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1 Introduction

This package estimates the copula density of a d-dimensional random variable, without parametric
assumptions, using ranks and subsampling. The main feature of this method is that simulation
studies show a low sensitivity to dimension, on realistic cases.
This vignette provides:

• A description of the estimation method, in different ways.

• A description of the regression derived from the estimation method. In the case of regression,
it is possible to estimate density on-the-fly, so computational burden is largely reduced.

• A convergence proof.

• Some hints on convergence speed. In the simple useless case of independence, we prove the
convergence speed is the same as for kernel density estimation. In more structured cases,
some numerical simulations show the impact of dimension is much smaller than for a kernel
estimation.

It is usual to use ranks to estimate copulas [Fermanian, 2005], or test uniformity of the copula [Ho-
effding, 1948, Kojadinovic and Holmes, 2009], since it gives straightforwardly uniform marginals.
Nevertheless, with usual methods, we do not use all the features of ranks. They do not only have
uniform marginals: their marginals are exactly uniform on {1, · · · , n} for any sample, and any
dimension of a multidimensional variable. We have to use this regularization to reduce sampling
errors. Furthermore, the smaller the sample is, the stronger the regularization is, so it is compul-
sory to sub-sample to adjust the strength of the regularization.
Sub-sampling is now widely used and studied, so we only cite the pioneering work [Breiman, 1996]
and the survey [Bühlmann, 2012]. These methods are applied to estimators, so the theoreti-
cal results in these papers do not exactly fit our goal. Nevertheless, the main conclusion is that
sub-sampling related methods are smoothing methods: their efficiency increases when applied to
discontinuous, non-linear functions. Yet, the ranking of the observations is highly discontinuous
and non-linear, so sub-sampling is relevant.

1.1 Implementation

This package is partly written in C (parallelized with Open-MP [OpenMP Architecture Review
Board, 2010]), for reasons of efficiency. The random number generator is described in [Roy, 2006].

2 Description of the estimation method

Given a sample of size n, for a given sub-sample size m < n, one draws many sub-samples,
without replacement. For each sub-sample and each observation, one obtains a vector of ranks (in
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set {1, · · · ,m}d). For each point r of {1, · · · ,m}d, we propose to count the sub-samples where
r appears (where there is an observation of which d ranks are the point r). This counting is the
estimator we propose, it converges in some ways to the copula density. We give in the following a
formal description.

2.1 Mathematical formulation

We study a random variable X = (X1, · · · , Xd) in Rd, with copula c(u) = c(u1, · · · , ud); its
marginals are assumed to be continuous.
We define

• S a sample of X, x an element of S,

• R (x,S) the d-uple of the ranks of the components of x in sample S.

This allows defining a random variable B•(S): it is an array, filled with 0s and 1s, d dimensional,
each dimension being indexed from 1 to |S| (where || stands for cardinal). For a d-uple of ranks r ∈
{1, · · · , |S|}d, we define

Br(S) = 1{∃x ∈ S | R (x,S) = r}.

In other words, Br(S) is equal to 1 if and only if r is equal to R (x,S) for a x in S.
The object we want to estimate is

P (|S| , r, c) = 1
|S|

E (Br(S)) ,

because we will show that this discrete array tends to the density copula c. Let us note that
dividing by |S| makes the sum of P equal to 1, as ∀r,∀X,

∑
r Br(S) = |S|.

In a practical setting, we have an n-sample T , we choose a sub-sample size m < n, and we
estimate P (m, r, c) using the following U -statistic:

P̂n(m, r,X) = 1
m
(
n
m

) ∑
S⊂T ,|S|=m

Br(S).

Remarks

• If m = d = 2, counting the sub-samples reaching a vector of ranks is very similar to the
Kendall’s τ computation. In such a case, {1, · · · ,m}d = {(1, 1), (1, 2), (2, 1), (2, 2)}. A pair
of concordant (resp. discordant) observations generate points (1, 1) and (2, 2) (resp. (1, 2)
and (2, 1)), so we have τ̂ = 2(P̂ (2, (1, 1),X)− P̂ (2, (1, 2),X)).

