
The scidb Package

Bryan W. Lewis
blewis@paradigm4.com

April 1, 2015

Contents

1 Introduction 3

2 Connecting to SciDB 3

2.1 Listing and removing SciDB arrays . 4

3 SciDB Arrays for R users 4

1

The scidb Package

3.1 The scidbdf data frame-like class . 5

3.2 The scidb array class . 6

3.3 Arithmetic operations . 7

4 Subsetting and indexing SciDB objects 9

4.1 Indexing examples . 11

4.2 Comparison operators and filtering . 14

5 Data manipulation functions 16

5.1 Apply, sweep and other array functions . 16

5.2 Conditional subset operations . 17

5.3 Database joins . 18

5.4 Aggregation . 19

5.5 Binding new variables to an array . 20

5.6 SciDB redimension . 20

5.7 Sorting and enumerating factors . 21

5.8 Missing values . 22

6 Lazy evaluation, array promises, and garbage collection 23

7 SciDB-specific functions 24

8 Miscellaneous functions 25

8.1 Histograms . 26

8.2 Last-value imputation . 26

9 Running SciDB queries 26

9.1 Iterating over query results . 27

2

The scidb Package

10 Error handling 28

11 Function and method list 28

12 Package installation 30

12.1 Installing the R package from sources on GitHub 30

12.2 Installing the R package from CRAN . 30

12.3 Installing the simple HTTP service for SciDB . 31

12.4 Package options, miscellaneous notes, and software license 31

1 Introduction

SciDB is an open-source database that organizes data in n-dimensional arrays. SciDB features
include ACID transactions, parallel processing, distributed storage, efficient sparse array storage,
and native linear algebra operations. The scidb package for R provides two ways to interact with
SciDB from R:

1. Through SciDB array classes for R. The arrays mimic standard R arrays and data frames,
but operations on them are performed by the SciDB engine. Data are materialized to R only
when requested.

2. By running SciDB queries from R, optionally returning results as data frames.

The SciDB array classes facilitate programming large-scale SciDB computation in R using natural
R syntax. This vignette illustrates using SciDB from R by example. For more detailed information
on the functions described in this vignette, see the manual pages in the package.

2 Connecting to SciDB

The scidbconnect function establishes a connection to a simple HTTP network service called shim
running on a SciDB coordinator instance (see Section 12.3). The function may be safely called

3

The scidb Package

multiple times. Once a connection is established, connection information is maintained until a
different connection is established or the R session ends.

The network interface optionally supports SSL encryption and PAM or HTTP digest user authen-
tication. The shim service can be configured to support either open/unencrypted or encrypted/au-
thenticated ports, or both.

Connect to localhost by default on unencrypted port 8080:

> library("scidb")

> scidbconnect()

Connect to SciDB on an encrypted port 8083 with example PAM authentication:

> scidbconnect(host="localhost", port=8083,

+ username="scidbuser", password="test")

We recommend using only encrypted/authenticated sessions when communicating with SciDB over
public networks.

2.1 Listing and removing SciDB arrays

The scidblist function lists SciDB objects (arrays, instances, etc.), optionally showing detailed
schema information for arrays. Returned results may be filtered using regular expression-style
syntax.

The scidbremove function removes a SciDB array, or optionally a set of SciDB arrays. The function
accepts a vector of array names, resulting in the removal of all the specified arrays. Combine this
feature with the regular expression filtering output of scidblist to remove sets of arrays matching
the filter. Array names not associated with a specific R session are protected from easy removal to
provide a modicum of protection for multiple SciDB users. Specify force=TRUE as indicated in the
warning message to remove those arrays.

3 SciDB Arrays for R users

Data are organized by SciDB in n-dimensional sparse arrays. “Sparse” in SciDB arrays means that
array elements may be left undefined, and such array elements are omitted from computations.

4

The scidb Package

Note that this interpretation of sparse differs in a subtle way from that used by sparse matrices
defined by R’s Matrix package (whose sparse matrix elements are implicitly zero).

The elements of a SciDB array, called cells, contain one or more attributes (similar to R variables).
The number and data types of attributes are uniform across all cells in an array, and SciDB stores
data for each attribute separately. A one-dimensional SciDB array is conceptually similar to a data
frame in R: the SciDB dimension index corresponds to data frame row index, and SciDB attributes
to data frame columns. Higher-dimensional arrays in SciDB are generalizations of data frames and
they don’t correspond directly to objects in R; the scidb n-dimensional array class described below
is sometimes limited to working with one attribute at a time to more closely emulate standard R
arrays.

The scidb package defines two array classes for R with data backed by SciDB arrays: the scidbdf

class for data frame-like objects, and the scidb class for matrix and general array objects.

3.1 The scidbdf data frame-like class

The scidbdf class defines a data frame-like class backed by one-dimensional SciDB arrays. Like
data frames, the columns represent variables of distinct types and the rows represent observations.
Each attribute in the backing SciDB array represents a column in the scidbdf object. The scidbdf
object elements are read-only (the backing SciDB array may be manually updated, for example using
the iquery function).

Use the as.scidb function to create new SciDB arrays and corresponding scidbdf R objects by
copying R data frames into SciDB. The types and nullable options may be used to explicitly
specify the SciDB type and nullability values of each data frame column. See the R help page for
as.scidb and related df2scidb functions for more information.

The scidb function returns an R scidbdf or scidb object representation of an existing SciDB
array.

Objects of class scidbdf obey a subset of R indexing operations. Columns may be selected by
numeric positional index, variable name, or with the shorthand dollar sign notation similarly to
standard data frames. Rows may be selected by numeric ranges–see the following section on array
indexing for details.

Subsets of scidbdf objects are returned as new scidbdf objects of the appropriate size (dimension,
number of attributes/columns). The package uses the special empty-bracket notation, [], to indicate
that data should be materialized to R as an R data frame. Illustrations are provided in the examples.

