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1 Installing the ss3sim R package

1 Installing the ss3sim R package

ss3sim requires R version 3.0.0 or greater. The package can be run on OS X, Windows,
or Linux. The CRAN version of ss3sim can be installed in an R console with:

install.packages("ss3sim")

The development version of ss3sim can be installed from GitHub with the following code:

# Install devtools first:

install.packages("devtools")

# Install ss3sim:

devtools::install_github("ss3sim/ss3sim", dependencies = TRUE)

# If you would like to run simulations in parallel, also install:

install.packages(c("doParallel", "foreach"))

# This vignette uses ggplot2 to make plots, you can install it with:

install.packages("ggplot2")

You can then load the package with:

library(ss3sim)

You can read the help files and access this vignette again with:

?ss3sim

help(package = "ss3sim")

vignette("ss3sim-vignette")

We develop and test ss3sim around a specific version of SS3. Currently, ss3sim is tested
to work with SS3 Version 3.24O. Since this is a more recent version than is provided at the
normal download location http://nft.nefsc.noaa.gov/SS3.html, we provide copies of
the 3.24O binaries (with the permission of R. Methot) at
https://github.com/ss3sim/ss3sim/tree/ss3-binaries/inst/ss3.

ss3sim requires the SS3 binary to be in your path. This means that your operating system
knows where the binary file is located. See Appendix A for details.

Please direct any questions, suggestions, or bug reports to the ss3sim issue tracker: https:
//github.com/ss3sim/ss3sim/issues, or to an author as listed on the title page of this
vignette.
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2 An overview of the ss3sim simulation structure

If you use ss3sim in a publication, please cite the package as indicated by running
citation("ss3sim") in the R console:

citation("ss3sim")

##

## To cite ss3sim in publications use:

##

## Anderson, SC, Monnahan, CC, Johnson, KF, Ono, K, Valero, JL,

## Cunningham, CJ, Hurtado-Ferro, F, Licandeo, R, McGilliard, CR,

## Szuwalski, CS, Vert-pre, KA, and Whitten, AR (2014). ss3sim:

## Fisheries stock assessment simulation testing with Stock

## Synthesis. R package version 0.8.2.

##

## Anderson, SC, Monnahan, CC, Johnson, KF, Ono, K, and Valero, JL

## (2014). ss3sim: An R package for fisheries stock assessment

## simulation with Stock Synthesis. PLOS ONE. In press. DOI:

## 10.1371/journal.pone.0092725.

2 An overview of the ss3sim simulation structure

ss3sim is an R package to make it relatively quick and easy to run simulations with the
3rd version of Stock Synthesis, SS3. The package consists of a series of low-level functions
that facilitate manipulating SS3 configuration files, running SS3 models, and combining the
output. ss3sim also contains some wrapper functions that tie all these low-level functions
together into a complete simulation experiment. If you choose to use our wrapper function
run ss3sim then you will use a series of plain text control files to control the simulation.
Much of this vignette focusses on how to effectively use run ss3sim, but feel free to take the
low-level functions (change functions) and use them as part of your own flexible simulation.

2.1 Setting up the file structure

The ss3sim package is set up assuming there is an established base-case operating model
(OM) and estimation model (EM) to work with. The ss3sim package comes with three
generic built-in model setups that can be used as is, modified, or replaced.1 Each OM and
EM should be in its own folder. The OM folder should have the files:

1See Section 7 for details on these models and how to modify them. See Appendices B and C for details
on creating your own OM and EMs.
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2 An overview of the ss3sim simulation structure

yourOMmodel.ctl

yourOMmodel.dat

ss3.par

starter.ss

forecast.ss

The EM folder should have:

yourEMmodel.ctl

starter.ss

forecast.ss

In both cases, nothing more and nothing less. The names of the .ctl and .dat files are not
important. The package functions will rename them after they are copied to appropriate
folders. These files should be derived from .ss new files but with file extensions as shown
above. It is important to use .ss new files so the files have consistent formatting. Many
of the functions in this package depend on that formatting.

To obtain .ss new files, open a command window in the OM and EM folders and type ss3

to run the models. Once the model is finished running, it will generate a number of files,
including .ss new files. Remove the .ss new file extension from the files needed and add
the appropriate file extension.

2.2 Cases and scenarios

The high-level wrapper function run ss3sim uses unique case identifiers (IDs) that combine
to create unique scenarios. The types of cases are: data quality (D), estimation (E), fishing
mortality (F), retrospective (R), and any other letter describing a time varying case (e.g.
M for natural mortality, S for selectivity, or G for growth). These case IDs are followed by
an alphanumeric stock or species identifier (e.g. cod). The different versions of each case
are identified with numbers. For example, the base-case scenario for a cod stock might be:
D0-E0-F0-M0-R0-cod. The order of the cases does not matter, as long as they are used
consistently.

ss3sim relies on a set of plain text files to control the simulation (Figure 1). These
plain text files are read by get caseval and turned into argument lists that are passed
to run ss3sim. The function create argfiles creates template input files. It reads the
various functions and parses the arguments and default values into plain text files. The
default settings create these files:

1. E0-spp.txt (for estimation method cases)
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2 An overview of the ss3sim simulation structure

2. F0-spp.txt (for fishing mortality cases)

3. R0-spp.txt (for retrospective cases)

4. index0-spp.txt (controlled by the D (data) case)

5. agecomp0-spp.txt (controlled by the D (data) case)

6. lcomp0-spp.txt (controlled by the D (data) case)

7. X0-spp.txt (for a time-varying parameter X, where X could be any time-varying
case letter)

Iteration 1

Scenario 1

OutputInput

Scenario Nscen...

Iteration Niterbias

1 Nbias OM EM

SS3 output SS3 output

Study results

Scenario results

Log files

Working directory

...

...

OM 1 EM 1

Cases

M0-species1

M1-species1

D0-species1

D1-species1

...

SS3 configuration SS3 configuration

OM Nspecies EM Nspecies... ...

Mean bias...

...

...

Figure 1: Illustration of input and output folder and file structure for an ss3sim simulation.
Folders are shown in blue, input files in orange, and output files in grey. All input and
output files are in plain text format. Case files (orange files at bottom left) combine cases
(e.g. M0 for a given natural mortality trajectory) with species or life-history OMs and EMs
(e.g. cod-like or sardine-like). Alternatively, a user can skip setting up case files and specify
the simulation cases directly in R code (see section 4.

After running create argfiles(), look in your working directory for the template input
files.2 Change the case ID number (defaults to 0) and the species identifier to a three
letter identifier. For example, you might use cod, sar, or fla for cod, sardine, or flatfish.
An example filename would therefore be M1-sar.txt or lcomp2-fla.txt. The case D1

corresponds to the files index1-spp.txt, agecomp1-spp.txt, and
lcomp0-spp.txt. The other case types have single argument files.

2 You can use getwd() to see your current working directory or setwd() to set a different working
directory.
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2 An overview of the ss3sim simulation structure

The first column in the text files denotes the argument to be passed to a function. The
second argument denotes the value to be passed. See the help for a change function to see
the arguments that need to be declared. For example, see ?change f.

You can use any simple R syntax to declare argument values. For example, c(1, 2, 4),
or seq(1, 100). Character objects do not need to be quoted as long as they are one word,
but can be if you would like. However, be careful not to use the delimiter (set up as a
semicolon) anywhere else in the file besides to denote columns. You can add comments after
any # symbol. Internally, the functions evaluate in R any entries that have no character
values (e.g. 1:100), or have an alpha-numeric character followed by an opening parenthesis
(. Anything that is character only or has character mixed with numeric but does not have
the regular expression "[A-Za-z0-9](" gets turned into a character argument. (NA and
NULL are special cases that are also passed on directly.)

