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Abstract

This article is an updated version of De Leeuw and Mair (2009b) published in the
Journal of Statistical Software. It elaborates on the methodology of multidimensional
scaling problems (MDS) solved by means of the majorization algorithm. The objective
function to be minimized is known as stress and functions which majorize stress are
elaborated. This strategy to solve MDS problems is called SMACOF and it is implemented
in an R package of the same name which is presented in this article. We extend the basic
SMACOF theory in terms of configuration constraints, three-way data, unfolding models,
and projection of the resulting configurations onto spheres and other quadratic surfaces.
Various examples are presented to show the possibilities of the SMACOF approach offered
by the corresponding package.
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## Loading required package: smacof

## Loading required package: RgoogleMaps

1. Introduction

Multidimensional scaling (MDS) is a family of scaling methods for discovering structures in
multidimensional data. Based on an proximity matrix, typically derived from variables mea-
sured on objects as input entity, these dissimilarities are mapped on a low-dimensional spatial
representation. A classical example concerns airline distances between cities in miles as sym-
metric input matrix. Applying MDS, it results in a two-dimensional graphical representation
reflecting the map (see Kruskal and Wish 1978). Depending on the nature of the original data
various proximity/dissimilarity measures can be taken into account. For an overview see Cox
and Cox (2001, Chapter 1) and an implementation of numerous proximity measures in R (R
Core Team 2015) is given by Meyer and Buchta (2007). Typical application areas for MDS
are, among others, social and behavioral sciences, marketing, biometrics, and ecology.

For introductory MDS reading we refer to Kruskal and Wish (1978) and more advanced topics
can be found in Borg and Groenen (2005) and Cox and Cox (2001).

The smacof package provides a broad variety of MDS implementations. The basic imple-
mentation is symmetric SMACOF, i.e. MDS on symmetric input dissimilarity matrices with
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options for ratio, interval, ordinal, and spline transformations of the proximities. Exten-
sions in terms of confirmatory MDS (internal, external restrictions) are provided as well as
individual difference scaling (INDSCAL, IDIOSCAL and friends). In addition the package
implements metric unfolding, i.e. SMACOF on rectangular dissimilarity matrices. Some spe-
cial techniques such as Procrustes, inverse MDS, and unidimensional scaling are available as
well.

2. Basic MDS strategies using SMACOF

MDS input data are typically a n × n matrix ∆ of dissimilarities based on observed data.
∆ is symmetric, non-negative, and hollow (i.e. has zero diagonal). The problem we solve is
to locate i, j = 1, . . . , n points in low-dimensional Euclidean space in such a way that the
distances between the points approximate the given dissimilarities δij . Thus we want to find
an n× p matrix X such that dij(X) ≈ δij , where

dij(X) =

√√√√ p∑
s=1

(xis − xjs)2. (1)

The index s = 1, . . . , p denotes the number of dimensions in the Euclidean space. The elements
of X are called configurations of the objects. Thus, each object is scaled in a p-dimensional
space such that the distances between the points in the space match as well as possible the
observed dissimilarities. By representing the results graphically, the configurations represent
the coordinates in the configuration plot.

SMACOF stands for Stress Majorization of a COmplicated Function. For MDS, majorization
was introduced by De Leeuw (1977a) and further elaborated in De Leeuw and Heiser (1977)
and De Leeuw and Heiser (1980). Kruskal’s stress σ(X) is defined by

σ(X) =
∑
i<j

wij(δij − dij(X))2. (2)

Here, W is a known n×n matrix of weights wij , also assumed to be symmetric, non-negative,
and hollow. We assume, without loss of generality, that∑

i<j

wijδ
2
ij = n(n− 1)/2 (3)

and that W is irreducible (De Leeuw 1977a), so that the minimization problem does not
separate into a number of independent smaller problems. W can for instance be used for
imposing missing value structures: wij = 1 if δij is known and wij = 0 if δij is missing.
However, other kinds of weighting structures are allowed along with the restriction wij ≥ 0.

Let us start with a very simple example where the input dissimilarities are actually (Euclidean)
distances. The data we use are from Michael Friendly’s website (http://www.datavis.ca/
gallery/guerry/) and represent distances between French department centroids in 1830.
We compute a two-dimensional ratio MDS (input dissimilarities not transformed) which re-
produces the map and the resulting configurations correspond to map coordinates. In the
left panel of Figure 1 we see that it is not quite the geographical map of France since it

http://www.datavis.ca/gallery/guerry/
http://www.datavis.ca/gallery/guerry/
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Figure 1: Left panel: original MDS solution. Right panel: rotated MDS solution with French
map as background.

is rotated. Note that MDS is blind to geographic directions since it solely operates on dis-
similarities/distances. In practice, this does not matter unless we work with geographical
data.

data(Guerry)

fit.guerry <- mds(Guerry)

op <- par(mfrow = c(1,2))

plot(fit.guerry)

theta <- 82*pi/180 ## degrees to radians

rot <- matrix(c(cos(theta), sin(theta), -sin(theta), cos(theta)), ncol = 2)

configs82 <- fit.guerry$conf %*% rot ## rotated configurations

francemap1 <- GetMap(destfile="mypic1.png", zoom = 6, center = c(46.55, 3.05),

maptype = "satellite")

PlotOnStaticMap(francemap1)

text(configs82*280, labels = rownames(configs82), col = "white", cex = 0.7)

par(op)

The right panel in Figure 1 shows a rotated solution (82 degrees) and the coordinates are
multiplied by a dilation factor of 280. Both values are determined by trial-and-error. More
sophisticated rotation/translation/dilation configuration transformations will be explained in
the section on Procrustes analysis.

