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The Universal Scalability Law is used to quantify the scalability of hardware
or software systems. It uses sparse measurements from an existing system to
predict the throughput for different loads and can be used to learn more about the
scalability limitations of the system. This document introduces the ‘usl’ package
for R and shows how easily it can be used to perform the relevant calculations.
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1 Version

This document describes version 1.5.0 of the ‘usl’ package.
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2 Introduction

Every system architect faces the challenge to deliver an application system that meets the
requirements. A critical point during the design is the scalability of the system.

Informally scalability can be defined as the ability to support a growing amount of work.
A system is said to scale if it handles the changing demand or hardware environment in a
reasonable efficient and practical way.

Scalability can have two facets with respect to a computer system. On the one hand, there
is software scalability where the focus is about how the system behaves when the demand
increases, i.e., when more users are using it or more requests need to be handled. On the
other hand, there is hardware scalability where the behavior of an application system running
on larger hardware configurations is investigated.

The Universal Scalability Law (USL) has been developed by Dr. Neil J. Gunther to allow the
quantification of scalability for the purpose of capacity planning. It provides an analytic
model for the scalability of a computer system.

A comprehensive introduction to the Universal Scalability Law including the mathematical
grounding has been published in [Gun07].

3 Background

Dr. Gunther shows in [Gun07] how the scalability of every computer system can be described
by a common rational function. This function is universal in the sense that it does not
assume any specific type of software, hardware or system architecture.

Equation 1 has the Universal Scalability Law where C (N ) = X (N )/X (1) is the relative capacity
given by the ratio of the measured throughput X (N ) for load N to the throughput X (1) for
load 1.

C (N ) =
N

1+σ(N −1) +κN (N −1)
(1)

The denominator consists of three terms that all have a specific physical interpretation:

Concurrency: The first term models linear scalability that would exist if the different parts
of the system (processors, threads . . . ) could work without any interference
caused by their interaction.

Contention: The second term of the denominator refers to the contention between differ-
ent parts of the system. Most common are issues caused by serialization or
queueing effects.
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Coherency: The last term represents the delay induced by keeping the system in a coher-
ent and consistent state. This is necessary when writable data is shared in
different parts of the system. Predominant factors for such a delay are caches
implemented in software and hardware.

In other words: σ and κ represent two concrete physical issues that limit the achievable
speedup for parallel execution. Note that the contention and coherency terms grow linearly
respectively quadratically with N . As a consequence their influence becomes larger with an
increasing N .

Due to the quadratic characteristic of the coherency term there will be a point where the
throughput of the system will start to go retrograde, i.e., will start to decrease with further
increasing load.

In [Gun07]Dr. Gunther proves that Equation 1 is reduced to Amdahl’s Law forκ= 0. Therefore
the Universal Scalability Law can be seen as a generalization of Amdahl’s Law for speedup in
parallel computing.

We could solve this nonlinear equation to estimate the coefficientsσ and κ using a sparse
set of measurements for the throughput X i at different loads Ni . The computations used to
solve the equation for the measured values are discussed in [Gun07].

The ‘usl’ package has been created to subsume the computation into one simple function call.
This greatly reduces the manual work that previously was needed to perform the scalability
analysis.

The function provided by the package also includes some sanity checks to help the analyst
with the data quality of the measurements.

Note that in [Gun07] the coefficients are calledσ andκwhen hardware scalability is evaluated
but α and β when software scalability is analyzed. The ‘usl’ package only uses sigma and
kappa as names of the coefficients.

4 Examples of Scalability Analysis

The following sections present some examples of how the ‘usl’ package can be used when
performing a scalability analysis. They also explain typical function calls and their argu-
ments.
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4.1 Case Study: Hardware Scalability

The ‘usl’ package contains a demo dataset with benchmark measurements from a raytracer
software1. The data was gathered on an SGI Origin 2000 with 64 R12000 processors running
at 300 MHz.

A number of reference images with different levels of complexity were computed for the
benchmark. The measurements contain the average number of calculated ray-geometry
intersections per second for the number of used processors.

It is important to note that with changing hardware configurations the relative number
of homogeneous application processes per processor is to be held constant. So when k
application processes were used for the N processor benchmark then 2k processes must be
used to get the result for 2N processors.

Start the analysis by loading the ‘usl’ package and look at the supplied dataset.

R> library(usl)

R> data(raytracer)

R> raytracer

processors throughput

1 1 20

2 4 78

3 8 130

4 12 170

5 16 190

6 20 200

7 24 210

8 28 230

9 32 260

10 48 280

11 64 310

The data shows the throughput for different hardware configurations covering the available
range from one to 64 processors. We can easily see that the benefit for switching from
one processor to four processors is much larger than the gain for upgrading from 48 to 64
processors.