Putting that all together, below is what an example F1-cod.txt file might look like:

years; 1913:2012

years_alter; 1913:2012

fvals; c(rep(0, 25), rep(0.114, 75))

2.3 Bias adjustment

Bias adjustment helps assure that the estimated log-normally distributed recruitment de-
viations are mean-unbiased leading to mean-unbiased estimates of biomass (Methot and
Taylor 2011). The high-level wrapper function run ss3sim allows users to specify whether
or not they would like to use the bias adjustment routine built into the package by setting
the argument bias adjust to TRUE or FALSE. If TRUE, the function runs bias nsim repli-
cates for each scenario (located in the subfolder bias within a scenario folder) and then
averages the bias-adjustment parameter estimates. The default number of bias-adjustment
replicates is five. If a bias-adjustment replicate fails to converge (checked by identifying
whether the Hessian was invertible), the parameter estimates from that replicate are ig-
nored. A minimum threshold of 80% converged bias-adjustment replicates (adjustable via
the conv crit argument) is used to ensure reliable parameter estimates. The mean bias
adjustment runs are then used in the EM for all subsequent “iterations” (i.e. replicates
using same models but different process and observation errors) within that scenario. We
assume bias adjustment parameters applicable to all iterations within the scenario are more
likely to be found by averaging across multiple sets of parameters.

The bias adjustment process creates several files in the bias folder (for each scenario)
which can be examined by the user. AdjustBias.DAT contains the calculated adjustment
parameters for each bias replicate, and AvgBias.DAT contains the average of these estimates
which are used in all subsequent simulations for that scenario. Individual plots for each
successful bias adjustment replicate are also created. If bias adjust is set to FALSE, no
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3 An example simulation with ss3sim

bias adjustment replicates are executed and no bias adjustment is performed.

2.4 Output file structure

Internally, the function copy ss3models creates a folder structure and copies the operating
and estimation models (Figure 1). The folder structure looks like:

D0-E0-F0-M0-R0-cod/1/om

D0-E0-F0-M0-R0-cod/1/em

D0-E0-F0-M0-R0-cod/2/om

D0-E0-F0-M0-R0-cod/2/em

...

The integer values after the scenario ID represent different iterations; the total number of
iterations run are specified by the user. If you are using bias adjustment (bias adjust =

TRUE) then there will be some additional folders. In that case the folders will look like:

D0-E0-F0-M0-R0-cod/bias/1/om

D0-E0-F0-M0-R0-cod/bias/1/em

D0-E0-F0-M0-R0-cod/bias/2/om

D0-E0-F0-M0-R0-cod/bias/2/em

...

D0-E0-F0-M0-R0-cod/1/om

D0-E0-F0-M0-R0-cod/1/em

D0-E0-F0-M0-R0-cod/2/om

D0-E0-F0-M0-R0-cod/2/em

...

Note that the OM and EM folders will be renamed om and em within each iteration, the
OM and EM are checked to make sure they contain the minimal files (as listed above in
Section 2.2), the filenames will be all lowercase, the data file is renamed ss3.dat, the
control files are renamed om.ctl or em.ctl, and the starter and control files are adjusted
to reflect these new file names. The functions in this package assume you have set your
working directory in R to be the base folder where you will store the scenario folders.

3 An example simulation with ss3sim

As an example, we will run a 2x2 simulation design in which we test (1) the effect of
high and low precision on the index of abundance research survey and (2) the effect of

An introduction to ss3sim 9



3 An example simulation with ss3sim

fixing versus estimating natural mortality (M ). All of the required files for this example
are contained within the ss3sim package. To start, we will locate three sets of folders: the
folder with the plain text case files, the folder with the OM, and the folder with the EM.

library(ss3sim)

d <- system.file("extdata", package = "ss3sim")

case_folder <- paste0(d, "/eg-cases")

om <- paste0(d, "/models/cod-om")

em <- paste0(d, "/models/cod-em")

See the folder ss3sim/inst/extdata/eg-cases inside the ss3sim source code for all the
case files that are used in this example simulation. You can either download the source code
from https://github.com/ss3sim/ss3sim or find this folder at the location contained in
the case folder object defined in the block of R code above this paragraph.

3.1 Creating the case files

We will base the simulation around the base-case files created for a cod-like species in the
papers Ono et al. (2014) and Johnson et al. (2014), both of which used the ss3sim package.
You can refer to these papers for details on how the models were set up.

If we were starting from scratch, we would run the function create argfiles(), which
would create a default set of configuration files in our R working directory. Instead we will
start with the configuration files from those papers.

To investigate the effect of different levels of precision on the survey index of abundance, we
will manipulate the argument sds obs that gets passed to change index. This argument
ultimately refers to the standard error on the log(index) value, as defined in SS3. In case
0, we will specify the standard deviation at 0.1 and in case 1 we will increase the standard
deviation to 0.4. We can do this by including the line: sds obs; 0.1 in the file D0-cod.txt
and the line: sds obs; 0.4 in the file D1-cod.txt.

The file index0-cod.txt will therefore look like:

fleets; 2

years; list(seq(1974, 2012, by = 2))

sds_obs; list(0.1)

fleets refers to the fleet number we want to sample from (as defined in the model), 2 in
codOM.dat refers to the survey fleet. We then run our survey from 1974 to 2012 with a
standard error on the log(survey index) of 0.1.

An introduction to ss3sim 10
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3 An example simulation with ss3sim

We will not describe the length or age composition sampling here in detail, but you can refer
to the help files ?change lcomp and ?change agecomp along with the case files included in
the package data. Also see Section 8.1 where we describe the theory behind the age- and
length-composition sampling in ss3sim.

To investigate the effect of fixing versus estimating M, we will manipulate the argument
natM val that gets passed to change e. The first entry of natM val is the value which
M is fixed or initialized at and the second refers the phase. In case 0, we will set the
phase in which M is estimated to -1 (any negative phase number will tell SS3 to not
estimate a particular parameter) and use the argument NA to fix M at the true value (i.e.
do not modify it from what is in the EM .ctl file). In case 1, we will estimate M in
phase 3 and initialize the estimation of M at 0.20. We can do this by including the line:
natM val; c(NA, -1) in the file E0-cod.txt and the line: natM val; c(0.20, 3) in the
file E1-cod.txt. This means that case E1 will initialize M at 0.20 and estimate M in the
third phase. For example, the complete case file E0-cod.txt is:

natM_type; 1Parm

natM_n_breakpoints; NULL

natM_lorenzen; NULL

natM_val; c(NA,-1)

par_name; LnQ_base_3_CPUE

par_int; NA

par_phase; -1

forecast_num; 0

Since we will not be running a retrospective analysis in this example, this will be our
R0-cod.txt file:

retro_yr; 0

We will set the fishing mortality F to a constant level at FMSY (F at maximum sustainable
yield) from when the fishery starts (in year 25) until the end of our simulation (year 100).
Therefore, this is our F0-cod.txt:

years; 1913:2012

years_alter; 1913:2012

fvals; c(rep(0,25), rep(0.114,75))

Although we do not have any time-varying processes in this example simulation, we include
M case files in which we describe M as stationary (M0-cod.txt):

An introduction to ss3sim 11



3 An example simulation with ss3sim

function_type; change_tv

param; NatM_p_1_Fem_GP_1

dev; rep(0, 100)

Simply by changing the deviations from a vector of zeros to any vector pattern of deviations,
we could add time-varying M. In Section 5 we describe how time-varying parameters are
unique in ss3sim and how you can make any parameter described in SS3 time varying
using this approach.