In practice, researchers do not have Euclidean distances as data. Having a regular subject
× variables data frame, one can compute proximities such as correlations or various kind
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of distance measures. Having similarities such as correlations, the sim2diss helper function
offers possibilities for corresponding transformations. Note that the smacof package always
requires dissimilarities as input.

The next dataset is based on ratings of 576 records by 14 judges in a German Heavy Metal
magazine called Rock Hard, collected in 2013. For the moment we are only interested in the
judges who rated each record on a scale from 0 (super bad) to 10 (incredibly awesome). Half
point ratings were allowed. We use an MDS to explore which judges have a similar taste.
We use the Euclidean distance between the judges to compute the input dissimilarities. Note
that some input dissimilarities are missing (more on that in Section 2.2). We compute a
three-dimensional ratio MDS solution.

ratings <- RockHard[,5:18]

rockdiss <- dist(t(ratings))

fit.rock <- mds(rockdiss, ndim = 3)

fit.rock

##

## Call:

## mds(delta = rockdiss, ndim = 3)

##

## Model: Symmetric SMACOF

## Number of objects: 14

## Stress-1 value: 0.177

## Number of iterations: 109

op <- par(mfrow = c(1,2))

plot(fit.rock, plot.dim = c(1,2), main = "Configurations D1 vs. D2")

plot(fit.rock, plot.dim = c(1,3), main = "Configurations D1 vs. D3")

par(op)

Figure 2 shows two configuration plots for the corresponding dimensions. Naturally, one could
also produce a three-dimensional configuration plot using either the scatterplot3d or the rgl
package.

2.1. Transforming the dissimilarities

An important MDS issue in practice concerns the scale level we want to assign to the dissim-
ilarities. This leads to the basic classical distinction between metric and nonmetric MDS. So
far we did not consider transformations on the dissimilarities δij . MDS was used to represent
the data such that their ratios would correspond to the ratios of the distances in the MDS
space. This is called ratio MDS and is a special case of metric MDS.

The most popular approach, especially in the Social Sciences, are transformations that pre-
serve the rank order of the dissimilarities, i.e. we assume that the dissimilarities are on
an ordinal scale level. If such a transformation f obeys only the monotonicity constraint
δij < δi′j′ ⇒ f(δij) < f(δi′j′), within an MDS context it is referred to as ordinal MDS or non-

metric MDS (Kruskal 1964b). The resulting d̂ij = f(δij) are commonly denoted as disparities
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Figure 2: Left panel: Configuration plot dimension 1 vs. 2. Right panel: Configuration plot
dimension 1 vs. 3.

which have to be chosen in an optimal way. Straightforwardly, the stress function (for the
symmetric case) becomes

σ(X) =
∑
i<j

wij(d̂ij − dij(X))2 (4)

which we have to minimize with respect to the configurations X and, simultaneously, with
respect to the disparity matrix D̂. Regarding majorization, there is one additional step after

each Guttman transform in iteration t: The computation of optimal d̂ij
(t)

(with subsequent
normalization) such that the monotonicity constraint is fulfilled. If the order of dij(X

(t)) is

the same as the order of d̂ij
(t)

, the optimal update is clearly d̂ij
(t)

= dij(X
(t)). If the orders

differ, the optimal update is found by monotone regression.

Within this context we have to consider the case of ties in the observed ordinal dissimilarity
matrix ∆, i.e., the case of δij = δi′j′ . Having this case, we distinguish between three ap-

proaches: the primary approach (“break ties”) does not necessarily require that d̂ij = d̂i′j′ ,
whereas the (more restrictive) secondary approach does (“keep ties”). An even less restrictive
version is the tertiary approach from De Leeuw (1977b), in which we require that the means
of the tie-blocks are in the correct order. More details can be found in Cox and Cox (2001).

When solving the monotone (or isotonic) regression problem in step t, one particular tie
approach has to be taken into account. In MDS literature this problem is referred to as
primary monotone least squares regression and smacof solves it by means of the pooled-
adjacent-violators algorithm (PAVA, Ayer, Brunk, Ewing, Reid, and Silverman 1955; Barlow,
Bartholomew, Bremner, and Brunk 1972).

Another, even simpler type of transformation we can consider is a linear transformation
where d̂ij = f(δij) = a+ bδij . This strategy is called interval MDS and plays and important
role in modern metric MDS applications. In interval MDS, then, the ratio of differences of
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distances should be equal to the corresponding ratio of differences in the data. Having a linear
transformation, we can naturally think of nonlinear transformations as well. This could be
a simple polynomial transformation, logarithmic and exponential transformations, or, even
more sophisticated, (monotone) spline transformations. Splines are piecewise polynomial
functions; the “pieces” are determined by knots and the spline degree. Within an MDS
context, mostly monotone splines are relevant which lead to a smoother transformation of the
δij ’s compared to monotone regression. In the smacof we use I-splines (integrated splines),
a special type of monotone splines. More technical MDS spline details can be found in Borg
and Groenen (2005, Chapter 9.6).