• A simple example, in 2 dimensions, is the case X2 = f(X1) with f strictly increasing. Then
the only weighted points of {1, · · · ,m}2 are on the diagonal. On the other hand, if all com-
ponents are independent, a symmetry argument gives a uniform distribution on {1, · · · ,m}d
(for n infinite, the case of a finite n is studied in the following).

• Most of the times
(
n
m

)
will be far too large, so we will not be able to draw all sub-samples.

We will use a random sub-sampling to obtain an approximation of P̂n.

2.2 Graphical description of the estimation method

The estimation method is described in figure 1.

2.3 Small completely detailed example

We propose a small completely detailed example. Table 1 is a sample in R2 (each observation is
identified by a lowercase letter), we choose n = 4 and m = 3. Table 2 summarizes the computa-
tions.
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Figure 1: First steps of the estimation: pictures on the left represent original data with points
of the sub-sample in black; pictures in the center represent the sub-sample in the rank space; radii
of circles on the right represent, for each rank vector, current sum of the hits.
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Table 1: Example data: RX (resp RY ) stands for the rank in X (resp. Y )
Observation X Y RX RY

a 2.29 -0.97 4 1
b -1.2 -0.95 1 2
c -0.69 0.75 2 4
d -0.41 -0.12 3 3

Table 2: Computation of P̂4(3, r,X) for the data of Table 1: the sub-samples are named: A =
{a, b, c}, B = {a, b, d}, C = {a, c, d}, D = {b, c, d}. For example, bD in the first cell of the first line
means that observation b in sub-sample B is the first one in X and in Y , and 1/12 is the value
of P̂4(3, (1, 1),X), since 12 = 3×

(4
3
)

Rank in X
1 2 3

Rank in Y
1 {bD}; 1/12 ∅; 0/12 {aA,aB,aC}; 3/12
2 {bA,bB}; 2/12 {dC}; 1/12 {dD}; 1/12
3 {cC}; 1/12 {cA,dB,cD}; 3/12 ∅; 0/12

2.4 Use for regression

Using Theorem 1, it is possible to use the estimation P̂n to build a regression model. For a given
value of some components of x, we know the conditional copula. Using this, we may simulate
values of the unknown components.
More precisely, we have a training set of n observations in dimension d, and we use it to esti-
mate P̂n (given a sub-sample size m), and d cumulative distribution functions. We also have a
new observation x, with only d′ components known, we want to know the remaining components.
The first step is to use the estimated CDFs to compute the Fi(xi)’s (for the d′ known compo-
nents). Multiplying by m and taking the integer part gives a vector of ranks in {1, · · · ,m}d′ .
Conditionally to this vector, we choose randomly a vector of ranks in {1, · · · ,m}d−d′ . Dividing
by m gives the Fi(xi)’s for the d− d′ unknown components of x. We may smooth this prediction,
adding a beta-distributed noise, or use another distribution. Finally, we use estimated CDFs, and
their inverse, to compute the unknown components of x. This result is obviously random, since
the vector of ranks in {1, · · · ,m}d−d′ is randomly chosen. So, it is a simulation method to provide
a probabilistic forecast.

Prediction on-the-fly Doing so, computation time is very important, and memory require-
ments too. That is why we prefer to estimate the copula density on-the-fly, around the value of
the known components. It reduces drastically the computation time and the memory require-
ments.
We consider the same training set, and the same incomplete observation. We draw a sub-sample
with size m in the training set, we add the incomplete observation, and we replace each observa-
tion by its ranks. We look at whether, for each dimension, the rank of the new observation is the
neighbor (differ by 1) of the rank of an observation of the sub-sample of the training set. In such
a case, we use the value of this observation as a prediction (for the unknown components of the
incomplete observation).
This operation is repeated many times, which gives a probabilistic forecast.
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3 Convergence to the copula

Definition 1 Let m be a strictly positive integer, and r an integer between 1 and m+1. Given m ran-
dom variables Ui with distribution U [0, 1], the density Kr,m is the density of the random vari-
able U  U [U(r−1), U(r)], where U(r) denotes the value with rank r, U(0) = 0 and U(m+1) = 1.