3.2 Checking the case files

It is a good idea to check that the case files are manipulating the SS3 model files as
intended. One way we can do this is by running the change functions directly on the SS3
model files using the arguments specified within the case files and inspecting the modified
SS3 files. Another way is to run a single iteration of your simulation through run ss3sim

and carefully inspect the OM and EM model files that it creates. For example, we could
run:

run_ss3sim(iterations = 1, scenarios =

c("D0-E0-F0-R0-M0-cod",

"D1-E0-F0-R0-M0-cod",

"D0-E1-F0-R0-M0-cod",

"D1-E1-F0-R0-M0-cod"),

case_folder = case_folder, om_dir = om,

em_dir = em)

And then check the SS3 files that are created.

3.3 Self testing: deterministic simulations to check the models for bias

Self testing is a crucial step of any simulation study. One way to accomplish this is to set
up an EM that is similar to the OM and include minimal error.

We will run some simulations to check our EM for bias when process and observation error
are minimized. To do this, we will start by setting up a 100 row (number of years) by 20
column (number of iterations) matrix of recruitment deviations, where all values are set to
zero.

recdevs_det <- matrix(0, nrow = 100, ncol = 20)

An introduction to ss3sim 12



3 An example simulation with ss3sim

Then we will set up case “estimation” files in which the initialized values of the recruit-
ment deviation standard deviations, SR sigmaR, are set to the nominal level of 0.001.
We will name these files E100-cod.txt and E101-cod.txt. In the case files, the key ele-
ment is setting par name = SR sigmaR (the SS3 parameter name) and par int = 0.001

(the initial value). The arguments par name and par int are set up to handle vectors
of parameter names and values. In this example, changing SR sigmaR will be the second
parameter in the vector. Again, you can look at all the case files in the package folder
/inst/extdata/eg-cases/. As an example, here is the file E101-cod:

natM_type; 1Parm

natM_n_breakpoints; NULL

natM_lorenzen; NULL

natM_val; c(0.20,3)

par_name; LnQ_base_3_CPUE,SR_sigmaR

par_int; c(NA,0.001)

par_phase; c(-1,-1)

forecast_num; 0

To minimize observation error on the survey index, we will create a data case 100 that
has a standard deviation on the survey observation error of 0.001. Therefore, our case file
index100-cod.txt will look like this:

fleets; 2

years; list(seq(1974, 2012, by = 2))

sds_obs; list(0.001)

When we run the simulations, we will pass our deterministic recruitment deviations to
the function run ss3sim. Running 20 iterations should be enough to identify whether our
models are performing as we expect. Note that by default 5 bias adjustment runs are
performed since we specify that bias adjust=TRUE.

run_ss3sim(iterations = 1:20,

scenarios = c("D100-E100-F0-R0-M0-cod", "D100-E101-F0-R0-M0-cod"),

case_folder = case_folder, om_dir = om, em_dir = em,

bias_adjust = TRUE, user_recdevs = recdevs_det)

We have written out the scenario names in full for clarity, but ss3sim also contains a
convenience function expand scenarios. With this function we could instead write:
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3 An example simulation with ss3sim

x <- expand_scenarios(list(D = 100, E = 100:101, F = 0, M = 0,

R = 0), species = "cod")

run_ss3sim(iterations = 1:20, scenarios = x,

case_folder = case_folder, om_dir = om, em_dir = em,

bias_adjust = TRUE, user_recdevs = recdevs_det)

Note that due to the way that SS3 is being used as an operating model, you may see an
ADMB error in the console:

Error -- base = 0 in function prevariable& pow(const prevariable& v1,

CGNU_DOUBLE u)

However, this is not a problem since ADMB is not used to optimize the OM — the error
can safely be ignored.

3.4 Running the stochastic simulations

The package contains a set of normally-distributed recruitment deviations, with a mean
of -0.5 and a standard deviation of 1 (bias-corrected standard-normal deviations). To
use the pre-specified deviations remove the argument user recdevs from run ss3sim.
Process error will now be unique for each iteration but consistent across scenarios for a
specific iteration, to facilitate comparison between scenarios.

We will only run 100 iterations here to save time and keep the package size down, but in a
real simulation testing study you may want to run many more iterations, perhaps testing
how many iterations are required before the key results stabilize.

run_ss3sim(iterations = 1:100, scenarios =

c("D0-E0-F0-R0-M0-cod",

"D1-E0-F0-R0-M0-cod",

"D0-E1-F0-R0-M0-cod",

"D1-E1-F0-R0-M0-cod"),

case_folder = case_folder, om_dir = om,

em_dir = em, bias_adjust = TRUE)

3.5 Reading in the output and plotting the results

The function get results all reads in a set of scenarios and combines the output into
two .csv files: ss3sim scalar.csv and ss3sim ts.csv. The scalar file contains values
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for which there is a single estimated value (e.g. MSY) and the ts file refers to values for
which there are time series of estimates available (e.g. biomass for each year). The column
names refer to the output from SS3, so it can be useful to consult the SS3 manual for
details.

get_results_all(user_scenarios =

c("D100-E100-F0-R0-M0-cod",

"D100-E101-F0-R0-M0-cod",

"D0-E0-F0-R0-M0-cod",

"D1-E0-F0-R0-M0-cod",

"D0-E1-F0-R0-M0-cod",

"D1-E1-F0-R0-M0-cod"))

We will read in the .csv files:

scalar_dat <- read.csv("ss3sim_scalar.csv")

ts_dat <- read.csv("ss3sim_ts.csv")

Or if you would like to follow along with the rest of the vignette without running the
simulations above, you can load a saved version of the output:

data("ts_dat", package = "ss3sim")

data("scalar_dat", package = "ss3sim")

First, we will calculate some useful values in new columns and separate the deterministic
from the stochastic simulation runs:

scalar_dat <- transform(scalar_dat,

steep = (SR_BH_steep_om - SR_BH_steep_em)/SR_BH_steep_om,

logR0 = (SR_LN_R0_om - SR_LN_R0_em)/SR_LN_R0_om,

depletion = (depletion_om - depletion_em)/depletion_om,

SSB_MSY = (SSB_MSY_em - SSB_MSY_om)/SSB_MSY_om,

SR_sigmaR = (SR_sigmaR_em - SR_sigmaR_om)/SR_sigmaR_om,

NatM =

(NatM_p_1_Fem_GP_1_em - NatM_p_1_Fem_GP_1_om)/

NatM_p_1_Fem_GP_1_om)

ts_dat <- transform(ts_dat,

SpawnBio = (SpawnBio_em - SpawnBio_om)/SpawnBio_om,

Recruit_0 = (Recruit_0_em - Recruit_0_om)/Recruit_0_om)

ts_dat <- merge(ts_dat, scalar_dat[,c("scenario", "replicate",
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"max_grad")])

scalar_dat_det <- subset(scalar_dat, E %in% c("E100", "E101"))

scalar_dat_sto <- subset(scalar_dat, E %in% c("E0", "E1"))

ts_dat_det <- subset(ts_dat, E %in% c("E100", "E101"))

ts_dat_sto <- subset(ts_dat, E %in% c("E0", "E1"))