Create a simple scatterplot to get a grip on the data.

R> plot(throughput ~ processors, data = raytracer)

1http://sourceforge.net/projects/brlcad/
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Figure 1 shows the throughput of the system for the different number of processors. This
plot is a typical example for the effects of diminishing returns, because it clearly shows how
the benefit of adding more processors to the system gets smaller for higher numbers of
processors.
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Figure 1: Measured throughput of a raytracing software in relation to the number of available
processors

Our next step builds the USL model from the dataset. The usl() function creates an S4
object that encapsulates the computation.

The first argument is a formula with a symbolic description of the model we want to analyze.
In this case we would like to analyze how the “throughput” changes with regard to the
number of “processors” in the system. The second argument is the dataset with the measured
values.

R> usl.model <- usl(throughput ~ processors, data = raytracer)

The model object can be investigated with the summary() function.

R> summary(usl.model)

Call:

usl(formula = throughput ~ processors, data = raytracer)

Scale Factor for normalization: 20
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Efficiency:

Min 1Q Median 3Q Max

0.242 0.408 0.500 0.760 1.000

Residuals:

Min 1Q Median 3Q Max

-12.93 -5.23 3.08 9.00 15.25

Coefficients:

Estimate Std. Error

sigma 0.05002394 0.00320929

kappa 0.00000471 0.00006923

Residual standard error: 9.86 on 9 degrees of freedom

Multiple R-squared: 0.988, Adjusted R-squared: 0.987

The output of the summary() function shows different types of information.

• First of all it includes the call we used to create the model.

• It also includes the scale factor used for normalization. The scale factor is used inter-
nally to adjust the measured values to a common scale. It is equal to the value X (1) of
the measurements.

• The efficiency tells us something about the ratio of useful work that is performed per
processor. It is obvious that two processors might be able to handle twice the work
of one processor but not more. Calculating the ratio of the workload per processor
should therefore always be less or equal to 1. In order to verify this, we can use the
distribution of the efficiency values shown in the summary.

• We are performing a regression on the data to calculate the coefficients and therefore
we determine the residuals for the fitted values. The distribution of the residuals is
also given as part of the summary.

• The coefficientsσ and κ are the result that we are essentially interested in. They tell
us the magnitude of the contention and coherency effects within the system.

• Finally R 2 estimates how well the model fits the data. We can see that the model is
able to explain more than 98 percent of the data.

The function efficiency() extracts the efficiency values from the model and allows us to
have a closer look at the specific efficiencies of the different processor configurations.

R> efficiency(usl.model)

1 4 8 12 16 20 24 28 32 48 64

1.000 0.975 0.812 0.708 0.594 0.500 0.438 0.411 0.406 0.292 0.242
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A bar plot is useful to visually compare the decreasing efficiencies for the configurations
with an increasing number of processors. Figure 2 shows the output diagram.

R> barplot(efficiency(usl.model), ylab = "efficiency / processor",

+ xlab = "processors")
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Figure 2: Rate of efficiency per processor for different numbers of processors running the
raytracing software

The efficiency can be used for a first validation and sanity check of the measured values.
Values larger than 1.0 usually need a closer investigation. It is also suspicious if the efficiency
gets bigger when the load increases.

The model coefficientsσ and κ can be retrieved with the coef() function.

R> coef(usl.model)

sigma kappa

0.05002394 0.00000471

The corresponding confidence intervals for the model coefficients are returned by calling
the confint() function.

R> confint(usl.model, level = 0.95)
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2.5 % 97.5 %

sigma 0.044207 0.05584

kappa -0.000121 0.00013

Earlier releases of the ‘usl’ package used bootstrapping to estmate the confidence intervals.
This has been changed since bootstrapping with a small sample size may not give the desired
accuracy. Currently the confidence intervals are calculated from the standard errors of the
parameters.

To get an impression of the scalability function we can use the plot() function and create a
combined graph with the original data as dots and the calculated scalability function as a
solid line. Figure 3 has the result of that plot.

R> plot(throughput ~ processors, data = raytracer, pch = 16)

R> plot(usl.model, add = TRUE)
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Figure 3: Throughput of a raytracing software using different numbers of processors

SGI marketed the Origin 2000 with up to 128 processors. Let’s assume that going from 64
to 128 processors does not introduce any additional limitations to the system architecture.
Then we can use the existing model and forecast the system throughput for other numbers
like 96 and 128 processors using the predict() function.