It is possible to express Kr,m:

Kr,m(k) = m!
(r − 2)+!(m− r)+! ×

∫
0<u<k<v<1

u(r−2)+(1− v)(m−r)+

(v − u) dudv,

where (r−2)+ stands for the positive part of r−2, in order to encompass all cases in one formula.
These integrals seem to be difficult to write in a simpler form; even if r = 1, the integration is not
easy. Nevertheless, it is possible to derive moments of this distribution:

EKr,m
(X) = 2r − 1

2(m+ 1) '
r

m+ 1

VKr,m
(X) = 12r(m− r) + 24r − 7m− 10

12(m+ 1)2(m+ 2) ' r(m− r)
(m+ 1)2(m+ 2) .

Theorem 1 Assuming that X = (X1, · · · , Xd) in Rd has continuous marginals, and copula den-
sity c is bounded by M , we have:

md × |P (m, r, c)− PK(m, r, c)| ≤ 2M2d2

m
+O(m−2),

with:

PK(m, r, c) =
∫

[0,1]d

(
d∏
l=1

Krl,m−1(ul)
)
c(u)du.

4 Convergence speed

In the independent case, one shows that the AMISE is the same as for a kernel estimation. For
more details, see B.

4.1 Use for independence test

We propose here to use independence testing to measure the accuracy of our estimation technique.
To build a test, we need a test statistic: we use the Kullback–Leibler divergence, between P̂ and
the asymptotic value in case of independence, it means P ≡ m−d. Then, we have to simulate
many samples with independent components, which gives the distribution of the test statistic.
Finally, we simulate samples with dependent components, and count the number of independence
rejections.
In order to study the behavior of this testing method when the dimension increases, we will use
as a test case a given dependence between a given number of components, all other components
being independent. We studied three cases.
The first two are described by the same equation, with a parameter p switching from a monotonic
dependence if equal to 1 to a non-monotonic if equal to 2:

X2 = a ·Xp
1 + ε

Xi ∼ N (0, 1) if i 6= 2
ε ∼ N (0, 1)

.
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Figure 2: Example of use for independence testing: the sample size increases linearly with the
dimension, so is equal to 15×d. The sub-sample size is 8. The thin interrupted line represents the
5% level. The linear increasing of sample size is enough to obtain good power for each dimension.

The third dependence is the following model:

V ∼ LN (0, a)
Xi ∼ N (0, V ) if i ≤ dd
Xi ∼ N (0, 1) if dd < i ≤ d

where LN denotes the log-normal distribution. In other words, the first dd components have the
same random volatility. If a is large, the dependence is strong, and null if a = 0.
The main insight of this simulation study is: in order to maintain the same test power, it is enough
to increase the sample size linearly w.r.t. dimension. Indeed, the sample size is here 15× d, so it
is 30 for dimension 2, . . . , and 90 for dimension 6: this increase is enough to obtain good power
for each dimension.
An additional point is the test power is never smaller than 1.1 times the power of the Deheuvels
test, which is a widely used independence test. More precisely, The Deheuvels test shows a good
power on the linear dependence, because it is a monotonic dependence. On others, its power is
around 0.05, so the test is useless.

4.2 Forecasting competition

We used this method to participate in a forecasting competition Hong et al. [2014], with good
results: the model, yet simple, finished tenth in the competition, among 250 competitors, with a
forecast error 10% larger than the winner.
The topic of the probabilistic wind power forecasting track was to forecast the probabilistic distri-
bution (in quantiles) of the wind power generation for 10 wind farms on a rolling basis. The target
variable was power generation, normalized here by the respective nominal capacities of each wind
farm. The explanatory variables that can be used are the past power measurements (if relevant),
and input weather forecasts, given as u and v components (zonal and meridional). These forecasts
were given at two heights, 10 m and 100 m above ground level, in order to give a rough idea of
wind profiles.
Since it is possible to estimate directly the density for dimensions at around 6, we only had to
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estimate the joint density of the load factor LF, and the 4 wind speeds u10, v10, u100, v100. In a
second step, we simulated 1000 values of fc, knowing the values of the other variables.
This simple first model was a bit modified, because some temporal smoothing improved the results.
In the final model, the 4 wind speeds are smoothed, with a window size equal to 5 time steps, and
a set of weights derived from the triweight kernel. It appeared also useful to take into account the
variability of the wind. To do so, a first step is to compute the absolute speed of the wind at each
level. Then, one computes the local sum of squares of the speed, and it is added to the regressors
of the load factor.
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A Proof of theorem 1