5

The scidb Package

> # Upload the Michelson-Morley experiment data to SciDB,

> # returning a scidbdf data frame-like object:

> X <- as.scidb(morley, name="morely")

> str(X)

SciDB expression: morely

SciDB schema: <Expt:int32 NULL DEFAULT null,Run:int32 NULL DEFAULT null,

Speed:int32 NULL DEFAULT null> [row=1:100,100,0]

Attributes:

attribute type nullable

1 Expt int32 TRUE

2 Run int32 TRUE

3 Speed int32 TRUE

Dimension:

dimension start end chunk

1 row 1 100 100

> # Materialize the first four rows of X and the "Run" and "Speed"

> # columns to R (using [] to return results to R):

> X[1:4, c("Run","Speed")][]

row Run Speed

1 0 1 850

2 1 2 740

3 2 3 900

4 3 4 1070

3.2 The scidb array class

Similarly to the data frame-like class, the package defines the scidb array class for R that represents
vectors, matrices and general n-dimensional arrays. Array objects defined by the scidb class behave
in some ways like standard R arrays. But their data reside in SciDB and most operations on them
are computed by SciDB.

The scidb array class typically support working with a single array attribute at a time to conform
to R arrays (which generally support a single value per cell). Note that, unlike R, SciDB array origin

6

The scidb Package

indices are arbitrary and may be zero or negative (matrices and vectors in SciDB are generally zero-
indexed). Data from scidb array objects are not materialized to R until extracted with the empty
indexing function, []. Additional notes and examples about indexing appear in the next section.

> # Upload the iris data to SciDB storing it in an array named `iris`

> # and create a data frame-like object `df` that refers to it:

> df <- as.scidb(iris)

> dim(df)

[1] 150 5

> # Alternatively, make a SciDB 1-d array object.

> x <- scidb(df, data.frame=FALSE)

> dim(x)

[1] 150

> # List all available attributes in the SciDB array:

> x@attributes

[1] "Sepal_Length" "Sepal_Width" "Petal_Length" "Petal_Width" "Species"

3.3 Arithmetic operations

The scidb array class supports a few standard linear algebra operations for dense and sparse
matrices and vectors.

The example below shows a dense matrix example that compares matrix arithmetic in R and SciDB.
Like previous data frame examples, use as.scidb to export R matrices and vectors to SciDB arrays.

We generally use as.scidb for convenience–it’s far from the most efficient way to import data
into SciDB. For very large data, use the SciDB bulk data load utility as outlined in the SciDB
documentation instead.

> v <- as.scidb(matrix(rnorm(25),5))

> str(v)

7

The scidb Package

SciDB expression: R_array366d7949bc241102999947615

SciDB schema: <val:double NULL DEFAULT null> [i=0:4,5,0,j=0:4,5,0]

Attributes:

attribute type nullable

1 val double TRUE

Dimensions:

dimension start end chunk

1 i 0 4 5

2 j 0 4 5

> crossprod(v[]) # Compute t(v) %*% v using R

0 1 2 3 4

0 2.80783239 -0.05946079 0.6109525 1.53758978 -1.1351279

1 -0.05946079 0.37437931 0.4675420 -0.08090686 0.8351372

2 0.61095249 0.46754196 2.9929278 -2.32618189 0.7360878

3 1.53758978 -0.08090686 -2.3261819 5.48612039 -0.5832051

4 -1.13512788 0.83513722 0.7360878 -0.58320510 2.5291922

> # Now compute using SciDB, and materialize the result to R:

> crossprod(v)[]

0 1 2 3 4

0 2.80783239 -0.05946079 0.6109525 1.53758978 -1.1351279

1 -0.05946079 0.37437931 0.4675420 -0.08090686 0.8351372

2 0.61095249 0.46754196 2.9929278 -2.32618189 0.7360878

3 1.53758978 -0.08090686 -2.3261819 5.48612039 -0.5832051

4 -1.13512788 0.83513722 0.7360878 -0.58320510 2.5291922

Basic matrix/vector arithmetic operations on SciDB arrays (addition, subtraction, matrix and ma-
trix vector products, scalar products, crossprod and tcrossprod) use standard R syntax. You
can mix R and SciDB matrices and vectors and the scidb package will try to do the right thing
by assigning R data to temporary SciDB arrays conforming to required database schema. The next
example shows an example of computations that mix scidb array objects with R vectors.

8

The scidb Package

Expression Operation Operands Output
A %*% B Matrix multiplication A,B Conformable SciDB arrays

or R matrices/vectors
SciDB array

A±B Matrix summation/difference A,B SciDB arrays or R matri-
ces/vectors

SciDB array

crossprod(A,B) Cross product t(A) %*% B A,B SciDB arrays or R matri-
ces/vectors

SciDB array

tcrossprod(A,B) Cross product A %*% t(B) A,B SciDB arrays or R matri-
ces/vectors

SciDB array

A */ B Elementwise product/quotient A,B Conformable SciDB arrays
or R matrices/vectors

SciDB array

α */ A Scalar multiplication/division SciDB array A, scalar α SciDB array
t(A) Transpose SciDB array A SciDB array
sin(A) Sine function, also other trig functions SciDB array A SciDB array
log(A, base) Logarithm function SciDB array A, numeric base SciDB array
diff(A, lag = 1) Finite differences SciDB array A, integer lag SciDB array
A[range, range, . . .] Subarray SciDB array A SciDB Array
A[] Materialize SciDB array A R array
diag(A) Matrix diagonal SciDB array or vector A SciDB arrays
svd(A) Singular value decomposition Dense SciDB array A SciDB arrays
svd(A, nu) Truncated SVD Sparse or dense SciDB array A SciDB arrays

Some scidb math operations

4 Subsetting and indexing SciDB objects

SciDB arrays are indexed by signed 62-bit integers. The origin of an array depends on its schema and
can be any valid integer coordinate. However, zero is a typical origin, and some SciDB operations
require zero-based indexes.

