sr1$Prob * sr1$prob_resp)

> g1=calib(Xs1, d1, total1, method = "linear")

> checkcalibration(Xs1, d1, total1, g1)
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$message

[1] "the calibration is done"

$result

[1] TRUE

$value

[1] 1e-06

> cat("stratum 2\n")

stratum 2

> data2=data[data$state=='B',]

> X2=X[data$state=='B',]

> total2=c(t(rep(1, nrow(data2))) %*% X2)

> sr2=sr[sr$Stratum==2,]

> Xs2=X[sr2$ID_unit,]

> d2 = 1/(sr2$Prob * sr2$prob_resp)

> g2=calib(Xs2, d2, total2, method = "linear")

> checkcalibration(Xs2, d2, total2, g2)

$message

[1] "the calibration is done"

$result

[1] TRUE

$value

[1] 1e-06

2 Example 2

This is an example of:

� variance estimation of the calibration estimator (using the calibev and varest func-
tions),

� variance estimator of the Horvitz-Thompson estimator (using the varest and varHT

functions).

We generate an artificial population and use Tillé sampling. The population size is 100,
and the sample size is 20. There are three auxiliary variables (two categorical and one
continuous; the matrix X). The vector Z = (150, 151, . . . , 249)′ is used to compute the
first-order inclusion probabilities. The variable of interest Y is computed using the model
Yj = 5 ∗Zj ∗ (εj +

∑100
i=1 Xij), εj ∼ N(0, 1/3), j = 1, . . . , 100. The calibration estimator uses
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the linear method. Simulations are conducted to compute the MSE of the two variance
estimators of the calibration estimator. Since the linear method is used in calibration,
the calibration estimator is the generalized regression estimator. Thus an approximate
variance can be computed on the population level and used in the bias estimation of the
variance estimators. For the Horvitz-Thompson estimator, the variance can be computed
on the population level and compared with the simulations’ result. Run 10000 simulations
to obtain accurate results (for time consuming reason, in the following program, the number
of simulations is only 10).

> X=cbind(c(rep(1,50),rep(0,50)),c(rep(0,50),rep(1,50)),1:100)

> # vector of population totals

> total=apply(X,2,"sum")

> Z=150:249

> # the variable of interest

> Y=5*Z*(rnorm(100,0,sqrt(1/3))+apply(X,1,"sum"))

> # inclusion probabilities

> pik=inclusionprobabilities(Z,20)

> # joint inclusion probabilities

> pikl=UPtillepi2(pik)

> # number of simulations; let nsim=10000 for an accurate result

> nsim=10

> c1=c2=c3=c4=c5=c6=numeric(nsim)

> for(i in 1:nsim)

+ {

+ # draws a sample

+ s=UPtille(pik)

+ # computes the inclusion prob. for the sample

+ piks=pik[s==1]

+ # the sample matrix of auxiliary information

+ Xs=X[s==1,]

+ # computes the g-weights

+ g=calib(Xs,d=1/piks,total,method="linear")

+ # computes the variable of interest in the sample

+ Ys=Y[s==1]

+ # computes the joint inclusion prob. for the sample

+ pikls=pikl[s==1,s==1]

+ # computes the calibration estimator and its variance estimation

+ cc=calibev(Ys,Xs,total,pikls,d=1/piks,g,with=FALSE,EPS=1e-6)

+ c1[i]=cc$calest

+ c2[i]=cc$evar

+ # computes the variance estimator of the calibration estimator (second method)

+ c3[i]=varest(Ys,Xs,pik=piks,w=g/piks)

+ # computes the variance estimator of the HT estimator using varest()

+ c4[i]=varest(Ys,pik=piks)

+ # computes the variance estimator of the HT estimator using varHT()

+ c5[i]=varHT(Ys,pikls,2)

+ # computes the Horvitz-Thompson estimator

+ c6[i]=HTestimator(Ys,piks)

+ }
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> cat("the population total:",sum(Y),"\n")

the population total: 5542976

> cat("the calibration estimator under simulations:", mean(c1),"\n")

the calibration estimator under simulations: 5503869

> N=length(Y)

> delta=matrix(0,N,N)

> for(k in 1:(N-1))

+ for(l in (k+1):N)

+ delta[k,l]=delta[l,k]=pikl[k,l]-pik[k]*pik[l]