Without loss of generality, we assume the random variable X has uniform marginals. We will com-
pute P (m, r, c), conditioning by: the rank r is reached by the last observation. Using symmetry, it
would be the same for the m other observations. In order for the last observation to reach rank r,
one needs its first coordinate to be between X1,(r1−1,m−1) and X1,(r1,m−1), where X1,(r1−1,m−1)
denotes the value with rank r1 − 1 among m − 1, for the first coordinate; and it is the same for
other coordinates, so we get

P (m, r, c) = E

(∫⋂
[Xl,(rl−1,m−1);Xl,(rl,m−1)]

c(u)du
)
. (1)

We know that on each dimension, order statistics are Beta distributed. Then, if we have inde-
pendence, the equality with PK is obvious. If, for any couples (l, l′) and (εl, εl′) (εl ∈ {0, 1}), the
values X1,(r1−εl,m−1) and X1′,(rl′−εl′ ,m−1) derive from different observations, they are independent
and equality with PK is true.
So we study the probability of coincidence: some of the values X1,(r1−εl,m−1) and X1′,(rl′−εl′ ,m−1)
derive from the same observation. For a given couple (l, l′), we assume that Xl,(rl−1,m−1) is
the value of observation 1 (without loss of generality). We want to know the probability that
Xl′,(r′

l
−1,m−1) is the value of observation 1 as well. To compute this probability, we have to

consider the m− 2 remaining observations:

P
(
Xl′,1 ∈ [Xl′,(rl′−1,m−2), Xl′,(rl′ ,m−2)]

)
≤M × E

(
Xl′,(rl′ ,m−2) −Xl′,(rl′−1,m−1)

)
= M

m− 2 .

If the couple (l, l′) is not given, we know that, for each dimension, X1,(r1,m−1) and X1,(r1−1,m−1)
are obviously from different observations. So we have to choose 2 dimensions, and for each the
value of εl, so the probability of a coincidence is less than 2d(d− 1)×M/(m− 2).
We need the following result, inspired from el Dairi, Khalil Antoine [2005]:

Proposition 1 Let φ be a superadditive function, X a d-dimensional random variables with
marginals Fi, ΓF the set of the distributions with marginals Fi. Assuming φ(X) is uniformly
integrable on ΓF , we know, for H ∈ ΓF

Eφ(X) (H) ≤ Eφ(X)
(
H̄
)
,

where H̄ is the distribution with marginals Fi, and copula equal to the upper Fréchet-Hoeffding
bound.

If we have e coincidences, for example on dimensions 1,· · · , e, we have to bracket

E

(
d∏
l=1

(
Xl,(rl,m−1) −Xl,(rl−1,m−1)

))
.

A lower-bound is obviously 0, so we focus on upper-bound. We know:

E

(
d∏
l=1

(
Xl,(rl,m−1) −Xl,(rl−1,m−1)

))
= m−(d−e)E

(
e∏
l=1

(
Xl,(rl,m−1) −Xl,(rl−1,m−1)

))
.

In the product in the expectation of r.h.s., we know the distribution of each term, since it is the
difference of 2 consecutive order statistics, but we do not know the joint distribution. Using 1, we
know the worst case is the perfect correlation. So we have

E

(
e∏
l=1

(
Xl,(rl,m−1) −Xl,(rl−1,m−1)

))
≤ E

((
X1,(r1,m−1) −X1,(r1−1,m−1)

)e) =

e!m!
(m+ e)! ≤ e!m

−e,
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which gives

E

(
d∏
l=1

(
Xl,(rl,m−1) −Xl,(rl−1,m−1)

))
≤ e!m−d.