Transformations can be nicely shown in a Shepard diagram (see De Leeuw and Mair 2015, for
a general description). A Shepard diagram consists of a scatterplot between the dissimilarities
δij and the configuration distances dij(X). In addition, it shows the disparities d̂ij and from
this we see nicely how the δij are transformed. Some examples of various transformations
using the kinship dissimilarity data (Rosenberg and Kim 1975) based in 15 kinskip terms are
given in Figure 3.

fit.interval <- mds(kinshipdelta, type = "interval")

fit.ordinal1 <- mds(kinshipdelta, type = "ordinal", ties = "primary")

fit.ordinal2 <- mds(kinshipdelta, type = "ordinal", ties = "secondary")

fit.spline <- mds(kinshipdelta, type = "mspline", spline.intKnots = 3,

spline.degree = 2)

op <- par(mfrow = c(2,2))

plot(fit.interval, plot.type = "Shepard",

main = "Shepard Diagram (Interval MDS)", ylim = c(0.1, 1.7))

plot(fit.ordinal1, plot.type = "Shepard",

main = "Shepard Diagram (Ordinal MDS, Primary)", ylim = c(0.1, 1.7))

plot(fit.ordinal2, plot.type = "Shepard",

main = "Shepard Diagram (Ordinal MDS, Secondary)", ylim = c(0.1, 1.7))

plot(fit.spline, plot.type = "Shepard",

main = "Shepard Diagram (Spline MDS)", ylim = c(0.1, 1.7))

par(op)

2.2. Missing Values

Sometimes we have the case where some input dissimilarities are missing. As usual in R, they
should be coded as NA. In order to perform an MDS computation, a proper specification of
the weight matrix W does the trick: wij = 0 if δij is missing; wij = 1 (or any other known
weight), if δij non-missing. The smacof package does this W specification automatically if
missing dissimilarities are found, the user does not have to worry about. We have already
seen a corresponding example using the RockHard data.

2.3. Starting configurations

MDS often ends up in a local minimum, especially for low-dimensional solutions. By default,
smacof performs classical scaling to determine (hopefully good) starting configurations. A
common strategy to check whether the algorithm ended up in a global minimum is to try
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Figure 3: Shepard diagrams for various dissimilarity transformations. Top left: Linear trans-
formation. Top right: Monotone regression, break ties. Bottom left: Monotone regression,
keep ties. Bottom right: Spline transformation (3 interior knots, cubic splines.)
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several random starting configurations and pick the one with the lowest stress value (of course,
it can not be guaranteed that this solution is actually a global minimum). For an example
we use the Lawler dataset (Lawler 1967) examining the performance of managers. There
are three criteria or traits (T1 = quality of output, T2 = ability to generate output, T3 =
demonstrated effort to perform) and three methods (M1 = rating by superior, M2 = peer
rating, M3 = self-rating). We look at the stress values of the default classical scaling starting
solution and 20 random starts.

LawlerD <- sim2diss(Lawler)

fitclas <- mds(LawlerD)

fitclas$stress

## [1] 0.2414665

stressvec <- NULL

set.seed(123)

for(i in 1:20) {

fitran <- mds(LawlerD, init = "random")

stressvec[i] <- fitran$stress

}

stressvec ## stress values

## [1] 0.2446885 0.2668114 0.2446878 0.2675292 0.2620006 0.2623503 0.2401496

## [8] 0.2423066 0.2609520 0.2431139 0.2443404 0.2560029 0.2588567 0.2467979

## [15] 0.2436688 0.2467940 0.2554348 0.2515141 0.2529192 0.2526784

We see that the 7th solution is the best one of the random starts; and it is even better than
the one based on classical scaling starting values.

2.4. MDS goodness-of-fit

MDS goodness-of-fit should be judged by the normalized stress value, the stress-per-point,
the Shepard diagram, and some tests. The core output value in MDS the stress value. The
raw stress value itself is not very informative. A large value does not necessarily indicate bad
fit. Several normalizations have been proposed in the literature in order to make the stress
value not dependent on the measurement units used in ∆ and X, respectively. A popular
normalization is Kruskal’s stress-1 which is given by

σ(X) =

√∑
i<j wij(d̂ij − dij(X))2

n(n− 1)/2
. (5)

The scaling factor in the denominator comes from the normalization given in (3). We see
that the stress is based on an additive decomposition: each object (point) “contributes” to
the stress. The higher a point’s contribution, the more “responsible” this point is with respect
to lack of fit. These individual stress contributions are called “stress-per-point” and smacof
returns the corresponding contributions as percentages. Thus, this concept is somewhat
similar to influential points in regression.
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The lower bound of the stress value is 0 (perfect fit), the upper bound is nontrivial (see
De Leeuw and Stoop 1984). What is a “good” stress value then? Kruskal (1964a) gave some
stress-1 benchmarks for ordinal MDS: 0.20 = poor, 0.10 = fair, 0.05 = good, 0.025 = excellent,
and 0.00 = perfect. As always, such general rules of thumb are problematic since there are
many aspects that need to be considered when judging stress (see Borg, Groenen, and Mair
2012, for details). Early approaches (e.g. Spence and Ogilvie 1973) suggest to use the average
stress value based on random dissimilarity MDS fits as the upper benchmark. It turned out,
however, that for most applications it is not too difficult to achieve a stress value that is
considerably lower than this benchmark, since there is always some sort of structure in the
data. Nonetheless, the smacof package provides the following utility function to compute
random stress values dependent on the number of objects n, the number of dimensions p, and
the type of MDS. Let us look at the average ratio MDS stress value for n = 9 and p = 2 (500
replications), as we had in the Lawler example above:

stressvec <- randomstress(n = 9, ndim = 2, nrep = 500)

mean(stressvec)

## [1] 0.3118535

fit <- mds(LawlerD)

fit$stress

## [1] 0.2414665

Not surprisingly, the stress value of 0.24 in the Lawler example is clearly smaller than the
average random stress. However, it can be doubted that this is really a good solution.