> diag(delta)=pik*(1-pik)

> var_HT=0

> var_asym=0

> e=lm(Y~X)$resid

> for(k in 1:N)

+ for(l in 1:N) {var_HT=var_HT+Y[k]*Y[l]*delta[k,l]/(pik[k]*pik[l])

+ var_asym=var_asym+e[k]*e[l]*delta[k,l]/(pik[k]*pik[l])}

> cat("the approximate variance of the calibration estimator:",var_asym,"\n")

the approximate variance of the calibration estimator: 5886439190

> cat("first variance estimator of the calibration est. using calibev function:\n")

first variance estimator of the calibration est. using calibev function:

> cat("MSE of the first variance estimator:", var(c2)+(mean(c2)-var_asym)^2,"\n")

MSE of the first variance estimator: 4.1878e+18

> cat("second variance estimator of the calibration est. using varest function:\n")

second variance estimator of the calibration est. using varest function:

> cat("MSE of the second variance estimator:", var(c3)+(mean(c3)-var_asym)^2,"\n")

MSE of the second variance estimator: 3.483916e+18

> cat("the Horvitz-Thompson estimator under simulations:", mean(c6),"\n")

the Horvitz-Thompson estimator under simulations: 5575285
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> cat("the variance of the HT estimator:", var_HT, "\n")

the variance of the HT estimator: 317279112862

> cat("the variance estimator of the HT estimator under simulations:", mean(c4),"\n")

the variance estimator of the HT estimator under simulations: 3.2072e+11

> cat("MSE of the variance estimator 1 of HT estimator:", var(c4)+(mean(c4)-var_HT)^2,"\n")

MSE of the variance estimator 1 of HT estimator: 4.308267e+21

> cat("MSE of the variance estimator 2 of HT estimator:", var(c5)+(mean(c5)-var_HT)^2,"\n")

MSE of the variance estimator 2 of HT estimator: 3.860353e+21

3 Example 3

This is an example of generalized calibration used to handle unit nonresponse with different
forms of response probabilities.

Consider the population U , the sample s and the set of respondents r with r ⊆ s ⊆ U.

The response mechanism is given by the distribution q(r|s) such that for every fixed s we
have

q(r|s) ≥ 0, for all r ∈ Rs and
∑
s∈Rs

q(r|s) = 1,

where Rs = {r|r ⊆ s}. The variable of interest yk is known only for k ∈ r. Under unit
nonresponse we define the response indicator Rk = 1 if unit k ∈ r and 0 otherwise and
the response probabilities pk = Pr(Rk = 1|k ∈ s). It is assumed that Rk are independent
Bernoulli variables with expected value equal to pk. We assume that the units respond
independently of each other and of s and so

q(r|s) =
∏
k∈r

pk
∏
k∈r̄

(1− pk).

The nonresponse model can be rewritten as

q(r|s,γ) =
∏
k∈r

F−1
k (γ)

∏
k∈r̄

(1− F−1
k (γ)).

In calibration method it is assumed that∑
k∈r

xkdkFk(γ) =
∑
k∈r

xkdkF (γTxk) =
∑
k∈U

xk,

where Fk(γ) = F (γTxk), pk = Fk(γ)−1, and dk are the initial weigths.
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In generalized calibration a different equation is used∑
k∈r

xkdkF (γT zk) =
∑
k∈U

xk,

where zk is not necessary equal to xk, but zk and xk have to be highly correlated. zk should
be known only for k ∈ r. The components of zk that are not also components of xk are often
known as instrumental variables. Let wk be the final weights (after generalized calibration).

It is possible to assume different forms of response probabilities:

� Linear weight adjustment (it can be implemented by using the argument method="linear"
in gencalib() function or method="truncated" if bounds are allowed): pk = 1/(1 +
γT zk) and wk = dk(1 + hT zk), where h is a consistent estimate of γ.

� Raking weight adjustment (it can be implemented by using the argument method="raking"
in gencalib()): pk = 1/ exp(γT zk) and wk = dk exp(hT zk).

� Logistic weight adjustment (it can be implemented by using the argument method="raking"
in gencalib()): pk = 1/(1 + exp(γT zk)), wk = dk(1 + exp(hT zk)), but we calibrate on∑

k∈U xk −
∑

k∈r xkdk instead of
∑

k∈U xk.