Now we will turn the scalar data into long-data format so we can make a multipanel plot
with the R package ggplot2.

scalar_dat_long <- reshape2::melt(scalar_dat[,c("scenario", "D", "E",

"replicate", "max_grad", "steep", "logR0", "depletion", "SSB_MSY",

"SR_sigmaR", "NatM")], id.vars = c("scenario", "D", "E",

"replicate", "max_grad"))

scalar_dat_long <- plyr::rename(scalar_dat_long,

c("value" = "relative_error"))

Now we can create boxplots of the deterministic model runs. The following code produces
Figure 2.

library(ggplot2)

p <- ggplot(subset(scalar_dat_long, E %in% c("E100", "E101") &

variable != "SR_sigmaR"), aes(D, relative_error)) +

geom_boxplot() +

geom_hline(aes(yintercept = 0), lty = 2) +

facet_grid(variable~E) +

theme_bw() + ylim(-0.4, 0.4)

print(p)

Let’s look at the relative error in estimates of spawning biomass. We will colour the
time series according to the maximum gradient. Small values of the maximum gradient
(approximately 0.001 or less) indicate that model convergence is likely. Larger values
(greater than 1) indicate that model convergence is unlikely. Results of individual iterations
are jittered around the vertical axis to aid in visualization. The following three blocks of
code produce Figures 3, 4, and 5.

library(ggplot2)

p <- ggplot(ts_dat_sto, aes(x = year)) + xlab("Year") +

theme_bw() + geom_line(aes(y = SpawnBio, group = replicate,

colour = max_grad), alpha = 0.3, width = 0.15) + facet_grid(D~E) +

scale_color_gradient(low = "gray", high = "red")

print(p)
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Figure 2: Relative error box plots for deterministic runs. In case E100, M is fixed at the
true value; in E101 we estimate M. In case D100, the standard deviation on the survey
index observation error is 0.001.
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Figure 3: Time series of relative error in spawning stock biomass.
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p <- ggplot(ts_dat_sto, aes(year, SpawnBio_em, group = replicate)) +

geom_line(alpha = 0.3, aes(colour = max_grad)) + facet_grid(D~E) +

scale_color_gradient(low = "darkgrey", high = "red") + theme_bw()

print(p)
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Figure 4: Spawning stock biomass time series.

p <- ggplot(subset(scalar_dat_long, E %in% c("E0", "E1")),

aes(D, relative_error)) +

geom_boxplot() + geom_hline(aes(yintercept = 0), lty = 2) +

facet_grid(variable~E) +

geom_jitter(aes(colour = max_grad),

position = position_jitter(height = 0, width = 0.1),

alpha = 0.4, size = 1.5) +

scale_color_gradient(low = "darkgrey", high = "red") +

theme_bw()

print(p)
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Figure 5: Relative error box plots for stochastic runs. In case E0, M is fixed at the
true value; in E1 we estimate M. In case D1, the standard deviation on the survey index
observation error is 0.4. In case D0, the standard deviation is quartered representing an
increase in survey sampling effort.
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4 Using ss3sim base directly

An alternative approach to using ss3sim is to skip setting up the case files and use
ss3sim base directly by passing lists of arguments. The lists correspond to the argu-
ments to each of the change functions without any references to the files that need to be
modified. (Although if you passed the file names they would just be ignored.)

In this case, the scenario ID only serves the function of identifying the output folder name
and could technically be any character string.

For example, we could have run the scenario D1-E0-F0-R0-M0-cod that we ran before:

d <- system.file("extdata", package = "ss3sim")

om <- paste0(d, "/models/cod-om")

em <- paste0(d, "/models/cod-em")

F0 <- list(years = 1913:2012, years_alter = 1913:2012, fvals =

c(rep(0, 25), rep(0.114, 75)))

index1 <- list(fleets = 2, years = list(seq(1974, 2012, by = 2)),

sds_obs = list(0.1))

lcomp1 <- list(fleets = c(1, 2), Nsamp = list(100, 100), years =

list(1938:2012, seq(1974, 2012, by = 2)), lengthbin_vector = NULL,

cpar = c(1, 1))

agecomp1 <- list(fleets = c(1, 2), Nsamp = list(100, 100), years =

list(1938:2012, seq(1974, 2012, by = 2)), agebin_vector = NULL,

cpar = c(1, 1))

E0 <- list(natM_type = "1Parm", natM_n_breakpoints = NULL,

natM_lorenzen = NULL, natM_val = c(NA,-1), par_name =

"LnQ_base_3_CPUE", par_int = NA, par_phase = -1, forecast_num = 0)

M0 <- list(NatM_p_1_Fem_GP_1 = rep(0, 100))

R0 <- list(retro_yr = 0)

ss3sim_base(iterations = 1:20, scenarios = "D1-E0-F0-R0-M0-cod",

f_params = F0, index_params = index1, lcomp_params = lcomp1,

agecomp_params = agecomp1, estim_params = E0, tv_params = M0,

retro_params = R0, om_dir = om, em_dir = em)
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5 Time-varying parameters in the OM

The ss3sim package includes the capability for inducing time-varying changes in parame-
ters in the OM. The package currently does not have built-in functions to turn on/off the
estimation of time-varying parameters, so this cannot be done with case arguments. How-
ever, it is possible to create versions of an EM with and without time-varying estimation
of a parameter. This approach would allow for testing of differences between estimating a
single, constant parameter, vs. a time-varying estimate.

You can specify any parameter defined in your OM model as time varying through the
change tv function. The function works by adding an environmental deviate (env) to the
base parameter (par), creating a time varying parameter (par′) for each year (y),

par′y = par + link ∗ envy. (1)

The link is pre-specified to a value of one and par is the base value for the given parameter,
as defined in the .par file. For all catchability parameters (q), the deviate will be added
to the log transform of the base parameter using the following equation:

log(q′y) = log(q) + link ∗ envy. (2)

The vector of deviates must contain one value for every year of the simulation and can be
specified as zero for years in which the parameter does not deviate from the base parameter
value.

Currently, change tv function only works to add time-varying properties to a time-invariant
parameter. It cannot alter the properties of parameters that already vary with time. Also,
it will not work with custom environmental linkages. Environmental linkages for all param-
eters in the OM must be declared by a single line (i.e. 0 # custom mg-env setup (0/1)

prior to using change tv. Additionally, SS3 does not allow more than one stock recruit pa-
rameter to vary with time. Therefore, if the .ctl file already has a stock recruit parameter
that varies with time and you try to implement another, the function will fail.

Since the change tv function can be used for a number of purposes, it interacts differently
with the case files than the other change functions. To pass arguments to change tv

through run ss3sim you need to: (1) create a case file with an arbitrary letter not used
elsewhere (i.e. anything but D, E, F, or R) and (2) include the line:

function_type; change_tv

in your case file. For example, you might want to use M for natural mortality, S for
selectivity, or G for growth.
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6 Incorporating a new case ID

ss3sim is designed with a set of mandatory case IDs that must be specified for each
run: data (D), estimation (E), fishing effort (F),and retrospective (R). Also, by default,
run ss3sim is set up to require a natural mortality (M) case. In many instances a user
may wish to include a new case ID. This section is designed to explain how to accomplish
this within the ss3sim framework. Note that as currently developed, ss3sim incorporates
all new cases by using the change tv function, even if the changes are not time-varying.
However, you can simply pass a constant vector of values to induce a constant change in a
parameter.