More modern approaches focus on permutations of the dissimilarity matrix rather than on
random dissimilarities. A simple implementation is given by means of the permtest() func-
tion. Let us perform a permutation test for the Lawler example (1000 permutations):

set.seed(1234)

res.perm <- permtest(fit, nrep = 1000, verbose = FALSE)

res.perm

##

## Call: permtest.smacof(object = fit, nrep = 1000, verbose = FALSE)

##

## SMACOF Permutation Test

## Number of objects: 9

## Number of replications (permutations): 1000

##

## Observed stress value: 0.241

## p-value: 0.303

It results that our MDS fit is not significantly better than the null solutions based on the per-
mutations (p = 0.303). We see that permutation tests provide a more useful null distribution
than the random dissimilarity approach. Figure 4 shows the results.
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Figure 4: Left panel: Histogram of permutation stress values (gray lines show the 5% rejection
region, red line the observed stress value). Right panel: Empirical cumulative distribution
function of the permuted stress values (dotted horizontal line denotes the .05 significance
threshold).

op <- par(mfrow = c(1,2))

hist(res.perm$stressvec, xlab = "Stress Values", main = "Histogram Permutations")

abline(v = quantile(res.perm$stressvec, c(0.025, 0.975)), col = "gray")

abline(v = fit$stress, col = "red", lwd = 2)

plot(res.perm)

par(op)

Finally, for the same example, let us have a look at the stress-per-point contributions.

fit$spp

## T1M1 T2M1 T3M1 T1M2 T2M2 T3M2 T1M3

## 10.678739 14.836683 11.288724 10.329160 9.911150 10.470871 10.600777

## T2M3 T3M3

## 12.332179 9.551717

These values represent stress contributions in percentage and we see that T2M1 (trait: ability
to generate output; method: rating by superior) is responsible for approximately 15% of the
stress. A stress decomposition chart plots these values in descending order and the bubble
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Figure 5: Stress-per-point contribution and bubble plot for Lawler dataset.

plot combines the configuration plot with stress contributions (the larger the bubble, the
smaller the contribution, and, consequently, the better the fit; see Figure 5).

op <- par(mfrow = c(1,2))

plot(fit, plot.type = "stressplot")

plot(fit, plot.type = "bubbleplot")

par(op)

3. Confirmatory MDS I: circular restrictions

The fact that quadratic surfaces frequently show up empirically leads to some interesting
technical and methodological problems. In some cases it may be appropriate to require that
the points computed by MDS are indeed located exactly on some parametric surface.

Here we are interested in the case in which the points in the configuration are constrained to
lie on a quadratic surface (Cox and Cox 1991) in Rp. In R2, important special cases are a
circle, ellipse, hyperbola, and parabola; in R3, corresponding special cases are a sphere and
an ellipsoid.

We call the technique of placing the points on the MDS with quadratic constraints MDS-Q.
Borg and Groenen (2005) call this type of MDS weakly constrained MDS since the external
quadratic restrictions are not necessarily forced. In the most general form of MDS-Q the
vector of configurations xi, each of length p, must satisfy

x′iΛxi + 2x′iβ + γ = 0, (6)



12 SMACOF in R

for some p × p matrix Λ, some p-element vector β, and some constant γ. Because of the
invariance of the distance function under translations we can put the center of the surface in
the origin. And because distance is invariant under rotation, we can also require, without loss
of generality, that Λ is diagonal. This covers conics (ellipse, hyperbola, parabola) in R2, and
the various kinds of ellipsoids, hyperboloids, paraboloids, and cylinders in R3. In the case
of ellipsoids and hyperboloids we can choose β = 0 and γ = −1, such that the constraints
become x′iΛxi = 1. For ellipsoids, the matrix Λ is positive semi-definite which means that we
can also write

xi = Λ1/2zi, where ‖zi‖ = 1 for all i. (7)

And, of course, spheres are ellipses in which the matrix Λ is scalar, i.e. Λ = λI.

There are several strategies for fitting MDS-Q. The package smacof allows for the follow-
ing approaches: Primal methods, in which the constraints are incorporated in parametric
form directly into the loss function, and dual methods, where constraints are imposed at
convergence by using penalty or Lagrangian terms. The dual method is known as CMDA
(Constrained/Confirmatory Monotone Distance Analysis). It was proposed by Borg and Lin-
goes (1979, 1980) and discussed in Borg and Groenen (2005, Section 10.4). The idea is to
impose the restrictions directly on the distances and not on the configurations. This makes
the method more specific to MDS.