To provide a global bound on |P (m, r, c)− PK(m, r, c)|, we address only two cases: 1 coincidence,
and more than 1. The probability of the first case has been computed previously.
For the latter, we know the number of choices of dimension l, interval side εl is finite, and does
not depend on m. The probability of more than 1 coincidence, given the choice of dimensions l
and interval sides εl is less than (M/(m − 2))2. For each coincidence, the contribution to the

value of E
(∏d

l=1
(
Xl,(rl,m−1) −Xl,(rl−1,m−1)

))
is less than d!m−d. So the total contribution is of

order O(m−2).
Then last step is taking into account the value of copula c, which is bounded by M . We finally
get:

md × |P (m, r, c)− PK(m, r, c)| ≤ 2M2d2

m
+O(m−2).

B Independent case study

In the following, we will study

T̂n(m,X) = md ×
∑

r

(
P̂n(m, r,X)−m−d

)2
,

where components of X are globally independent. More precisely, we study V
(
T̂n(m,X)

)
.

Theorem 2 Assuming that X = (X1, · · · , Xd) in Rd has continuous marginals, if the components
are globally independent and if the sample size n tends to infinity,

nE
(
T̂n(m,X)

)
→ Sd1 −m2 + (m− 1)2

(
m2−2m+S1

(m−1)2

)d
+ 2(m− 1)

(
m−S1
m−1

)d
n2V

(
T̂n(m,X)

)
→ 2Sd2 − 2m4+

2(m− 1)4
(
m4−4m3+6m2−4m+S2

(m−1)4

)d
+ 12(m− 1)2

(
m2−2m+S2

(m−1)2

)d
+

8(m− 1)
(
m−S2
m−1

)d
+ 8(m− 1)3

(
m3−3m2+3m−S2

(m−1)3

)d
with

S1 = m4m−1

(2m−1)(2m−2
m−1 ) S2 = m2(4m−3

2m−2)
((2m−1)(2m−2

m−1 ))2 .

A numerical study shows that the first terms are the most important. Furthermore, it is possible
to approximate these first terms using Stirling’s formula. So we have

V
(
T̂n(m,X)

)
' 2n−2 (√πm

8
)d E

(
T̂n(m,X)

)
' n−1

(√
πm
2

)d
.

We can check again the equivalence with Kendall’s τ . We show T̂n(2,X) = τ2, so we check

that E
(
T̂n(2,X)

)
' V (τ) when n tends to infinity.

9



Mean of T̂ Variance of T̂

Sample size

Tr
ue

 / 
th

eo
re

tic
al

30 100 300 1000 3000

0.
00

3
0.

01
0.

03
0.

1
0.

3
1

Dimension 2
Dimension 3
Dimension 4
Dimension 5

Sample size
Tr

ue
 / 

th
eo

re
tic

al
30 100 300 1000 3000

0.
03

0.
3

1
3

10
30

10
0

Dimension 2
Dimension 3
Dimension 4
Dimension 5

Figure 3: Convergence of true value towards theoretical value: for mean and variance
of T̂ (m,X), where components of X are independent, we study the convergence to 0 of absolute
relative error |true/theoretical− 1|. Sub-sample size is 10, scale is logarithmic on both axes. The
convergence becomes slower when dimension increases.

B.1 Numerical verification

We study by simulation the convergence of true value towards theoretical value, for mean and
variance of T̂n(m,X), where components of X are independent. We choose a sub-sample size
equal to 10 and for each dimension in {2, 3, 4, 5}, we plot in figure 3 the absolute relative error
of the theoretical |true/theoretical− 1|: it decreases rapidly when the sample size is between 30
and 3000. For all simulations, we choose a number of sub-samples equal to n×md, and a number
of samples equal to 100.

B.2 Evaluation of AMISE in the independent case

In the asymptotic case, this estimation behaves as a kernel estimation, with bandwidth of or-
der m−1/2. In the independent case, the variance is of order md/2.
So, in the independent case, the AMISE is the same as for a kernel estimation.
We think, without proof, that this case is the worst case for the method we propose. Indeed, with
independence, the exclusion constraints (exactly 1 observation on each hyperplane of {1, · · · ,m}d),
are not very important. That is why we think in other cases it would show better performances
than the kernel estimation. The simulation study corroborates this intuition.
Furthermore, if we use the optimal value of m, to compute T and its variance, then the convergence
speed is of order n(−d−8)/(d+4), which makes it useful for independence testing.