By contrast, R indices use positive 52-bit integer-valued double precision floating point numbers.
That means that SciDB arrays can’t always be indexed by R. In practice, R users should avoid
creating SciDB arrays with coordinate systems that extend past R’s limits. Moreover, all R array
coordinate systems use 1-based indexing.

Subarray indexing operations use the SciDB convention. Thus, zero and negative indices are literally
interpreted and passed to SciDB. In particular, negative indices do not indicate index omission,
unlike standard R arrays.

Be aware that SciDB array coordinate systems may not begin at 1. Array coordinates are displayed

9

The scidb Package

when data are downloaded, and the underlying coordinate system can be inspected using the str

or schema functions.

Important indexing notes include:

� Use empty brackets, [], to materialize data back to R. Otherwise, indexing operations produce
new SciDB array objects.

� Use numeric indices in any dimension in the units of the underlying SciDB array coordinate
system. Note that SciDB arrays generally are zero-indexed and may even have negative
indices. SciDB data frame-like objects generally use 1-based indexing. When in doubt about
the base index, use the str, schema, or dimensions functions to interrogate the SciDB object
for details.

� Numeric indexing may include contiguous ranges or vectors of distinct coordinate values, but
repeated coordinate values in a single dimension are not allowed. Examples of valid index
ranges include [1:4, c(3,1,5), -10:15], but not [c(1,3,1)].

� The bracket subsetting function [takes an optional logical redim argument. When FALSE,
the returned value has the same shape as the input value, with regions outside the indicated
range marked sparse (empty). See the examples below.

� Subsetting operations using the bracket [function return zero-indexed results unless the
redim=FALSE argument is specified.

� The scidbdf class represents 1-d SciDB arrays as data frame objects with SciDB array at-
tribute as columns. Use either positional numeric or name-based indexing along columns,
either with the dollar-sign notation or string indexing.

� All array types support labeled dimension indexing using the R rownames, colnames, or
dimnames and related functions. Labels assigned in this way must be provided by 1-d SciDB
arrays that map the integer coordinates to character label values. See the examples below.

� Arrays may be indexed by other SciDB arrays to achieve the effect of filtering by boolean
expressions and similar operations, also illustrated below in the examples.

� Use the utility between function to avoid forming large sequences representing huge indexing
ranges. For example, use [between(1,1e9)] instead of [1:1e9]. Use between(0,Inf), for
example, to indicate every index greater than or equal to zero.

� The diag function is supported to extract a vector of diagonal elements from a matrix, or to
create a sparse diagonal matrix from a vector.

10

The scidb Package

4.1 Indexing examples

Let’s illustrate some indexing ideas by example. Consider the 5x4 matrix with unusual origin
of (−2, 0):

> (x <- as.scidb(matrix(as.double(1:20),nrow=5), start=c(-2,0)))

A reference to a 5x4 SciDB array

The underlying coordinates are displayed when data are returned to R using the special empty
index function:

> x[]

0 1 2 3

-2 1 6 11 16

-1 2 7 12 17

0 3 8 13 18

1 4 9 14 19

2 5 10 15 20

The package adopts the convention that explicit subsets return zero-indexed results, noting
also that zero and negative integers are valid SciDB indexes (deviating from R’s usual inter-
pretation):

> x[0:2, 2:3] []

0 1

0 13 18

1 14 19

2 15 20

Use the optional redim=FALSE option to return a masked sparse array of the same shape as
the input. This is often useful in conjunction with database join operations.

> x[0:2, 2:3, redim=FALSE] []

11

The scidb Package

5 x 4 sparse Matrix of class "dgCMatrix"

0 1 2 3

-2

-1

0 . . 13 18

1 . . 14 19

2 . . 15 20

The bracket function also supports the standard R drop argument:

> x[, 1] []

0 1 2 3 4

6 7 8 9 10

> x[, 1, drop=FALSE] []

0

0 6

1 7

2 8

3 9

4 10

Non-contiguous selections are supported, noting again that returned subset results by conven-
tion here are zero-indexed:

> x[c(0,2,-1),][]

0 1 2 3

0 2 7 12 17

1 3 8 13 18

2 5 10 15 20

(However, unlike standard R array subsetting repeated indices are not supported.)

Coordinate axes may be labeled:

> rownames(x) <- letters[1:5]

> colnames(x) <- LETTERS[1:4]

> x[]

12

The scidb Package

A B C D

a 1 6 11 16

b 2 7 12 17

c 3 8 13 18

d 4 9 14 19

e 5 10 15 20

The labels are maintained as ancillary SciDB arrays under the hood. You can view them:

> dimnames(x)

[[1]]

Reference to a SciDB vector of length 5

[[2]]

Reference to a SciDB vector of length Inf

> dimnames(x)[[1]] []

-2 -1 0 1 2

"a" "b" "c" "d" "e"

If a sparse array has coordinates too large for R to manage, results are returned in an “un-
packed” data frame form.

Note that SciDB objects with coordinates beyond the range of R display as inf. Coordinate
labeling arrays are sparse with a very large upper coordinate bound by convention–allowing
the number of labels to grow easily.

Labeled arrays can be subset, and the result retains labels:

> x[c('c','a','e'), c('B','A')] []

A B

a 1 6

c 3 8

e 5 10

Data-frame like objects are supported. Under the hood they are 1-d SciDB arrays.