As an example, we use Ekman’s color data (Ekman 1954). The dataset, as provided in the
package represents similarities for 14 colors. These need to be converted into dissimilarities
(by simply subtracting from 1). Fitting a basic ordinal MDS on the data we see that the
colors are almost aligned in a circle (left panel of Figure 6). Using spherical SMACOF, we
can actually restrict these configurations to be on a circle.

ekmanD <- sim2diss(ekman, method = 1)

fit.basic <- mds(ekmanD, type = "ordinal")

fit.circ <- smacofSphere(ekmanD, type = "ordinal", verbose = FALSE)

By looking at the stress values we see that the restricted solution (stress-1: 0.0322) is not
much worse than the unrestricted solution (stress-1: 0.0233).

4. Confirmatory MDS II: external restrictions

4.1. Linear restrictions

De Leeuw and Heiser (1980) introduced a SMACOF version with restrictions on the config-
uration matrix X which Borg and Groenen (2005, Chapter 10) call confirmatory MDS with
external constraints (see also Heiser and Meulman 1983). The basic idea behind this approach
is that the researcher has some substantive underlying theory regarding a decomposition of
the dissimilarities. We start with the simplest restriction in terms of a linear combination,
show the majorization solution and then present some additional possibilities for constraints.
The linear restriction in its basic form is

X = ZC (8)
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Figure 6: Left panel: ordinal MDS (unrestricted). Right panel: ordinal MDS with spherical
restrictions (dual algorithm).

where Z is a known predictor matrix of dimension n × q (q ≥ p). The predictors can be
numeric in terms of external covariates or one can specify an ANOVA-like design matrix. C
is a q × p matrix of regression weights to be estimated.

4.2. Additional restrictions

Basically, the smacof package allows the user to implement arbitrary configuration restrictions
by specifying a corresponding update function for X. Nevertheless, we provide additional
restriction possibilities which are commonly used. Besides the classical linear restriction de-
scribed above, for the special case of number of predictors equal number of dimensions, i.e. q =
p, the square matrix C can be restricted to be diagonal: C = diag(c11, c22, . . . , css, . . . , cqq).

Combining unrestricted, linearly restricted and the diagonally restricted models leads to a
framework of a partially restricted X. De Leeuw and Heiser (1980) use the block notation

X =
[
X1 ZC1 C2

]
(9)

in which X1 is the unrestricted part and of dimension n × q1. ZC1 is the linearly restricted
part of dimension n× q2 and C2 is a diagonal matrix of order n which can be either present
or absent. The corresponding models are commonly coded as triples (q1, q2, q3) denoting
the number of dimensions contributed by each component: q1 is the number of unrestricted
dimensions, q2 the number of linearly restricted dimensions, and q3 is either zero or one,
depending on presence or absence of the diagonal matrix C2. An important special case and
the one which is also implemented in smacof is (q, 0, 1) which is a q-dimensional MDS model
with uniquenesses (Bentler and Weeks 1978).
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Further specifications of this partially restricted framework can be found in De Leeuw and
Heiser (1980) and additional elaborations in Borg and Groenen (2005, Chapter 10).

4.3. Optimal scaling on external constraints

Meulman (1992) incorporates the MDS approach into Gifi’s optimal scaling model family
(Gifi 1990; De Leeuw and Mair 2009a). In each MDS majorizaition iteration there is one
more optimal scaling step in the external constraints. Consequently, Equation (8) changes to

X = ẐC. (10)

Each predictor variable z1, . . . , zq is subject to an optimal scaling transformation. The classi-
cal case is to scale in an ordinal way (i.e. monotone regression) but we can think of additional
transformations which we have already applied to the dissimilarities such as interval and
monotone splines. All of these transformations (plus a spline without monotonicity con-
straints) are implemented in smacof. They are not only applicable to the linearly constrained
configurations but also to all kinds of configuration restrictions presented above. Especially
if we think of the general De Leeuw-Heiser framework as given in (9) and which changes to

X =
[
X1 ẐC1 C2

]
, (11)

the possibilities for specifiying constrained MDS models is MDS.

Let’s look at an example using the classical morse code data (Rothkopf 1957). Let us fit and
unconstrained solution (i.e. a regular, ordinal MDS) and an ordinal solution with external
constraints, subject to optimal scaling (see Borg and Groenen 2005, p. 234). The external
data refer to the signal type (all short beeps, more short than long beeps, same short and
long beeps, more long than short beeps, all long beeps) and the signal length (9 categories).
In this case the analysis leads to an MDS with regional constraints.

res.unc <- smacofSym(morse, type = "ordinal")

res.parreg <- smacofConstraint(morse, type = "ordinal", ties = "primary",

constraint = "linear",

external = morsescales[,2:3],

constraint.type = "ordinal",

init = res.unc$conf)

For the unconstrained solution we get a stress-1 value of 0.181. For the theory-consistent
solution the stress is 0.246 which is only slightly worse than the first fit. The corresponding
configuration plots are given in Figure 7.

op <- par(mfrow = c(1,2))

plot(res.unc, main = "Unconditional MDS")

plot(res.parreg, main = "Regional MDS")

par(op)
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Figure 7: Left panel: ordinal MDS (unrestricted). Right panel: ordinal MDS with external
configuration restrictions, optimally scaled.
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5. SMACOF for individual differences

Individual difference scaling models are an extension of the standard MDS setting in terms
of k = 1, . . . ,K separate n × n symmetric dissimilarty matrices ∆k. A typical situation is,
e.g., that we have K judges and each of them produces a dissimilarity matrix or that we have
K replications on some MDS data. The very classical approach for MDS computation on
such structures is INDSCAL (INdividual Differences SCALing; Carroll and Chang 1970). An
elaborated overview of additional algorithms is given in Borg and Groenen (2005, Chapter
22).