B.3 Proof of Theorem 2

Addressing the behaviour of P̂n(m, r,X) is obviously a bit more difficult than addressing Kendall’s τ ,
which is the case m = d = 2. Now, as far as we know, there is no simple formula for the proba-
bility distribution of Kendall’s τ : neither Hollander and Wolfe [1999], nor the cor.test function
documentation (in the package stats) in R, nor in the package Kendall of the same software, nor

10



the SAS documentation mention such a formula. There exist recursive ones in Best and Gipps
[1974], Valz and Thompson [1994], which can be used only if the sample is small.
That is why we will derive here equivalents of the first two moments of T , for large values of the
sample size.

B.3.1 The U -statistics: reminders and notations

Let h be a measurable function, symmetric in its n arguments. Then if we have a sampleX1, · · · , XN

with n > m, we define the U -statistic Um:

Un = 1(
n
m

) |S|=m∑
S⊂{1,··· ,N}

h
(
XS(1), · · · , XS(m)

)
.

where S(i) denotes the ith element of S.
Furthermore, we define

hc = E (h (x1, · · · , xc, Xc+1, · · · , Xm)) ,

and

σc = V (hc (X1, · · · , Xc)) .

Then E (Um) = h0 and, when n → +∞, n(Um − h0) converges in distribution to N
(
0,m2σ1

)
if σ1 6= 0.
Furthermore, if we have another U -statistic Vn defined by a kernel g, we may also define gc and σc,c:

σc,c = Cov (hc (X1, · · · , Xc) , gc (X1, · · · , Xc)) .

The covariance between Un and Vn converges to σ1,1 when N → +∞.

In the following, for each r, we have a U -statistic P̂n(m, r,X), whose normal convergence we will
use.
As we are in a slightly special case of U -statistics (we are only interested in the case c = 1, but we
study a large number of U -statistics at the same time), one has to adapt the notations. We note:

h(r, x1) = E (Br (x1, X2 · · · , Xn))
σ(r, s) = Cov (h(r, X1), h(s, X1)) .

So we obtain

Proposition 2 If n→∞, one has

• n
(
P̂n(m, r,X)− P (m, r, c))

)
converges in distribution to N

(
0,m2σ(r, r)

)
; if σ(r, r) 6= 0,

• nCov
(
P̂n(m, r), P̂n(m, s,X)

)
→ m2σ(r, s).

This Central Limit Theorem allows us to use the following computation:

Proposition 3 Let X be a vector such thatX  N (0, V ), where the coefficients of V are de-
noted σ(r, s). We study D =

∑
r X

2
r . Then

E (D) =
∑

r
σ(r, r) V (D) = 2

∑
r,s

σ(r, s)2.
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B.3.2 Calculation of the individual covariances

We calculate in the same way the variances and covariances. We consider the first observation, its
vector of ranks, and a given rank r. There are 3 cases:

• Other observations are such that the vector of ranks of the first observation is r,

• Other observations are such that the vector of ranks of the first observation is equal to r for
some dimensions,

• Other observations are such that the vector of ranks of the first observation is different from r
for all dimensions.

We know the probability that the lth coordinate of the first observation reaches rank rl:

P =
(
m− 1
rl − 1

)
xrl−1

1,l (1− x1,l)m−rl = bm−1,rl−1(x1,l),

where bm−1,rl−1 is a Bernstein polynomial, with well-known properties, for example∫ 1

0
bm,r(x)dx = 1

m+ 1 .

We use this to calculate the probability of each one of the three cases:

P
(
Br (x1, X2 · · · , Xn) = 1

m

)
=

1×
d∏
l=1

bm−1,rl−1(x1,l) + 0×
(

1−
d∏
l=1

(1− bm−1,rl−1(x1,l))−
d∏
l=1

bm−1,rl−1(x1,l)
)

+

m− 1
(m− 1)d ×

d∏
l=1

(1− bm−1,rl−1(x1,l)).

One can remark that integrating this probability over x1 gives back the unconditional probability

P
(
Br (X1, X2 · · · , Xn) = 1

m

)
=

1×
∫

[0,1]d

d∏
l=1

bm−1,rl−1(x1,l)dx1 + 1
(m− 1)d−1 ×

∫
[0,1]d

d∏
l=1

(1− bm−1,rl−1(x1,l))dx1 =

1× 1
md

+ 1
(m− 1)d−1 ×

(
1− 1

m

)d
= 1
md−1 .