13

The scidb Package

> d <- as.scidb(iris)

> head(d)

Sepal_Width Petal_Length Petal_Width Species

1 3.5 1.4 0.2 setosa

2 3.0 1.4 0.2 setosa

3 3.2 1.3 0.2 setosa

4 3.1 1.5 0.2 setosa

5 3.6 1.4 0.2 setosa

6 3.9 1.7 0.4 setosa

Note that the package will attempt to rename variables to conform to SciDB naming conven-
tions when it has to.

The “columns” of a data frame like object are defined by the SciDB array attributes. You can
use numeric or named indices, or the R dollar sign notation. The following subsets are all the
same:

> d$Petal_Width

Reference to a SciDB vector of length 150

> d[, "Petal_Width"]

Reference to a SciDB vector of length 150

> d[, 4]

Reference to a SciDB vector of length 150

4.2 Comparison operators and filtering

The package follows R convention and returns a logical-valued object after comparison. Ad-
ditionally, the package defines special comparison operators enclosed in the % symbol that
return a sparse SciDB array object whose values not meeting the condition are masked as
empty (preserving the values that do meet the condition).

The difference is illustrated in the following example.

14

The scidb Package

> x <- as.scidb(head(iris))

> # Standard R-style logical comparison:

> (x$Petal_Length > 1.4)[]

1 2 3 4 5 6

FALSE FALSE FALSE TRUE FALSE TRUE

> # Special SciDB-style masked comparison:

> (x$Petal_Length %>% 1.4)[]

sparse vector (nnz/length = 2/6) of class "dsparseVector"

[1] . . . 1.5 . 1.7

Comparison results can be used as filters in scidb and scidbdf objects. This works mostly like
R, except that such filters may only be applied along coordinate axes. (That is, R’s special
single-index indexing mode is not supported.)

Additional examples showing dimension labels and filtering follow.

> # Example of labeling indices with a label array.

> set.seed(1)

> X <- as.scidb(matrix(rnorm(20),nrow=5))

> # SciDB matrix objects like X default to zero-based indexing.

> # It's important that the label array have the same starting index:

> rownames(X) <- as.scidb(data.frame(letters[1:5]), start=0)

> X[c("b","a","d"),]

A reference to a 3x4 SciDB array

> # Example of indexing by a condition on an auxiliary array.

> # Determine a subset of the rownames of X (another SciDB array):

> idx <- rownames(X) > "b"

> # Subset X by the condition on its rows:

> X[idx,]

A reference to a 3x4 SciDB array

15

The scidb Package

5 Data manipulation functions

The package defines a number of common SciDB data manipulation functions for SciDB array
objects.

5.1 Apply, sweep and other array functions

R’s apply function applies a function along margins of an array or matrix. A version of
apply limited to SciDB aggregation functions is available for scidb and scidbdf objects.
The SciDB aggregation function is supplied as a string and references the array attributes.
The next example uses apply together with sweep to center the columns of a matrix.

> # Create an example matrix and upload to SciDB. Its single numeric array

> # attribute will be called "val" be default.

> A <- as.scidb(matrix(rnorm(100), nrow=10))

> # Create a centered version of the matrix by computing its column means

> # with apply and subtracting them with sweep. Note that apply uses a

> # SciDB expression. We specify `eval=TRUE` below to compute and cache

> # the result of sweep, improving the efficiency of the subsequent

> # crossprod operation.

>

> A0 <- sweep(A, 2, apply(A, 2, "avg(val)"), eval=TRUE)

> # The covariance matrix of A:

> crossprod(A0)/(nrow(A) - 1)

A reference to a 10x10 SciDB array

More general aggregation and data manipulation functions are outlined in the next section.

The diff function works similarly to R’s usual one for computing finite differences along
vectors and matrices.

Use the cumulate function to compute running operations along data, for example cumulative
sums. The operation to be performed must be a valid SciDB aggregation function expressed
as a character string. Here is a simple example:

> x <- as.scidb(iris)

> y <- cumulate(x, "sum(Petal_Width)")

> print(head(y, n=4))

16

The scidb Package

row Petal_Width_sum

1 1 0.2

2 2 0.4

3 3 0.6

4 4 0.8

The count function applied to a scidb array object returns the count of non-empty cells in
in the backing SciDB array.

The image function displays a heatmap of a regrid of a 2-d scidb array object, and returns
the regridded array to R. The grid=c(m,n) function parameter specifies the regrid window
sizes in each array dimension, and defaults to the array chunk sizes. The regrid aggregation
function may be specified using the op function argument, and by default averages the array
values over the regrid windows.

5.2 Conditional subset operations

Use the subset function to filter array contents by a boolean expression somewhat similarly
to the standard R subset function. Under the hood, this function uses the SciDB filter

operator–the function name subset more closely matches standard R syntax.

The subset function requires two arguments, a SciDB array reference and a valid SciDB
logical expression represented as a string. Here is a simple example:

> df <- as.scidb(iris)

> subset(df,"Petal_Width > 2.4")[]

Sepal_Length Sepal_Width Petal_Length Petal_Width Species

101 6.3 3.3 6.0 2.5 virginica

110 7.2 3.6 6.1 2.5 virginica

145 6.7 3.3 5.7 2.5 virginica

The subset function applied to arrays returns a sparse SciDB array with entries not meeting
the filter condition omitted. This behavior differs from the standard R subset function, which
can only operate on rows and columns. The scidb class also supports a short-hand notation
for subset for infix comparison operations.