� Generalized exponential weight adjustment (Folsom and Singh, 2000; it can be imple-
mented by using the argument method="logit" in gencalib()):

pk = 1/F (γT zk), wk = dkF (hT zk),

F (hT zk) =
L(U − C) + U(C − L) exp(AhT zk)

(U − C) + (C − L) exp(AhT zk)
∈ (L,U),

where A = (U − L)/((C − L)(U − C)) and L ≥ 0, 1 < U ≤ ∞, U > C > L, (C = 1
in the paper of Deville and Sarndal, 1992). The g-weights are centered around of C.
For L = 1, C = 2 and U =∞, F (hT zk) approaches 1 + exp(hT zk) and for C = 1, L =
0, U =∞, exp(hT zk).

We exemplify the last form of response probabilities (generalized exponential weight adjust-
ment) using artificial data. We generate a population of size N = 400 and consider the
auxiliary information X following a Gamma distribution with parameters 3 and 4. The
instrumental variable Z is generated using the model Z = 2X + ε, where ε ∼ U(0, 1). The
variable of interest is Y generated using the model Y = 3X + ε1, where ε1 ∼ N(0, 1). We
consider here that the nonresponse is nonignorable and the response probabilities p depend
on the variable of interest. We draw a simple random sampling without replecement of size
n = 100 and generate the set of respondents r using Poisson sampling with the probabil-
ties p. The bounds are fixed to 1 and 5, and the constant C = 1.5. Three estimators are
computed:

� the generalized calibration estimator using Z as instrumental variable,

� the generalized calibration estimator using Y as instrumental variable,

� the generalized calibration estimator using X as instrumental variable, which is the
same with the calibration estimator, but the g-weights are centered around C.
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The convergence of the method is not guaranteed due to the bounds. Thus the variables
g1, g2, g3 can be null. If it the case, repeat the code (considering another s and r).

> N=400

> n=100

> X=rgamma(N,3,4)

> total=sum(X)

> Z=2*X+runif(N)

> Y=3*X+rnorm(N)

> print(cor(X,Y))

[1] 0.8025063

> print(cor(X,Z))

[1] 0.9517361

> L=1

> U=5

> C=1.5

> A=(U-L)/((C-L)*(U-C))

> p=((U-C)+(C-L)*exp(A*Y*0.3))/(L*(U-C)+U*(C-L)*exp(A*Y*0.3))

> summary(p)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2064 0.3085 0.3969 0.4233 0.5208 0.8782

> bounds=c(L,U)

> s=srswor(n,N)

> r=numeric(n)

> for(j in 1:n) if(runif(1)<p[s==1][j]) r[j]=1

> print("Size of r is:")

[1] "Size of r is:"

> nr=sum(r)

> print(nr)

[1] 46

> Xr=X[s==1][r==1]

> Yr=Y[s==1][r==1]

> Zr=Z[s==1][r==1]

> pikr=rep(n/N,times=nr)

> d=1/(pikr)
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> g1=gencalib(Xr,Zr,d,total,method="logit",bounds=bounds,C=C)

> g2=gencalib(Xr,Yr,d,total,method="logit",bounds=bounds,C=C)

> g3=gencalib(Xr,Xr,d,total,method="logit",bounds=bounds,C=C)

> if(is.null(g1))

+ print("g1 is null") else

+ if(checkcalibration(Xr,d,total,g1)$result)

+ {print("the gen.calibration estimator using Zs as instrumental variable")

+ print(sum(Yr*g1*d))

+ }

[1] "the gen.calibration estimator using Zs as instrumental variable"

[1] 775.7175

> if(is.null(g2))

+ print("g2 is null") else

+ if(checkcalibration(Xr,d,total,g2)$result)

+ {

+ print("the gen.calibration estimator using Ys as instrumental variable")

+ print(sum(Yr*g2*d))

+ }

[1] "the gen.calibration estimator using Ys as instrumental variable"

[1] 837.0332

> if(is.null(g3))

+ print("g3 is null") else

+ if(checkcalibration(Xr,d,total,g3)$result)

+ {

+ print("the calibration estimator")

+ print(sum(Yr*g3*d))

+ }

[1] "the calibration estimator"

[1] 783.8088

> cat("The population total is:", sum(Y),"\n")

The population total is: 887.9735
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