The conditional mean is

h(r,x1) = 1
m
E (Br (x1, X2 · · · , Xn)) =

1
m
×

(
d∏
l=1

bm−1,rl−1(x1,l) + 1
m(m− 1)d−1 ×

d∏
l=1

(1− bm−1,rl−1(x1,l))
)
.

So, we have to calculate

σ(r, s) = E ([h(r,X1)− E (h(r,X1))]× [h(s,X1)− E (h(s,X1))]) =∫
[0,1]d

[
1
m

∏d
l=1 bm−1,rl−1(x1,l) + 1

m(m−1)d−1

∏d
l=1 (1− bm−1,rl−1(x1,l))− 1

md

]
×[

1
m

∏d
l=1 bm−1,sl−1(x1,l) + 1

m(m−1)d−1

∏d
l=1 (1− bm−1,sl−1(x1,l))− 1

md

] dx1.
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For these covariance computations, we will calculate expressions such as∫ 1

0
bm,r(x)bm,s(x)dx =

(
m
r

)(
m
s

)( 2m
r+s
) × 1

2m+ 1 .

We note

A(m, r, s) =
(
m
r

)(
m
s

)( 2m
r+s
) .

We multiply two sums of three terms. We denote by Di,j the product of terms numbered i in the
first sum and j in the second one.

D1,1 =
∫

[0,1]d

[
1
m ×

∏d
l=1 bm−1,rl−1(x1,l)bm−1,sl−1(x1,l)

]
dx

= 1
m2(2m−1)d ×

∏d
l=1A(m− 1, rl − 1, sl − 1)

D2,2 =
∫

[0,1]d

[
1

m2(m−1)2d−2 ×
∏d
l=1 ((1− bm−1,rl−1(x1,l))(1− bm−1,sl−1(x1,l)))

]
dx

= 1
m2(m−1)2d−2 ×

∏d
l=1

(
1− 2

m + A(m−1,rl−1,sl−1)
2m−1

)
D3,3 =

∫
[0,1]d

[ 1
md

]2
dx

= 1
m2d

D1,2 =
∫

[0,1]d
1

m2(m−1)d−1 ×
∏d
l=1 (bm−1,rl−1(x1,l)− bm−1,rl−1(x1,l)bm−1,sl−1(x1,l))dx

= 1
m2(m−1)d−1 ×

∏d
l=1

(
1
m −

A(m−1,rl−1,sl−1)
2m−1

)
D1,3 =

∫
[0,1]d

[
1
m ×

∏d
l=1 bm−1,rl−1(x1,l)× 1

md

]
dx

= 1
m2d+1

D2,3 = 2
∫

[0,1]d

[
1

md+1(m−1)d−1 ×
∏d
l=1 (1− bm−1,rl−1(x1,l))

]
dx

= m−1
m2d+1

It is clear that D1,2 = D2,1, D1,3 = D3,1 and D2,3 = D3,2, so we write simply 2D1,2, etc.
We remark that

D3,3 − 2D1,3 − 2D2,3 = −m−2d.

B.3.3 Calculation of the sum of the covariances

We know

σ(r, s) = D1,1 +D2,2 +D3,3 + 2D1,2 − 2D1,3 − 2D2,3 =
D1,1 +D2,2 + 2D1,2 −m−2d,

so

E
(
T̂n(m,X)

)
=
∑

r
σ(r, r) =

∑
r

(D1,1(r, r) +D2,2(r, r) + 2D1,2(r, r))−m−d.