R> predict(usl.model, data.frame(processors = c(96, 128)))

1 2

331 345
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We can see from the prediction that there is still an increase in throughput achievable with
that number of processors. So we use the peak.scalability() function now to determine
the point where the maximum throughput is reached.

R> peak.scalability(usl.model)

[1] 449

According to the model, the system would achieve its highest throughput with 449 processors.
This is certainly a result that could not easily be deduced from the original dataset.

4.2 Case Study: Software Scalability

In this section we will perform an analysis of a SPEC benchmark. A Sun SPARCcenter 2000
with 16 CPUs was used in October 1994 for the SDM91 benchmark2. The benchmark simu-
lates a number of users working on a UNIX server (editing files, compiling . . . ) and measures
the number of script executions per hour.

First, select the demo dataset with the data from the SPEC SDM91 benchmark.

R> library(usl)

R> data(specsdm91)

R> specsdm91

load throughput

1 1 64.9

2 18 995.9

3 36 1652.4

4 72 1853.2

5 108 1828.9

6 144 1775.0

7 216 1702.2

The data provides the measurements made during the benchmark. The column “load”
shows the number of virtual users that were simulated by the benchmark and the column
“throughput” has the measured number of script executions per hour for that load.

Next we create the USL model for this dataset by calling the usl() function. Again we specify
a symbolic description of the model and the dataset with the measurements. But this time
we choose a different method for the analysis.

2http://www.spec.org/osg/sdm91/results/results.html
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R> usl.model <- usl(throughput ~ load, specsdm91, method = "nlxb")

There are currently three possible values for the method parameter:

default: The default method uses a transformation into a 2nd degree polynomial. It can
only be used if the data set contains a value for the normalization where the
“throughput” equals 1 for one measurement. This is the original procedure intro-
duced in chapter 5.2.3 of [Gun07].

nls: This method uses the nls() function of the stats package for a nonlinear regression
model. It estimates not only the coefficientsσ and κ but also the scale factor for
the normalization. The nonlinear regression uses constraints for its parameters
which means the “port” algorithm is used internally to solve the model. So all
restrictions of the “port” algorithm apply.

nlxb: A nonlinear regression model is also used in this case. But instead of the nls()

function it uses the nlxb() function from the nlmrt package (see [Nas13]). This
method also estimates both coefficients and the normalization factor. It is ex-
pected to be more robust than the nls method.

Keep in mind that if there is no measurement where “load” equals 1 then the default method
does not work and an error message will be printed. In this case one of the remaining
methods must be used.

We also use the summary() function to look at the details for the analysis.

R> summary(usl.model)

Call:

usl(formula = throughput ~ load, data = specsdm91, method = "nlxb")

Scale Factor for normalization: 90

Efficiency:

Min 1Q Median 3Q Max

0.0876 0.1626 0.2860 0.5624 0.7211

Residuals:

Min 1Q Median 3Q Max

-81.7 -48.3 -25.1 29.5 111.1

Coefficients:

Estimate Std. Error

sigma 0.0277295 0.0021826

kappa 0.0001044 0.0000172
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Residual standard error: 74.1 on 5 degrees of freedom

Multiple R-squared: 0.99, Adjusted R-squared: 0.987

Looking at the coefficients we notice that σ is about 0.028 and κ is about 0.0001. The
parameter σ indicates that about 2.8 percent of the execution time is strictly serial. Note
that this serial fraction is also recognized in Amdahl’s Law.

We hypothesize that a proposed change to the system — maybe a redesign of the cache
architecture or the elimination of a point to point communication — could reduce κ by half
and want to predict how the scalability of the system would change.

We can calculate the point of maximum scalability for the current system and for the hypo-
thetical system with the peak.scalability() function.

R> peak.scalability(usl.model)

[1] 96.5

R> peak.scalability(usl.model, kappa = 0.00005)

[1] 139

The function accepts the optional arguments sigma and kappa. They are useful to do a
what-if analysis. Setting these parameters override the calculated model parameters and
show how the system would behave with a different contention or coherency coefficient.

In this case we learn that the point of peak scalability would move from around 96.5 to about
139 if we would be able to actually build the system with the assumed optimization.

Both calculated scalability functions can be plotted using the plot() or curve() functions.
The following commands create a graph of the original data points and the derived scalability
functions. To completely include the scalability of the hypothetical system, we have to
increase the range of the plotted values with the first command.