As an example, you might want to incorporate changes in selectivity (time-varying or not)
in the OM to more accurately mimic the behaviour of a real fishery. Using the help file for
change tv, we can create a set of “S” (for selectivity) case argument files which contain the
changes required. You may choose to only have a “base case” which applies to all scenarios
in the simulation test, or you may have multiple cases to investigate how different patterns
of selectivity in the OM affect the EM. Now that the case argument files have been created,
you need to tell ss3sim to use them, since they are outside of the mandatory set. This
is done through the case files argument in the get caseargs function, which is passed
through by the run ss3sim. In this case, we need to tell it to look for case argument files
beginning with “S” (see the help file for get caseargs for more information):

case_files = list(E = "E", D = c("index", "lcomp", "agecomp"),

F = "F", M = "M", R = "R", S = "S")

Note that S is simply added to the end of the default list of case IDs.

Note that the data case ID is a special case because its case argument files do not begin with
D. This is because there are three functions associated with the data case, independently
modifying three different parts of the .dat file.

This provides a template for how you could incorporate multiple changes to selectivity
(for example) through different functions (which you would need to write yourself). For
example, you may want to add time-varying deviations to multiple parameters in the
selectivity setup of the OM. You could then create functions that modify selectivity in
different ways, and pass them the same way the D case is handled above.

We recommend verifying the functionality of any new cases by: (1) thoroughly verifying
that your R functions work outside of ss3sim, and then (2) running a single iteration and
manually checking the produced files. If you write external functions for manipulating new
aspects of SS3 models, please contact the ss3sim package developers for potential inclusion
in future versions.
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7 Modifying the OM and EM models included with ss3sim

ss3sim comes with three built-in SS3 operating and estimation model setups: a cod-like
(slow-growing and long-lived), flatfish-like (fast-growing and long-lived), and sardine-like
(fast-growing and short-lived). These model setups are based on North Sea cod (Gadus
morhua, R. Methot, pers. comm.), yellowtail flounder (Limanda ferruginea, R. Methot,
pers. comm.), and Pacific sardine (Sardinops sagax caeruleus; Hill et al. 2012). Further
details on these models are available in Johnson et al. (2014) and Ono et al. (2014). These
models were stripped down and simplified to make them more generic for simulation testing.
In doing this, we removed many of the subtle features of the model setups. While these
model setups are generic and cover a wide range of life history types, they may not be
suitable for all users. Therefore, in this section, we outline strategies for modifying the
existing SS3 models.

Before proceeding it is worth considering the scope and place of ss3sim as a simulation
package. The package was designed as a tool for examining structural differences in alterna-
tive model setups. These differences could be between an OM and EM (e.g. Johnson et al.
2014) or between multiple EMs (e.g. Ono et al. 2014). Therefore, the specific details (e.g.
many fleets, tagging data, seasons, etc.) of the original model setups were not important
and removed to produce a set of generic life-history-type models. ss3sim is not designed
for testing arbitrary SS3 models, but rather properties of assessment models in general.
Thus ss3sim is not ideal for quickly exploring properties of a particular assessment model
and other software packages should be explored if that is your goal (see accompanying for
alternatives).

Here is a list of SS3 features that are not currently implemented in ss3sim:

• Seasons, sexes, hermaphrodism, multiple areas, movement, growth morphs, and pla-
toons

• Data other than scientific surveys, commercial indices of abundance and age/length
compositions: age-at-length, discards, mean weights, etc.

Some of the features may work within the ss3sim framework, but are untested.

It is possible to create new models that will work within the ss3sim framework, but
this task will be complicated and likely require extensive knowledge of SS3 and R, as
well as modification of the ss3sim functions. This process is described in more detail in
Appendices B and C.

Instead of creating entirely new models, we recommend adapting the current built-in mod-
els to match the desired model setups for a new simulation study. Since these models have
been thoroughly tested and used with ss3sim already (see Johnson et al. 2014; Ono et al.
2014), they make an ideal starting place. Before proceeding it would be wise to examine
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the built-in models to determine how closely they match your desired model setups and
whether simple changes can get you reasonably close for simulation purposes.

Say for example you want to modify the cod model to have different maturity, and then ex-
plore different sampling schemes using the change index, change lcomps, and change agecomps

functions. The following steps provide a basic guideline for how to accomplish this:

• Using the original cod model create the case argument files you desire for your simu-
lation and verify they run with the original cod model using the function run ss3sim.
It is probably best to do a shorter deterministic (Section 3.3) run. After running,
read in the data and do visual checks for proper functionality.

• Find the original cod model. This can be found in the inst/extdata/models folder
inside the package, located by

library(ss3sim)

d <- system.file("extdata", package = "ss3sim")

paste0(d, "/models")

Make a copy of the cod models (OM and EM) and rename them as desired.

• Make a single change to either the .dat or .ctl files for the new model and run them
manually with SS3 if there is any question if they might break the model.

• Rerun the model through run ss3sim and verify it is still working. If errors occur in
the R function you will need to examine the function to determine why the error is
occurring and fix by changing the R function and reloading it.

• Repeat previous steps with all small changes until the models are satisfactory.

• Turn off deterministic runs and run the simulation stochastically.

• If your new model works well with the package and is significantly different than
what is built-in, please contact the ss3sim package managers for inclusion in future
versions.

8 Incorporating observation error

Observation error (i.e. uncertainty arising from sampling the “truth”) can be added within
the ss3sim framework in three places: indices of abundance, length compositions, and age
compositions. There are functions which take the expected values produced in the OM
.dat files and samples from them to create the input .dat files for the EM. Since this
sampling process is done dynamically with functions there is a lot of flexibility that can be
added by the user.
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This section briefly details the background and functionality of these functions.

change index This function samples from the biomass trends for the different fleets to
simulate the collection of CPUE and survey index data. Since q = 1 for both the OM
and EM, the CPUE indices are actually absolute indices of biomass. The result of
the random sampling is a log-normal observed CPUE that is centered at the expected
value. The user can specify which fleets are sampled in which years and with what
amount of noise. Note that the years/fleets specified to be sampled must be present
in the OM file, so the user must setup the OM accordingly.

change lcomp This function samples from the length composition using a multinomial or
Dirichlet distribution. The Dirichlet distribution can be thought of as a generalization
of the multinomial distribution that has an additional parameter controlling the
variance of the random deviates (see Section 8.1). The user can specify which fleets
are sampled in which years and with what amount of noise. Further, the bin structure
can be inputted as an argument and thus changed dynamically within a simulation
(see 8.1.4 below for more information).

change agecomp Same as length compositions except that it acts on age compositions.

8.1 Sampling age and length compositions

When simulating stock assessment models we need a way to mimic the way that the
age/length compositions (comps) are sampled in reality. Under perfect mixing of fish and
truly random sampling the distribution of samples would be multinomial. However, in
practice neither of these are true because the fish tend to aggregate by size and age, and
it is difficult to take random samples (e.g. Pennington et al. 2002). This causes the data
to have more variance than expected, i.e. be overdispersed, and the effective sample size is
smaller (Hulson et al. 2012; Maunder 2011). If a multinomial likelihood is assumed and the
true sample size is used then in effect the model puts too much weight on the composition
data, at the cost of fitting other sources of data less well (Maunder 2011). Analysts thus
need to “tune” their model to find a more appropriate sample size that more accurately
reflects the information in the composition data.