In a similar way

V
(
T̂n(m,X)

)
= 2

∑
r,s

σ2(r, s) = 2
∑
r,s

(
D1,1(r, s) +D2,2(r, s) + 2D1,2(r, s)−m−2d)2 =

2
∑
r,s

 D2
1,1(r, s) +D2

2,2(r, s) + 4D2
1,2(r, s) +m−4d

+2D1,1D2,2 + 4D1,1D1,2 + 4D2,2D1,2
−2m−2d [D1,1(r, s) +D2,2(r, s) + 2D1,2(r, s)]

 =

2
∑
r,s

(
D2

1,1(r, s) +D2
2,2(r, s) + 6D2

1,2(r, s) + 4D1,1D1,2 + 4D2,2D1,2
)
− 2m−2d.
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We will need to know some sums involving A(m, r, s), they are proved in B.4.1.∑
r

A(m, r, s) = 2m+ 1
m+ 1 ,

∑
r

A(m, r, r) = 4m(2m
m

) , ∑
r,s

(A(m, r, s))2 =
(4m+1

2m
)

(
(2m
m

)
)2

The sums of the terms Di,j are sums of products, we transform them easily into products of sums.
For example ∑

r,s
D2

1,1 = 1
m4(2m− 1)2d ×

∑
r,s

(
d∏
l=1
A2(m− 1, rl − 1, sl − 1)

)
=

1
m4(2m− 1)2d ×

(∑
r,s

A2(m− 1, r − 1, s− 1)
)d

.

All of these sums (3 sums of degree 1 with r = s, 3 sums of degree 1, 3 sums of squares, and
3 sums of double products) are calculated in B.4.2. Using these sums, the proof of Theorem 2 is
obvious.

B.4 Tools for the proof of Theorem 2

B.4.1 Combinatorial computations

We need to compute some sums involving A(m, r, s). We first remark:

A(m, r, s) =
(
m
r

)(
m
s

)( 2m
r+s
) =

(
r+s
r

)(2m−r−s
m−r

)(2m
m

) .

We show

Proposition 4 If m > 1 and 0 ≤ s ≤ m:∑
r

(
r + s

r

)(
2m− r − s
m− r

)
=
(

2m+ 1
m

)
∑
r

(
2r
r

)(
2m− 2r
m− r

)
= 4m

∑
r,s

((
r + s

r

)(
2m− r − s
m− r

))2
=
(

4m+ 1
2m

)
.

These sums are very similar to convolutions, so it is interesting to use generating functions [Wilf,
1994]. They are quite simple for the first series:∑

n

(
n+ k

n

)
xn = 1

(1− x)k+1∑
n

(
2n
n

)
xn = 1√

1− 4x
.

It is also possible to demonstrate the first identity using combinatorial arguments, counting the
number of paths joining two opposite corners of a rectangle with sides m and m + 1. The last
identity is more difficult: one needs to use the powerful tools developed in Petkovšek et al. [1996].
As the sum is over 2 variables, one needs to use the package multisum [Wegschaider, 1997]. The
code proving identity is

Get["C:\Users\Jerome\Desktop\Celine\MultiSum.m"]

FindRecurrence[ (Binomial[r+s,r]*Binomial[2*m-r-s,m-r])^2,

m, {r,s}, 4 ]

SumCertificate[%]

CheckRecurrence[ %, Binomial[4*m+1,2*m] ]
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B.4.2 Sums of covariance terms

We summarize here the sums of terms Di,j . These sums are all computed in the same way, and
they are compulsory to check the other computations.∑

r D1,1(r, r) = 1
m2 ×Rd1∑

r D2,2(r, r) =
(
m−1
m

)2 ×
(
m−2+R1
(m−1)2

)d
∑

r D1,2(r, r) = m−1
m2 ×

(
1−R1
m−1

)d∑
r,s D1,1 = 1

m2∑
r,s D2,2 =

(
m−1
m

)2∑
r,s D1,2 = m−1

m2∑
r,s D

2
1,1 = 1

m4 ×Rd2∑
r,s D

2
2,2 =

(
m−1
m

)4 ×
(
m2−4m+6− 4

m +R2
(m−1)4

)d
∑

r,s D
2
1,2 = (m−1)2

m4 ×
(

1− 2
m +R2

(m−1)2

)d∑
r,s D1,1D2,2 =

∑
r,s D

2
1,2∑

r,s D1,1D1,2 = m−1
m4 ×

( 1
m−R2
m−1

)d
∑

r,s D2,2D1,2 = (m−1)3

m4 ×
(
m−3+ 3

m−R2
(m−1)3

)d

,

with

R2 =
(4m−3

2m−2
)(

(2m− 1)
(2m−2
m−1

))2 R1 = 4m−1

(2m− 1)
(2m−2
m−1

) .
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