> # Upload a 5x5 matrix to SciDB. Its single numeric attribute name

> # defaults to 'val' (see help for as.scidb):

17

The scidb Package

> set.seed(1)

> A <- as.scidb(matrix(rnorm(9),nrow=3))

> # Apply a filter to the SciDB array and return the results to R:

> subset(A, "val>0")[]

3 x 3 sparse Matrix of class "dgCMatrix"

0 1 2

0 . 1.5952808 0.4874291

1 0.1836433 0.3295078 0.7383247

2 . . 0.5757814

> # Alternatively, achieve the same filter with an infix comparison:

> (A > 0)[]

0 1 2

0 FALSE TRUE TRUE

1 TRUE TRUE TRUE

2 FALSE FALSE TRUE

5.3 Database joins

The package supports a limited form of the R merge function, enabling a number of database
join-like operations on SciDB array objects. See help("merge",package="scidb") function
for detailed help. Here is an example that performs an inner join on array attributes:

> authors <-

+ data.frame(

+ surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"),

+ nationality = c("US", "Australia", "US", "UK", "Australia"),

+ deceased = c("yes", rep("no", 4)),

+ stringsAsFactors=FALSE)

> books <-

+ data.frame(

+ name = c("Tukey", "Venables", "Tierney",

+ "Ripley", "Ripley", "McNeil", "R Core"),

+ title = c("Exploratory Data Analysis",

+ "Modern Applied Statistics ...",

+ "LISP-STAT", "Spatial Statistics", "Stochastic Simulation",

18

The scidb Package

+ "Interactive Data Analysis", "An Introduction to R"),

+ other.author = c(NA, "Ripley", NA, NA, NA, NA, "Venables & Smith"),

+ stringsAsFactors=FALSE)

> a <- as.scidb(authors)

> b <- as.scidb(books)

> merge(a,b,by.x="surname",by.y="name")[,4:8][]

row_2 nationality deceased name title

1 0 Australia no McNeil Interactive Data Analysis

2 1 UK no Ripley Spatial Statistics

3 2 UK no Ripley Stochastic Simulation

4 3 US no Tierney LISP-STAT

5 4 US yes Tukey Exploratory Data Analysis

6 5 Australia no Venables Modern Applied Statistics ...

other_author

1 <NA>

2 <NA>

3 <NA>

4 <NA>

5 <NA>

6 Ripley

> # cf. The standard R data.frame merge function:

> # merge(authors,books,by.x="surname",by.y="name")

The merge implementation has some limitations outlined in its man page. Joins on attributes
(instead of along coordinate axes) are presently the most limited kinds and outer joins are
only supported in certain cases.

5.4 Aggregation

The aggregate function performs various aggregation operations on SciDB array objects.
Aggregation may be defined over array dimensions and/or array attributes very similarly to
standard R aggregation syntax, except that aggregation functions must generally be valid
SciDB aggregate expressions, represented as strings.

> # Aggregation example

> df <- as.scidb(iris)

> aggregate(df, by="Species", FUN="avg(Petal_Length), stdev(Petal_Width)")[]

19

The scidb Package

Petal_Length_avg Petal_Width_stdev Species

0 1.462 0.1053856 setosa

1 4.260 0.1977527 versicolor

2 5.552 0.2746501 virginica

Although limited support for aggregation by data frame column is available (see the example
in this section), the aggregate function performs best along SciDB array dimensions. The
aggregate function also supports single- and multi-dimensional moving window aggregation
along array coordinate systems, and 1-d aggregation along consecutive data values in sparse
arrays. See the on-line man page for additional details and examples.

Alternatively, use the SciDB-specific redimension function to perform aggregations. This
form of aggregation is sometimes more efficient in the database. See the help page for
redimension and the examples in the following section on redimension.

5.5 Binding new variables to an array

The SciDB package defines the bind function to add variables to arrays similar to the R cbind

function for data frames. However, bind can also operate on higher-dimensional arrays. The
example below adds a variable named ‘prod‘ to the SciDB array df defined in the last example.

> y <- bind(df, "prod", "Petal_Length * Petal_Width")

> head(y, n=3)

Sepal_Width Petal_Length Petal_Width Species prod

1 3.5 1.4 0.2 setosa 0.28

2 3.0 1.4 0.2 setosa 0.28

3 3.2 1.3 0.2 setosa 0.26

5.6 SciDB redimension

The redimension function is a wrapper for the SciDB redimension operator–the Swiss army
knife of SciDB. The redimension function can be used to change the dimensionality of an
array and even to apply reduction functions while doing so to achieve aggregations.

The following example illustrates using redimension to compute a congingency table along
levels of two variables, ”class” and ”Species.”

20

The scidb Package

> x <- as.scidb(iris)

> # bind an example new 'class' column:

> y <- bind(x, "class", "iif(Petal_Width>2, int64(1), 0)")

> # Contingency table along two dimensions:

> redimension(y, dim=c("class", "Species"), FUN=count) []

2 x 3 sparse Matrix of class "dgCMatrix"

setosa versicolor virginica

0 50 50 27

1 . . 23

> # Aggregation example (cf. aggregation example above)

> redimension(x,

+ dim="Species",

+ FUN="avg(Petal_Length) as Petal_Length_avg,

+ stdev(Petal_Width) as Petal_Width_stdev")[]

Petal_Length_avg Petal_Width_stdev

setosa 1.462 0.1053856

versicolor 4.260 0.1977527

virginica 5.552 0.2746501

The function creates and applies row and dimension names as required.

5.7 Sorting and enumerating factors

Use the sort function to sort on a subset of dimensions and/or attribute of a SciDB array
object, creating a new sorted array.

Use the unique function to return a SciDB array that removes duplicate elements of a single-
attribute SciDB input array.

Use the index_lookup function along with unique to bind a new variable that enumerates
unique values of a variable similarly to the R factor function.

Use the new factor_scidb function to create R factor variables whose levels are determined
by a SciDB dimension array.

Examples follow. Note that we use the SciDB project function in one example. project

presents an alternative syntax to the functionally equivalent column subset selection of vari-
ables using brackets.