In simulation work, the true underlying proportions in the population are known and
therefore true multinomial sampling is possible. However, there is some question about the
realism behind providing the model with this kind of data, since it is unlikely to happen
in practice (Pennington et al. 2002). Thus, there is a need to generate more realistic data.
In this package we use the Dirichlet distribution to generate such data for a specified level
of overdispersion, and then set the correct effective sample size.
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8.1.1 Multinomial vs. Dirichlet distributions

The following calculations are shown for age compositions but apply equally to length
compositions. The multinomial distribution m ∼ MN (p, n,A) is defined as

m = m1, . . . ,mA

= the number of fish observed in bin a

p = p1, . . . , pA

= the true proportion of fish in bin a

n = sample size

A = number of age bins

In the case of SS3, actual proportions are input as data so m/n is the distribution used
instead of m. Thus, the variance of the estimated proportion for age bin a is Var [Ma/n] =
paqa/n. Note that ma/n can only take on values in the set {0, 1/n, 2/n, . . . , 1}. With
sufficiently large sample size this set approximates the real interval [0, 1], but the point
being that only some values of ma/n are possible.

The Dirichlet distribution d ∼ Dirichlet (α, A) is

d = d1, . . . , dA

= the proportion of fish observed in bin a

α = α1, . . . , αA

= concentration parameters for the proportion of fish in bin a

A = number of age bins

Since we are using the Dirichlet distribution to generate random samples, it is convenient to
parameterize the vector of concentration parameters α as λp so that αa = λpa. The mean
of da is then E [da] = pa and the variance is Var [da] = paqa

λ+1 . The marginal distributions
for the Dirichlet are beta distributed. In contrast to the multinomial above, the Dirichlet
generates points on the real interval [0, 1].

8.1.2 Sampling with overdispersion

It is clear that λ controls the amount of overdispersion in the generated samples: as it
increases the variance decreases. Thus, it is simple to calculate what λ should be in order
to have a specific level of variance in the samples. We know that the variance of the
Dirichlet samples should never be smaller than that of a multinomial (i.e. under-dispersed)
so it makes sense to use the multinomial variance (with a particular sample size n) as a
baseline.

The following steps are used to generate overdispersed samples:
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1. Get the true proportions at age (from the operating model “truth”) for the number
of age bins A.

2. Determine a realistic sample size, say n = 100. Calculate the variance of the samples
from a multinomial distribution, call it Vma .

3. Specify a level, c, that scales the standard deviation of the multinomial. Then
√
Vda =

c
√
Vma from which λ = n/c2 − 1 can be solved. Samples from the Dirichlet with

this value of λ will then give the appropriate level of variance. For instance, we can
generate samples with twice the standard deviation of the multinomial by setting
c = 2.

The composition sampling functions provided in the package allow you to specify the level
of overdispersion. Note that the package does not allow for tuning of the effective sample
size, and the argument cpar controls the level of overdispersion in the sampling functions.
See the function documentation for change agecomp and change lcomp for more detail.

8.1.3 Effective sample size

For both multinomial and Dirichlet generated composition data the effective sample size
is set automatically by the change lcomp and change agecomp functions. In the case of
the multinomial the effective sample size is just the total sample size (i.e. how many fish
were sampled, the number of sampled tows, etc.). However, with the Dirichlet distribution
the effective sample size depends on the parameters passed to these functions and is auto-
matically calculated internally and passed on to the .dat file. The effective sample size is
calculated as Neff = n/c2. Note that these values will not necessarily be integer-valued,
and SS3 handles this without issue.

Given that the effective sample size is known and passed to the EM, there is much similarity
between the multinomial and Dirichlet methods for generating data. The main difference
arises when sample sizes (n) are small; in this case the multinomial will be restricted to few
potential values (i.e. 0/n, 1/n, . . . , n/n), whereas the Dirichlet has values in [0, 1]. Thus
without the Dirichlet it would be impossible to generate realistic values that would come
about from highly overdispersed data with a large n.

8.1.4 Dynamic composition binning

The functions change lcomp and change agecomp include optional arguments specifying
the bins to use. The user may specify a vector of values determining how to bin the data.
This option may be useful for users who wish to explore the impact of different binning
schemes of the same data. The function works by determining which OM bins to collapse
and summing across these to form the new bins. Thus the specified bins need to coincide
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(i.e. be a subset) with the OM bins. For instance, of the OM bins are b1 = (0, 1, 2, 3, 4, 5)
then this could be collapsed into the bins b2 = (0− 1, 2− 3, 4− 5). Because of the way the
function is written it is paramount that the bins given by the user be compatible with the
OM bins. For instance, it is not possible (within the framework provided here) to include
bins outside of the range of the OM bins. We have provided basic checks to the validity
of the user provided bin structure. However, we stress that dynamic binning is a
complicated process and the user is responsible for thoroughly testing their
proposed binning structure. See the help file for these functions for examples of how
to explore and test the functions. An alternative way of testing bin structure would be to
setup different models that have the bin structures desired.

8.2 Sampling indices

Compared to sampling from the age and length compositions, sampling from the abundance
indices is relatively straightforward. The OM .dat file contains the annual biomass values,
and the change index function uses these true values as the expected value for all fleets
(CPUE from fisheries as well as scientific surveys). The function uses a bias-adjusted log-
normal distribution with expected values given by the OM biomass and a user-provided
standard deviation term that controls the level of variance.

More specifically, let

By = the true (OM) biomass in year y

σy = the standard deviation provided by the user

X ∼ N(0, σy) = a random normal variable

Then the sampled value, Bobs
y is

Bobs
y = Bye

X−σ2
y/2

which has expected value of By due to the bias adjustment term σ2y/2. This process
generates log-normal values centered at the true value. It is possible for the user to specify
the amount of uncertainty (e.g. to mimic the amount of survey effort), but it is not possible
to induce bias in this process. The user-supplied σ terms are written to the .dat file along
with the sampled values, meaning that the EM has the correct level of uncertainty. Thus,
the EM has unbiased estimates of By and the true σy for all fleets.

9 Incorporating process error

Process error is incorporated into the OM in the form of deviates in recruitment (‘recdevs’)
from the stock-recruit relationship. Unlike the observation error, the process error affects
the population dynamics and thus must be done before running the OM.
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These built-in recruitment deviations are standard normal deviates and are multiplied by
σr (recruitment standard deviation) as specified in the OM, and bias adjusted within the
package. That is,

recdevi = σrzi − σ2r/2

where zi is a standard normal deviate and the bias adjustment term (σ2r/2) makes the
deviates have an expected value of 1 after exponentiation.

If the recruitment deviations are not specified, then the package will use these built-in
recruitment deviations. Alternatively you can specify your own recruitment deviations,
via the argument user recdevs to the top-level function ss3sim base. Ensure that you
pass a matrix with at least enough columns (iterations) and rows (years). The user-supplied
recruitment deviations are used exactly as specified (i.e. not multiplied by σr as specified
in the SS3 model), and it is up to you to bias correct them manually by subtracting
σ2r/2 as is done above. This functionality allows for flexibility in how the recruitment
deviations are specified, for example running deterministic runs (Section 3.3) or adding
serial correlation.

Note that for both built-in and user-specified recdevs ss3sim will reuse the same set of
recruitment deviations for all iterations across scenarios. For example if you have two
scenarios and run 100 iterations of each, the same set of recruitment deviations are used
between those two scenarios.