We will focus on the majorization solution and collect the ∆k matrices in a block-diagonal
structure

∆∗ =


∆1

∆2

. . .

∆K

 .
The corresponding observed distances are denoted by δij,k. Similarly, we merge the resulting
configurations Xk into the configuration supermatrix

X∗ =


X1

X2
...

XK

 .
Allowing for weight matrices Wk with elements wij,k, the total stress to be minimized, con-
sisting of the single σ(Xk)’s, can be written as

σ(X∗) =

K∑
k=1

∑
i<j

wij,k(δij,k − dij(Xk))2. (12)

In individual difference models there is an additional issue regarding the distance computa-
tions. We compute a configuration matrix Xk for each individual, but we constrain the Xk

by only allowing differential weighting of each dimension by each individual. If we think of a
linear decomposition of Xk, as described in the former section, we have

Xk = ZCk (13)

with the Ck diagonal matrices of order p. The weighted Euclidean distance can be expressed
as

dij(ZCk) =

√√√√ p∑
s=1

(css,kzis − css,kzjs)2 =

√√√√ p∑
s=1

c2ss,k(zis − zjs)2. (14)

Z is the n× p matrix of coordinates of the so called group stimulus space or common space.
If Ck = I for all k we get the so called identity model.

In brief, we present three extensions of the classical INDSCAL approach above. Carroll and
Chang (1970) extend differential weighting by means of the generalized Euclidean distance,
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allowing the Ck in (13) to be general, and not necessarily diagonal. This means

dij(Xk) =

√√√√ p∑
s=1

p∑
s′=1

(xis − xjs)hss′,k(xis′ − xjs′), (15)

with Hk = CkC
′
k. This is known as the IDIOSCAL (Individual DIfferences in Orientation

SCALing) model. For identification purposes Hk can be decomposed in various ways. The
spectral decomposition (Carroll-Chang decomposition) leads to

Hk = UkΛU ′k (16)

where UkU
′
k = I and Λk = diag(λij). The Tucker-Harshman decomposition implies

Hk = DkRkDk (17)

where Dk is a diagonal matrix of standard deviations and Ri a correlation matrix. This is
often combined with the normalization

1

K

K∑
k=1

Hk = I (18)

proposed by Schönemann (1972). The models currently implemented in smacof are ID-
IOSCAL, INDSCAL with Ck restricted to be diagonal, and the identity model with Ck = I.
Additional models can be found in Cox and Cox (2001, Chapter 10).

6. Unfolding Models

Unfolding models are somewhat different from the models presented so far. The input matrix
is not a symmetric matrix anymore. The prototypical case for such an input matrix is that
we have n1 individuals or judges which rate n2 objects or stimuli. Therefore, MDS becomes a
model for preferential choice which is commonly referred to as an unfolding model. The basic
idea is that the ratings and the judges are represented on the same scale and for each judge,
the corresponding line can be folded together at the judge’s point and his original rankings
are observed (Cox and Cox 2001, p.165). This principle of scaling is sometimes denoted as
Coombs scaling (Coombs 1950). Detailed explanations on various unfolding techniques can
be found in Borg and Groenen (2005, Chapters 14-16). We will limit our explanations to the
SMACOF version of metric unfolding.

Let us assume an observed dissimilarity (preference) matrix ∆ of dimension n1 × n2 with
elements δij . For rectangular SMACOF the resulting configuration matrix X is partitioned
into two matrices: X1 of dimension n1 × p as the individual’s or judge’s configuration, and
X2 of dimension n2 × p as the object’s configuration matrix. Consequently, stress can be
represented as

σ(X1, X2) =

n1∑
i=1

n2∑
j=1

wij(δij − dij(X1, X2))
2 (19)

with

dij(X1, X2) =

√√√√ p∑
s=1

(x1is − x2js)2. (20)
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So far, only the metric version of unfolding is implemented in smacof. Nonmetric (ordinal)
unfolding is slightly more complicated. The original techniques proposed by Coombs (1964)
were purely nonmetric and did not even lead to metric representations. The ranking informa-
tion is row-conditional, which means we cannot compare the ranks given by individual i to the
ranks given by individual k. The order is defined only within rows. Metric data are generally
unconditional, because we can compare numbers both within and between rows. Because
of the paucity of information (only rank order, only row-conditional, only off-diagonal) the
usual Kruskal approach to nonmetric unfolding often leads to degenerate solutions, even after
clever renormalization and partitioning of the loss function. In nonmetric unfolding the Stress
becomes

σ(X1, X2) =

n1∑
i=1

n2∑
j=1

wij(d̂ij − dij(X1, X2))
2

with d̂ij = f(δij) reflecting a monotone regression on the dissimilarities. Degenerate solu-
tions are characterized by constant disparities. Busing, Groenen, and Heiser (2005) identify
constant d-hats using the coefficient of variation and, subsequently, penalize nonmetric trans-
formations of the dissimilarities with small variation. They present a majorization approach
for minimizing the adjusted loss function which is a topic of future implementation.