21

The scidb Package

> x <- as.scidb(iris)

> # Sort x by Petal_Width and Species

> a <- sort(x, attributes=c("Petal_Width","Species"))

> head(a, n=3)

Sepal_Width Petal_Length Petal_Width Species

1 3.1 1.5 0.1 setosa

2 3.0 1.4 0.1 setosa

3 3.0 1.1 0.1 setosa

> # Find unique values of Species:

> unique(x$Species)[]

Species

0 setosa

1 versicolor

2 virginica

> # Add a new variable that enumerates factor levels of Species:

> head(index_lookup(x, unique(x$Species), "Species"))

Sepal_Width Petal_Length Petal_Width Species Species_index

1 3.5 1.4 0.2 setosa 0

2 3.0 1.4 0.2 setosa 0

3 3.2 1.3 0.2 setosa 0

4 3.1 1.5 0.2 setosa 0

5 3.6 1.4 0.2 setosa 0

6 3.9 1.7 0.4 setosa 0

See the on-line documentation for factor_scid for additional examples.

5.8 Missing values

SciDB attribute values within a cell may be explicitly marked missing, indicated by a special
SciDB missing code also referred to as a NULL code. SciDB internally supports a large number
of possible missing codes. All SciDB missing code values are mapped to NA values in R.

22

The scidb Package

6 Lazy evaluation, array promises, and garbage collec-

tion

Most operations on SciDB array objects return array promises–new SciDB array objects that
have not been fully evaluated by SciDB yet, but that promise to return values when asked.
SciDB array promises are essentially just SciDB query expressions together with a schema that
the resulting output array will have once it’s been evaluated and an environment providing
context for the evaluation. In such cases, the name slot of a scidb or scidbdf object shows
the SciDB query expression.

Sometimes it can be more efficient to explicitly evaluate and cache a SciDB array then to use
it as an array promise. This can always be achieved by using the scidbeval function, or by
using the `eval`=TRUE argument in the functions that support that. Dynamically allocated
arrays use a naming convention that begins with “R array” and end with a unique numeric
identifier determined by the current SciDB session.

Ephemeral intermediate arrays are by default connected to R’s garbage collector and auto-
matically deleted from the SciDB catalog when they are no longer needed by R. Users can
disconnect SciDB array objects from R’s garbage collector (making stored arrays persistent
in SciDB), by using the gc=FALSE flag in the as.scidb and scidbeval functions.

SciDB arrays keep references to other SciB array dependencies in a list within an environment,
preventing them from automatic garbage collection so that the promise can be evaluated. The
environment is slot is named @gc in the array objects and the dependency list is @gc$depend.

Here is an example:

> # Create a 5x4 SciDB matrix named 'test' in the database. We set `gc=TRUE`

> # so that the SciDB array `test` will be deleted by R's garbage collector

> # for us automatically:

> A <- as.scidb(matrix(rnorm(20),nrow=5), name="test", gc=TRUE)

> A@name

[1] "test"

> # Assign the third row of the transpose to a scidb object B:

> B <- t(A)[3,]

> # B is a promise object--it's name is an (unevaluated) SciDB query expression

> # that depends on A. But it has a valid output schema, and we also see that

> # it depends ultimately on the SciDB array `test`:

> B@name

23

The scidb Package

[1] "redimension(

subarray(

redimension(

between(

transpose(test),3,null,3,null),

<val:double NULL>[j=3:3,4,0,i=0:4,5,0]),

null,null,null,null),

<val:double NULL>[i=0:4,5,0])"

> B@schema

[1] "<val:double NULL DEFAULT null> [i=0:4,5,0]"

> B@gc$depend[[1]]@gc$depend[[1]]@name

[1] "transpose(test)"

> # We can use `scidbeval` to force B's evaluation and storage inside SciDB:

> C <- scidbeval(B)

> # C has the same schema as B, but is now evaluated and stored inside SciDB

> # using an automatically-generated name. Unlike B, C does not depend on

> # the `test` array any more.

> C@name

[1] "R_array366d7fc6adf21102999947615"

> C@schema

[1] "<val:double NULL DEFAULT null> [i=0:4,5,0]"

7 SciDB-specific functions

This section briefly summarizes a number of utility functions that are simple wrappers of
miscellaneous SciDB operators. Except for count, which returns a number, the listed functions
return references to new SciDB array objects.

– attribute_rename Rename one or more attributes of a SciDB array.

24

The scidb Package

– build Creates new dense arrays from SciDB expressions and schema.

– cast Create a new array by altering the schema of an array.

– count Return the number of nonempty cells of an array.

– cumulate Compute a cumulative aggregate function, for example a cumulative sum or
product.

– dimension_rename Rename one or more dimensions of a SciDB array.

– index_lookup Look up attribute values in a mapping array, adding a new attribute with
the index.

– project Pick out one or more attributes from an array.

– redimension Redimension an array into the provided new schema.

– regrid Decimate an array by binning it along one or more dimensions and applying an
aggregate function to the bins.

– rename Rename a SciDB array.

– repart Repartition an array.

– reshape Reshape an array.

– schema Show the schema of a SciDB array object.

– scidblist List SciDB arrays (also scidbls).

– scidbremove Delete SciDB arrays (also scidbrm).

– slice Slice a SciDB array along one of its axes, returning a lower-dimensional array.

– sort Sort the elements of an array.

– subarray Perform a SciDB subarray or between operation on an array.

– unique Return a set of unique elements of a sorted array.

– unpack Unpack a SciDB array into a 1-d table.

– xgrid Prolong one or more coordinate axes by replicating cell values.

See the online manual pages for more details and examples.

8 Miscellaneous functions

This catch-all section summarizes miscellaneous functions.

25

The scidb Package

8.1 Histograms

The generic function hist computes a histogram of the given data values in a SciDb array
object. If plot=TRUE, the resulting object of class histogram is plotted by plot.histogram,
before it is returned.

This histogram function only supports equidistant breaks. If right=TRUE (default), the his-
togram cells are intervals of the form ’(a, b]’, i.e., they include their right-hand endpoint, but
not their left one.