10 Stochastic reproducibility

In many cases, you may want to make the observation and process error reproducible. For
instance, you may want to reuse process error so that differences between scenarios are
not confounded with process error. More broadly, you may want to make a simulation
reproducible on another machine by another user (such as a reviewer).

By default ss3sim sets a seed based on the iteration number. This will create the same
recruitment deviations for a given iteration number. You can therefore avoid having the
same recruitment deviations for a given iteration number by either specifying your own
recruitment deviation matrix through the user recdevs argument or by changing the
iteration numbers (e.g. using iterations 101 to 200 instead of 1 to 100).

If you want the different scenarios to have different process error you will need to make
separate calls to run ss3sim for each scenario and pass a different matrix of user recdevs

(see Section 9) or pass different iteration numbers. For most applications this should not
be necessary.

The observation error seed (affecting the index, length composition, and age composition
sampling) is set during the OM generation. Therefore, a given iteration-case-file-argument
combination will generate repeatable results. Given that different case arguments can
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generate different sampling routines (e.g. stochastically sampling or not sampling from the
age compositions or sampling a different number of years) the observation error is not
necessarily comparable across different case arguments.

11 Parallel computing with ss3sim

ss3sim can easily run multiple scenarios in parallel to speed up simulations. To run a
simulation in parallel, you need to register multiple cores or clusters and set parallel =

TRUE in run ss3sim. For example, we could have run the previous example in parallel with
the following code. First, we register four cores:

require(doParallel)

registerDoParallel(cores = 4)

We can check to make sure we are set up to run in parallel:

require(foreach)

getDoParWorkers()

## [1] 4

And then run our simulation on four cores simultaneously by setting parallel = TRUE:

run_ss3sim(iterations = 1:100, scenarios =

c("D1-E0-F0-R0-M0-cod",

"D2-E0-F0-R0-M0-cod",

"D1-E1-F0-R0-M0-cod",

"D2-E1-F0-R0-M0-cod"),

case_folder = case_folder, om_dir = om, em_dir = em,

bias_adjust = TRUE, parallel = TRUE)

In addition to the check with getDoParWorkers() above, if the simulations are running in
parallel, you will also see simultaneous output messages from ss3sim as the simulations
run. On a 2.27 GHz Intel Xeon quad-core server running Ubuntu 10.04, this example ran
1.9 times faster on two cores than on a single core, and 3.2 times faster on four cores.
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Appendices

A Putting SS3 in your path

Instead of copying the SS3 binary file (ss3.exe) to each folder within a simulation and
running it, ss3sim relies on a single binary file being available to the operating system
regardless of the folder. To accomplish this, SS3 must be in your system path, which is a
list of folders that your operating system looks in whenever you type the name of a program
on the command line. This approach saves on storage space since the SS3 binary is about
2.2 MB and having it located in each folder can be prohibitive in a large-scale simulation
testing study.

A.1 For Unix (OS X and Linux)

To check if SS3 is in your path: open a Terminal window and type which SS3 and hit
enter. If you get nothing returned, then SS is not in your path. The easiest way to fix this
is to move the SS3 binary to a folder that’s already in your path. To find existing path
folders type echo $PATH in the terminal and hit enter. Now move the SS3 binary to one
of these folders. For example, in a Terminal window type:

sudo cp ~/Downloads/SS3 /usr/bin/

You will need to use sudo and enter your password after to have permission to move a file
to a folder like /usr/bin/.

Also note that you may need to add executable permissions to the SS3 binary after down-
loading it. You can do that by switching to the folder where you placed the binary (cd
/usr/bin/ if you followed the instructions above), and running the command:

sudo chmod +x SS3

Check that SS3 is now executable and in your path:

which SS3

If you followed the instructions above, you will see the following line returned:

/usr/bin/SS3

An introduction to ss3sim 33



A Putting SS3 in your path

If you have previously modified your path to add a non-standard location for the SS3 binary,
you may need to also tell R about the new path. The path that R sees may not include
additional paths that you have added through a configuration file like .bash profile. If
needed, you can add to the path that R sees by including a line like this in your .Rprofile
file. (This is an invisible file in your home directory.)

Sys.setenv(PATH=paste(Sys.getenv("PATH"),"/my/folder",sep=":"))

A.2 For Windows

To check if SS is in your path for Windows 7 and 8: open a DOS prompt and type ss3 -?

and hit enter. If you get a line like “ss3 is not recognized...” then SS3 is not in your
path. To add the SS3 binary file to your path, follow these steps:

1. Find the correct version of the ss3.exe binary on your computer

2. Record the folder location. E.g. C:/SS3.24o/

3. Click on the start menu and type environment

4. Choose Edit environment variables for your account under Control Panel

5. Click on PATH if it exists, create it if does not exist

6. Choose PATH and click edit

7. In the Edit User Variable window add to the end of the Variable value section
a semicolon and the SS3 folder location you recorded earlier. E.g. ;C:/SS3.24o/.
Do not overwrite what was previously in the PATH variable.

8. Restart your computer

9. Go back to the DOS prompt and try typing ss3 -? and hitting return again.
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B Setting up a new operating model

In some cases the user may wish to adapt their own SS3 model to work with the ss3sim
package. This is possible but may be difficult because the functions in ss3sim were devel-
oped to work with these three model setups and a model with a different structure may
cause errors in these functions. This stems from the high flexibility of SS3, allowing for
more complex model setups than those used while developing ss3sim. For instance, the
change index function does not have the capability to handle more than one season (it
could, but currently it is not developed to). Given the many options available in SS3 it
is extremely difficult to write auxiliary functions that will interact reliably with all com-
binations of these options. For this reason, we recommend that users strongly consider
trying to modify an existing model rather than creating a new one (Section 7). It is likely
that the ss3sim functions will need to be modified in some way in the process, so the user
should be familiar with both SS3 and R.

The main purpose of the OM is to generate data files that can be read into the EM. Thus
the user needs to setup the .dat files in the OM such that they conform to the structure
needed by the EM. Two key examples are with survey and age/length composition data.
For the indices of abundance (CPUE and scientific survey) the OM .dat file will determine
which years are available to the sampling function change index, so if the year y is desired
in the EM it needs to be in the OM. In practice it may be easiest to just include all years
in the OM if surveys will be dynamic (i.e. changing years between scenarios), or if it will
be fixed for all scenarios to set it to match the EM exactly.

Similarly with age/length compositions the OM .dat file will determine which years and
bins are available to the sampling functions change agecomp and change lcomp. If dy-
namic binning is to be used, the user should setup the .dat file so that all desired combi-
nations of bins are possible (see Section 8.1.4 for more details). Specifically, the user must
specify small enough OM .ctl bins (no smaller than the population bin specified in the
appropriate section in the OM .dat file) so that they can easily be re-binned. Alterna-
tively, if composition data is not to be explored in the simulation then the user can just
set the OM .dat file to match the desired input for the EM .dat.

For those users who choose to create a new ss3sim model setup, we outline the steps to
take an existing SS3 model and modify it to work with the ss3sim package. First, we cover
setting up an operating model and then in Section C we cover setting up an estimation
model.

B.1 Starter file modifications

1. Use the .par file to initialize model parameters. To do so change
# 0=use init values in Starter file to 1. Parameter values specified in the
.ctl file will now be ignored.
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2. Generate detailed report files (containing age-structure information) by setting
# detailed age-structured reports in REPORT.SSO to 1.