As an example, let us use the RockHard data once more. This time we will not collapse the
bands by means of distance computations between the judges (as in the introductory MDS
section). Rather, we try to compute and plot configurations for the rows (bands/albums) and
columns (judges) in the same space. Note that the input data need to represent dissimilarities:
that is, if a judge rated an album very high, the dissimilarity value should be low and vice
versa. Therefore, we reverse the coding of the input data.

ratings <- 11-RockHard[,5:18] ## reverse ratings

rownames(ratings) <- RockHard[,"Band"]

fit.rock <- unfolding(ratings) ## 2D metric unfolding solution

fit.rock

##

## Call: unfolding(delta = ratings)

##

## Model: Rectangular smacof

## Number of subjects: 576

## Number of objects: 14

##

## Stress-1 value: 0.239

## Number of iterations: 106

We see that the stress value is considerably high. We could consider a three-dimensional
solution but for illustration purposes the 2D solution is just fine. In Figure 8 we give the joint
configuration plot. We label all the judges and the 10 best and 10 worst rated bands.

plot(fit.rock, label.conf.rows = list(label = FALSE))

best <- sort(rowMeans(ratings, na.rm = TRUE))[1:10]
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worst <- sort(rowMeans(ratings, na.rm = TRUE), decreasing = TRUE)[1:10]

bestworst <- names(c(best, worst))

text(fit.rock$conf.row[bestworst,], labels = bestworst, cex = 0.8, pos = 3,

col = hcl(0, l = 50))

As we have seen in this example, the data can have missing values. The smacof package also
provides a permutation test implementation for unfolding.

7. Additional methods and implementations

7.1. Unidimensional scaling

Unidimensional scaling is applied in situations where we have a strong reason to believe that
there is only one interesting underlying dimension, such as time, ability, or preference.

Unidimensional scaling is often considered as a special one-dimensional case of MDS. However,
it is often discussed separately, because the unidimensional case is quite different from the
general multidimensional case. It has been shown that the minimization of the Stress target
function with equal weights leads to a combinatorial problem when the number of dimensions
of the target space is one (De Leeuw and Heiser 1977). The smacof package provides a
simple implementation where all possible dissimilarity permutations are considered and the
one which leads to a minimal stress is returned. Obviously, this strategy is feasible for small
problems only (Mair and De Leeuw 2015).

In the following example we examine seven works by Plato. The chronological order of Plato’s
works is unknown. Scholars only know that “Republic” was his first work, and “Laws” his last
work. Unidimensional scaling can be used to map the works on a unidimensional continuum.
The input dissimilarites are based on data from Cox and Brandwood (1959). They extracted
the last five syllables of each sentence. Each syllable is classified as long or short which gives
32 types. Consequently, we obtain a percentage distribution across the 32 scenarios for each
of the seven works.

PlatoD <- dist(t(Plato7))

fit.uni <- uniscale(PlatoD)

fit.uni

##

## Call: uniscale(delta = PlatoD)

##

## Final stress value: 0.3588439

## Number of accepted permutations: 5016

## Number of possible permutations: 5040

## Number of objects: 7
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Figure 9: Unidimensional scaling on Plato’s works.

plot(fit.uni)

The results of our unidimensional scaling are shown in Figure 9. Of course, we could perform
unidimensional scaling through a regular MDS fit as well but it is pretty much guaranteed
that we end up in a local minimum. For instance, using the default classical scaling start-
ing configurations, we get a larger stress value (stress-1: 0.379) than with the permutation
approach, which is not really surprising.

7.2. Inverse MDS

The basic problem of inverse MDS is to compute a dissimilarity matrix ∆ from a given
configuration matrix X. The corresponding theory can be found in De Leeuw and Groenen
(1997) and De Leeuw (2012). Here, we just give a simple example using a subset of the kinship
data. First, we fit an MDS on the kinship dissimilarities and perform an inverse MDS on
the corresponding configuration matrix. This gives us seven dissimilarity matrices which also
includes the trivial one with the Euclidean distances based on the fitted MDS configurations.

D <- as.matrix(kinshipdelta)[1:6, 1:6]

fit <- mds(D) ## MDS D --> conf

ifit <- inverseMDS(fit$conf) ## inverse MDS conf --> D

Now we fit again seven MDS on the resulting inverse MDS dissimilarity output matrices and
look at the configurations (see Figure 10)

op <- par(mfrow = c(3,3))

plot(fit, main = "Original MDS")

for (i in 1:length(ifit)) {

fit.i <- mds(ifit[[i]])

plot(fit.i, main = paste0("Inverse MDS (",i, ")"))
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}

par(op)

Note that so far smacof provides a very basic implementation only and it can happen that
some of the output dissimilarities are negative. Future extensions will implement the more
sophisticated theory from De Leeuw (2012).

7.3. Procrustes

The Procrustes problem is the following: We have two known n× p matrices X and Y (MDS
configurations). X is the target matrix. We want to transform Y such that the configurations
in the resulting matrix Ŷ are a close as possible to the ones given in X. Y is subject to
three transformations: rotation (T as rotation matrix), dilation (s as dilation factor), and
translation (t as translation vector). Technical details can be found in Borg and Groenen
(2005), Chapter 20; here we just summarize the basic computations. We need the restriction
T ′T = I and J = I − n−111′ as the centering matrix.