8.2 Last-value imputation

The na.locf function is a generic function for replacing each missing or empty value with the
most recent non-missing value prior to it.

Unlike the usual na.locf function from the zoo package, the SciDB na.locf function fills in
both missing (SciDB null values) and empty (SciDB sparse) values with the last non-missing
and non-sparse value along the indicated dimension.

Time series represented in SciDB are often sparse arrays. The na.locf function defines a
conveniet way to fill in all missing values along the time coordinate axis down to the time
resolution.

Caution! The output array is a mostly dense, filled-in version of the input array. If the time
resolution is very fine and the input array very sparse, then the output array can be huge.
Consider using regrid first on very fine time scales to reduce their resolution.

The default na.locf method in the zoo package unforunately overrides this function (it uses
ANY in its method signature). If you need to use SciDB arrays and the zoo package, prefix
SciDB’s version with scidb::na.locf(...).

9 Running SciDB queries

The iquery function executes SciDB queries using either the SciDB array functional language
(AFL) or declarative array query language (AQL) syntax. When AFL is used, the iquery

function optionally returns query results in an R data frame if the argument return=TRUE is
specified. Returned output is similar to output obtained by the SciDB iquery command-line
program with the -olcsv+ option. The iquery function does not return anything by default.

26

The scidb Package

Query results returned by the iquery function are internally presented to R using a generic
CSV format, providing very flexible support for many data types. (The n-dimensional array
class described in the next section uses a binary data exchange method between R and SciDB.)
Note that, although R and SciDB have a number of common data types, each system contains
types not supported by the other. Thus, conversion errors may arise. The iquery function
is designed to reasonably minimize such issues and simplify basic data transfer between the
systems. Data types common to R and SciDB include double-precision numeric, character
string, logical, and 32-bit integers. The iquery function supports standard R read.table

parameter options to facilitate type conversion.

The following code example illustrates basic use of iquery.

> # Manually build a 1-d SciDB array named "P:"

> iquery("store(build(<x:double>[i=0:99,100,0],asin(1)*i/25),P)")

> # Return a query as a data.frame, manually specifying returned column classes:

> S <- iquery("apply(P,y,sin(x))",return=TRUE,

+ colClasses=c("integer","double","complex"))

> head(S, n=3)

i x y

1 0 0.00000000 0.00000000+0i

2 1 0.06283185 0.06279052+0i

3 2 0.12566371 0.12533323+0i

9.1 Iterating over query results

The iquery function returns query results into a single R data frame by default. Large results
expected to contain lots of rows may be iterated over by setting the iterative=TRUE argument.
When iquery is used with the iterative=TRUE setting, it returns an iterator that iterates
over chunks of rows of the result data frame. Iterators are defined by the iterators package.
Their data may be directly accessed with the nextElem method, or indirectly with foreach.
See the iterators and foreach packages for many examples and further documentation of
their use.

> # Build a small 1-d SciDB test array:

> iquery("store(build(<x:double>[i=1:10,10,0],i/10.0),A)")

> # Return the result of a SciDB apply operator in an R iterator with a

> # block size of at most 7 rows at a time:

27

The scidb Package

> library("iterators")

> it <- iquery("apply(A,y,sqrt(x))", return=TRUE, iterative=TRUE, n=7)

> nextElem(it)

i x y

1 1 0.1 0.3162278

2 2 0.2 0.4472136

3 3 0.3 0.5477226

4 4 0.4 0.6324555

5 5 0.5 0.7071068

6 6 0.6 0.7745967

> nextElem(it)

i x y

1 7 0.7 0.8366600

2 8 0.8 0.8944272

3 9 0.9 0.9486833

4 10 1.0 1.0000000

10 Error handling

SciDB errors are trapped and converted to R errors that can be handled by standard R
mechanisms. Some operations might try to return too much data to R, exceeding R’s indexing
limitations, system memory, or both. The package tries to avoid this kind of error using
package options that limit returned data size shown in the package options section below.

11 Function and method list

Here is a summary list of functions and methods defined by the package. See online help for
examples and more information on each one.

< <= ==

> >= -

!= / [

28

The scidb Package

[<- $ *

%<=% %<% %==%

%>=% %>% %*%

+ abs acos

aggregate all.equal antijoin

apply asin as.scidb

atan attribute_rename bernoulli

between bind bound

build c cast

cbind chunk_map colnames

colnames<- cos count

crossprod cumulate default

df2scidb diag diff

dim dimension_rename dimensions

dimnames dimnames<- dist

exp factor_scidb Filter

glm glm.fit glm_scidb

head hist image

index_lookup iqdf iquery

is.scidb is.scidbdf is.temp

kmeans lag length

levels_scidb log max

mean median merge

min model_scidb na.locf

names names<- ncol

nrow Ops order

peek persist phyper

predict print project

qhyper quantile rank

rbind redimension regrid

remove_old_versions rename repart

replaceNA reshape rownames

row.names row.names<- rownames<-

schema scidb scidb_attributes

scidbconnect scidb_coordinate_bounds scidb_coordinate_chunks

scidb_coordinate_end scidb_coordinate_overla scidb_coordinate_start

scidbdf scidbdisconnect scidbeval

scidb_fisher.test scidblist scidbls

29

The scidb Package

scidb_nullable scidbremove scidbrm

scidb_types sd show

show_commit_log sin slice

solve sort sqrt

str subarray subset

sum summary svd

sweep t tail

tan tcrossprod tsvd

unbound unique unpack

var xgrid

12 Package installation

Installation proceeds in two steps: installing the R package on any computer that has a network
connection to a SciDB database, and installing a simple network service on the SciDB database
coordinator computer.