3. Generate data by setting
# Number of datafiles to produce to 3.
If X=1 it only generates the original data If X=2 it generates the original data and
the expected value data (based on model specification) If X>=3 it generates all the
above and X-2 bootstrapped data sets

4. Turn off parameter estimation by changing
# Turn off estimation for parameters entering after this phase

to 0.

5. Turn off parameter jittering by setting
# jitter initial parm value by this fraction to 0. Jitter is used, among
other things, to test for convergence to the same solution when starting from al-
ternative initial values; however, the OM is used here as the truth, so jittering is not
needed.

6. Turn off retrospective analyses by setting
# retrospective year relative to end year

to 0. To analyze the data for retrospective patterns, use the R case file.

7. Specify how catch is reported by setting # F report units to 1 if catch is reported
in biomass or 2 if catch is reported in numbers. Additionally, comment out the next
line, # min and max age over which average F will be calculated, by remov-
ing all characters prior to the hash symbol.

8. Implement catches using instantaneous fishing mortality by changing
# F report basis to 0.

B.2 Control file modifications

1. Specify all environmental deviates to be unconstrained by bounds by setting
# env/block/dev adjust method to 1. If the method is set to 2, parameters adjusted
using environmental covariate inputs will be adjusted using a logistic transformation
to ensure that the adjusted parameter will stay within the bounds of the base pa-
rameter.

2. Turn on recruitment deviations by specifying #do recdev to 1. Using the next two
lines, specify the use of recruitment deviations to begin and end with the start and
end years of the model.

3. Turn on additional advanced options for the recruitment deviations by specifying
# (0/1) to read 13 advanced options to 1.
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4. Set # recdev early start to 0 so that the model will use the
# first year of main recr devs.

5. Set # lambda for Fcast rec like occurring before endyr+1 to 1. This lambda
is for the log likelihood of the forecast recruitment deviations that occur before the
first year of forecasting. Values larger than one accommodate noisy data at the end
of the time series.

6. Recruitment is log-normally distributed in SS. If inputting a normally distributed
recruitment deviations specify # max bias adj in MPD to -1 so that SS performs the
bias correction for you. If inputting bias corrected normal recruitment deviation,
specify it at 0. Either method will lead to the same end result.

7. Use any negative value in line # F ballpark year, to disable the use of a ballpark
year to determine fishing mortality levels.

8. Specify # F Method to 2, which facilitates the use of a vector of instantaneous fishing
mortality levels. The max harvest rate in the subsequent line will depend upon the
fishing mortality levels in your simulation. Following the max harvest rate, specify
a line with three value separated by spaces. The first value is the overall start F
value, followed by the phase. The last value is the number of inputs. Set the number
of inputs to 1, because the actual fishing mortality trajectory will be specified in
the .dat file. Next, specify a single line with six values, separated by spaces, where
the values correspond to fleet number, start year, season, fishing mortality level, the
standard error of the fishing mortality level, and a negative phase value. E.g 1 2000

1 0 0.01 -1

9. If needed, change the specification of the .ctl using the functions available in the
ss3sim package. E.g change growth, change sel.

B.3 Data file modifications

1. Specify the start and end year for the simulation by modifying # styr and # endyr.
Years can be specified as a number line (i.e. 1, 2, 3, . . . ) or as actual years (i.e. 1999,
2000, 2001, . . . ).

2. Specify the names for each fleet in an uncommented line after the line # N areas.
Names must be separated by a % with no spaces. It is these names which you will
use in the plain text case files to specify and change characteristics of each fleet
throughout the simulation. E.g. Fishery%Survey1%Survey2

3. Specify the number of mean body weight observations across all selected sizes and
ages to be specific to measured fish by setting #N observations to 0. Subsequently,
specify 1 degree of freedom for the Student’s T distribution used to evaluated the
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mean body weight deviations in the following line. The degrees of freedom must be
specified even if there are zero mean body weight observations.

4. Set the length bin method to 1 or 2 in the line labelled # length bin method.
Using a value of 1, the bins refer to the data bins (specified later). Using a value
of 2 instructs SS to generate the binwidths from a user specified minimum and
maximum value. In the following three lines, specify the binwidth for population size
composition data; the minimum size, or the lower edge of the first bin and size at
age zero; and the maximum size, or lower edge of the last bin. The length data bins
MUST be wider than the population bin, but the boundaries do not have to align.

5. Specify # comp tail compression to any negative value to turn off tail compression.

6. Specify # add to comp to a very small number E.g 1e-005. This specifies the value
that will be added to each composition (age and length) data bins.

7. Set the length bin range method for the age composition data (used when the condi-
tional age at length data exists) to 1, 2 or 3 in the line # Lbin method depending on
the data you have or the purpose of the study.

B.4 Testing the new operating model

After completing the above steps, check that the SS3 model setup is functional by running a
single iteration of the model and verifying that the data are read in correctly and expected
values of the population dynamics are written to the .dat files (and sensical). We also
advise manually testing the ss3sim R functions that manipulate the OM (e.g., change tv)
and check that the model setup still runs correctly after this manipulation. The help files
for the functions demonstrate how to use the functions to test models. Note that the OM
will not be a valid SS3 model in the sense that ADMB cannot run and produce maximum
likelihood estimates of parameters; it is intended to only be run for one iteration to generate
the population dynamics using values specified in the input files.
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C Setting up a new estimation model

Unlike the OM, the EM needs to be a valid SS3 model setup and run to achieve MLE
estimates (and possibly standard errors). Thus the OM needs to be adapted to create a
new EM.

C.1 Starter file modifications

1. Change the names of the .dat and .ctl files to your chosen naming scheme.

2. Specify the model to use parameter values found in the .ctl file, by changing
# 0=use init values in control file; 1=use ss3.par to 0.

3. Turn on parameter estimation by changing
# Turn off estimation for parameters entering after this phase to a value
larger than the max phase specified in the .ctl file.

C.2 Control file modifications

1. Set the phases of the parameters to positive or negative value to inform SS to estimate
or fix the parameters, respectively.

2. Set the # recdev phase to a positive value to estimate yearly recruitment deviations.

3. If using bias adjustment set # recdev early phase to a positive value. Estimates for
the years and maximum bias adjustment can initially be inputted with approxima-
tions or use the bias adjustment function within ss3sim to find appropriate values
for the base case EM and input them in the appropriate lines.

4. Specify # F Method to 3, which allows the model to use catches to estimate appropri-
ate fishing mortality levels. The max harvest rate in the subsequent line will depend
upon the fishing mortality levels in your simulation. An additional line must be in-
serted after the maximum harvest rate to specify the number of iterations used in
the hybrid method from 3 to 7.

5. Use the functions in the ss3sim package to change the estimation specification in
the EM. E.g. change e

C.3 Data file modifications

The data.ss new files produced when executing the OM contain the expected values of
the OM population dynamics. The data the EM model is fit to needs to be sampled
with observation error from these expected values in order to mimic the random sampling
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process done with real fisheries data. The ss3sim package provides three functions which
carry out the random sampling process and generate .dat files to be used in the EM. See
Section 8 for more details.

C.4 Testing the new estimation model

After completing the above steps run the model manually and verify that it loads the data
properly and the objective function value (negative log-likelihood) is sensible. If it works
correctly, try running deterministic cases on the model (Section 3.3) and further verify that
ss3sim functions that modify the EM (e.g., change e) act correctly on the model setup.
It is possible that some of the functions will not work perfectly with the new model setups.
In this case, it may be necessary to modify the ss3sim functions to be compatible with
the new OM and EM.
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