1. Compute C = XJY .

2. Compute the SVD of C; that is, C = PΦQ′.

3. The optimal rotation matrix is T = QP ′.

4. The optimal dilation factor is s = (trX ′JY T )/(trY ′JY ).

5. The optimal translation vector is t = n−1(X − sY T )′1.

If we just want to quantify the configurational similarity between the two configurations X
and Y , we can compute a congruence coefficient based on the configuration distances:

c(X,Y ) =

∑
i<j dij(X)dij(Y )√∑

i<j d
2
ij(X)

√∑
i<j d

2
ij(Y )

(21)

As an example we use a dataset which contains correlations between 13 work values. We
have data for (back then) East and West Germany. First we fit two separate MDS: one for
East and one for West Germany. We abbreviate the object labels for better plotting. For
the second MDS we use a classical scaling as starting solution; otherwise the signs would be
switched. By doing this the Procrustes transformation is easier to see in the plots.

eastD <- sim2diss(EW_eng$east)

attr(eastD, "Labels") <- abbreviate(attr(eastD, "Labels"))

fit.east <- mds(eastD, type = "ordinal")

westD <- sim2diss(EW_eng$west)

attr(westD, "Labels") <- abbreviate(attr(westD, "Labels"))

fit.west <- mds(westD, type = "ordinal", init = torgerson(eastD))

Now we perform a Procrustes transformation with the East Germany configurations as target
X, the West Germany configurations as testee Y . We also get the congruence coefficient.
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Figure 10: Configuration plots resulting from MDS fit on 7 dissimilarity matrices computed
with inverse MDS. The first panel (top left) gives the original solution.
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fit.proc <- Procrustes(fit.east$conf, fit.west$conf)

fit.proc

##

## Call: Procrustes(X = fit.east$conf, Y = fit.west$conf)

##

## Congruence coefficient: 0.965

##

## Rotation matrix:

## D1 D2

## D1 1.00 -0.01

## D2 0.01 1.00

##

## Translation vector: 0 0

## Dilation factor: 0.923

Finally, Figure 11 shows the configurations X and Y from the separate MDS fits and the
Procrustes fit. For Procrustes we have two plots: one plots X and Ŷ , the other one plots Y
and Ŷ showing the change due to Procrustes.

op <- par(mfrow = c(2,2))

plot(fit.east, main = "MDS East Germany")

plot(fit.west, main = "MDS West Germany")

plot(fit.proc)

plot(fit.proc, plot.type = "transplot", length = 0.05)

par(op)

7.4. MDS Jackknife

De Leeuw and Meulman (1986) proposed a jackknife strategy for MDS in order to examine
the stability of a solution. The MDS jackknife approach, as implemented via the jackknife()
function in smacof computes i = 1, . . . , n additional solutions with configurations X∗i . Note
that X∗i denotes the solution where object i is left out. Each of these configurations is subject
to a Procrustes transformation with target configuration X, i.e. the original solution. In
addition, the average (centroid) jackknife solution X̄∗ can be computed. It total, we have
n+ 2 comparable configurations which can be represented in a single plot.

A stability measure (Heiser and Meulman 1983) can be computed as follows:

ST = 1−
∑n

i=1 ‖X∗i − X̄∗‖2∑n
i=1 ‖X∗i ‖2

.

It can be interpreted as the ratio of between and total variance. To measure the cross-validity,
i.e. comparing the “predicted” configuration of object i as the i-th row in X̄∗ with the actual
configuration (i-th row in X), we can compute

CV = 1− n‖X − X̄∗‖2∑n
i=1 ‖X∗i ‖2

.
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Figure 11: Top panels: configuration plots for separate MDS fits. Bottom left panel: Origi-
nal East German configuration (blue) with Procustes transformed West German configuration
(red). Bottom right panel: Original West German configuration (gray) with Procrustes trans-
formation (red).
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Finally, the dispersion around the original solution X can be expressed as

DI =
1

n

n∑
i=1

‖X∗i −X‖2

=
1

n

n∑
i=1

‖X∗i − X̄∗‖2 + ‖X − X̄∗‖2

= 2− (ST + CV )

As an example let’s just look at the Lawler dataset once more. First we fit a two-dimensional
interval MDS on the data and then we perform the leave-one-out jackknife. The resulting plot
is given in Figure 12. Note that the labels denote the original solution X, the small dots the
individual configurations X∗i , and the bigger dots the corresponding centroid X̄∗, connected
to each X∗i .

fit.lawler <- mds(LawlerD, type = "interval")

jackfit <- jackknife(fit.lawler)

jackfit

##

## Call: jackknife.smacofB(object = fit.lawler)

##

## SMACOF Jackknife

## Number of objects: 9

## Value loss function: 0.6583261

## Number of iterations: 13

##

## Stability measure: 0.9854694

## Cross validity: 0.9944329

## Dispersion: 0.02009773

plot(jackfit)

8. Discussion and Outlook

The smacof package provides the most comprehensive framework to perform MDS R. Future
implementations will include nonmetric unfolding (Busing et al. 2005) and modeling asym-
metric data as given in Borg and Groenen (2005), Chapter 23.
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