12.1 Installing the R package from sources on GitHub

The scidb package source is maintained in the SciDBR GitHub repository. That’s where the
most up-to-date version of the package is available. Released versions of the package posted
to CRAN are updated much less frequently, approximately semiannually. A git tag indicates
each CRAN release version of the package in the source code repository.

The wonderful devtools R package makes installation of source packages from GitHub nearly
as simple as installation from CRAN.

library("devtools")

install_github("SciDBR", "Paradigm4", quick=TRUE)

12.2 Installing the R package from CRAN

The scidb package is available on CRAN. Start an R session and run:

install.packages("scidb")

30

The scidb Package

12.3 Installing the simple HTTP service for SciDB

The SciDB R package requires installation of a simple open-source HTTP network service
called shim on the computer that SciDB is installed on. The service needs to be installed only
on the SciDB coordinator computer, not on client computers that connect to SciDB from R.
It’s available in packaged binary form for supported SciDB operating systems, and as source
code which can be compiled and deployed on any SciDB installation.

Both installation approaches install the shim network service on the SciDB coordinator com-
puter. Installing as a service requires root permission. The compiled source code version
requires no special permissions to run.

Installation from binary software packages for SciDB-supported operating systems is easiest.
Detailed up-to-date information can be found on Paradigm4’s laboratory on Paradigm4’s
Github repository at https://github.com/Paradigm4/shim/wiki/Installing-shim.

The installed shim network service exposes SciDB as a very simple HTTP API. It includes
a simple browser-based status and query tool. After installing shim, point your browser to
the I.P. address of the SciDB coordinator machine and port 8080. Note that this API is not
official and may change in the future. Help drive those changes by contributing ideas, code and
bugfixes to the project on Github, or feel free to discuss the service on the SciDB.org/forum
or via Github issues.

12.4 Package options, miscellaneous notes, and software license

The scidb package defines several global package options. Package options may be set and
retrieved with the R options function, and are listed in Table 2.

Miscellaneous notes:

– R does not support 64-bit integer types. 64-bit signed and unsigned integers smaller than
253 in magnitude will be represented as double-precision floating point numbers. 64-bit
integers outside that range appear as +/−Inf. All other integers (int8, uint8, int16,
uint16, etc.) are represented in R by 32-bit signed integers. The SciDB uint32 type is
not supported.

– R doesn’t support single-precision floating point numbers. iquery results convert single-
precision numbers within SciDB to double-precision floating-point numbers in R. Single-
precision SciDB numbers are not supported by the scidb array class.

– SciDB does not natively support complex numbers. Loading complex numbers directly
into SciDB from R is not defined.

31

https://github.com/Paradigm4/shim/wiki/Installing-shim

The scidb Package

Maximum allowed sequential index limit (for larger, use between)

options(scidb.index.sequence.limit=1000000)

Maximum allowed elements in an array return result

options(scidb.max.array.elements=100000000)

The scidb.version option is set during scidbconnect(). However, users

may carefully override it to enable certain bug fixes specific to older

versions of SciDB.

options(scidb.version=13.9)

Set this to 32 for SciDB version 13.6!

options(scidb.gemm_chunk_size=1000)

Default shim port and host.

options(scidb.default_shim_port=8080L)

options(scidb.default_shim_host="localhost")

Make it harder to remove arrays. When this option is TRUE, users

have to specify scidbrm(array, force=TRUE) to remove arrays that do not

begin with "Rarray".

options(scidb.safe_remove=TRUE)

Disable SSL certificate host name checking by default. This is important mostly

for Amazon EC2 where hostnames rarely match their DNS names. If you enable this

then the shim SSL certificate CN entry *must* match the server host name for the

encrypted session to work. Set this TRUE for stronger security (help avoid MTM)

in SSL connections.

options(scidb.verifyhost=FALSE)

Set to FALSE to disable user-interruptable HTTP transactions.

options(scidb.interrupt=TRUE)

Set to TRUE to enable experimental shim stream protocol, avoids copying query

output to data file on server # (see https://github.com/Paradigm4/shim).

options(scidb.stream=FALSE)

Package options

32

The scidb Package

– The iquery function provides the most flexible mechanism for type conversion between
the systems, fully under user control using read.table options.

– Naming convention and associated restrictions vary between R and SciDB. For example,
SciDB does not allow decimal points in attribute names. The package may alter names
with character substitution to reconcile names when it is reasonable to do so. A warning
is emitted whenever an object is automatically renamed in this way.

Copyright (C) 2008-2015 SciDB, Inc.

The SciDB package for R is free software: you can redistribute it and/or modify
it under the terms of the AFFERO GNU General Public License as published by the
Free Software Foundation.

The SciDB package for R is distributed "AS-IS" AND WITHOUT ANY WARRANTY OF ANY
KIND, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. See the AFFERO GNU General Public License for
the complete license terms.

You should have received a copy of the AFFERO GNU General Public License along
with the package. If not, see <http://www.gnu.org/licenses/agpl-3.0.html>

33

	Introduction
	Connecting to SciDB
	Listing and removing SciDB arrays

	SciDB Arrays for R users
	The scidbdf data frame-like class
	The scidb array class
	Arithmetic operations

	Subsetting and indexing SciDB objects
	Indexing examples
	Comparison operators and filtering

	Data manipulation functions
	Apply, sweep and other array functions
	Conditional subset operations
	Database joins
	Aggregation
	Binding new variables to an array
	SciDB redimension
	Sorting and enumerating factors
	Missing values

	Lazy evaluation, array promises, and garbage collection
	SciDB-specific functions
	Miscellaneous functions
	Histograms
	Last-value imputation

	Running SciDB queries
	Iterating over query results

	Error handling
	Function and method list
	Package installation
	Installing the R package from sources on GitHub
	Installing the R package from CRAN
	Installing the simple HTTP service for SciDB
	Package options, miscellaneous notes, and software license