R> plot(specsdm91, pch = 16, ylim = c(0, 2500))

R> plot(usl.model, add = TRUE)

R> cache.scale <- scalability(usl.model, kappa = 0.00005)

R> curve(cache.scale, lty = 2, add = TRUE)

We used the function scalability() here. This function is a higher order function returning
a function and not just a single value. That makes it possible to use the curve() function to
plot the values over the specific range.

11



●

●

●

● ●
●

●

0 50 100 150 200

0
50

0
10

00
20

00

load

th
ro

ug
hp

ut

Figure 4: The result of the SPEC SDM91 benchmark for a SPARCcenter 2000 (dots) together
with the calculated scalability function (solid line) and a hypothetical scalability
function (dashed line)

Figure 4 shows the measured throughput in scripts per hour for a given load, i.e., the number
of simulated users. The solid line indicates the derived USL model while the dashed line
resembles our hypothetical system using the proposed optimization.

From the figure we can see that the scalability really peaks at one point. Increasing the
load beyond that point leads to retrograde behavior, i.e., the throughput decreases again.
As we have calculated earlier, the measured system will reach this point sooner than the
hypothetical system.

We can combine the scalability() and the peak.scalability() functions to get the pre-
dicted throughput values for the peak values.

R> scalability(usl.model)(peak.scalability(usl.model))

[1] 1884

R> scf <- scalability(usl.model, kappa = 0.00005)

R> scf(peak.scalability(usl.model, kappa = 0.00005))

[1] 2162

This illustrates how the Universal Scalability Law can help to decide if the system currently is
more limited by contention or by coherency issues and also what impact a proposed change
would have.
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The predict() function can also be used to calculate a confidence bands for the scalability
function at a specified level. To get a smoother graph it is advisable to predict the values for a
higher number of points. Let’s start by creating a data frame with the required load values.

R> load <- with(specsdm91, expand.grid(load = seq(min(load),

+ max(load))))

We use the data frame to determine the fitted values and also the upper and lower confidence
bounds at the requested level. The result will be a matrix with column names fit for the
fitted values, lwr for the lower and upr for the upper bounds.

R> fit <- predict(usl.model, newdata = load, interval = "confidence",

+ level = 0.95)

The matrix is used to define the coordinates of a polygon containing the area between the
lower and the upper bounds. The polygon connects the points of the lower bounds from
lower to higher values and then back using the points of the upper bounds.

R> usl.polygon <- matrix(c(load[, 1], rev(load[, 1]),

+ fit[, "lwr"], rev(fit[, "upr"])), nrow = 2 * nrow(load))

The plot is composed from multiple single plots. The first plot initializes the canvas and
creates the axis. Then the polygon is plotted using a gray area. In the next step the measured
values are added as points. Finally a solid line is plotted to indicate the fitted scalability
function.

R> plot(specsdm91, ylim = c(0, 2000), xlab = names(specsdm91)[1],

+ ylab = names(specsdm91)[2], type = "n")

R> polygon(usl.polygon, border = NA, col = "gray")

R> points(specsdm91, pch = 16)

R> lines(load[, 1], fit[, "fit"])

See Figure 5 for the entire plot.

Another way to illustrate the impact of the parametersσ and κ on the scalability is by looking
at the achievable speedup when a fixed load is parallelized. A naive estimation would be
that doubling the degree of parallelization should cut the execution time in halve.

Unfortunately it doesn’t work this way. In general there is a range where doubling the
parallelization will actually improve the execution time. But the improvement will get smaller
and smaller when the degree of parallelism is increased further. This is also an effect of
diminishing returns as already seen in subsection 4.1. The real execution time is in fact the
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Figure 5: The result of the SPEC SDM91 benchmark with confidence bands for the scalability
function at the 95% level

sum of the ideal execution time and the overhead for dealing with contention and coherency
delays.

Dr. Gunther shows in [Gun08]how the total execution time of a parallelized workload depends
on the degree of parallelism p and the coefficients σ and κ of the associated USL model.
Equation 26 in his paper identifies the magnitude of the three components — given as
fractions of the serial execution time T1 — that account for the total execution time of the
parallelized workload.

Ti d e a l =
1

p
T1 (2)

Tc o n t e n t i o n =σ
�

p −1

p

�

T1 (3)

Tc o he r e n c y = κ
1

2
(p −1)T1 (4)

The function overhead() can be used to calculate the correspondent fractions for a given
model. The function has the same interface as the predict() function. Calling it with only
the model as argument will calculate the overhead for the fitted values. It can also be called
with a data frame as second argument. Then the data frame will be used to determine the
values for the calculation.
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Let’s use our current model to calculate the overhead for a load of 10, 20, 100 and 200
simulated users. We create a data frame with the number of users and use the overhead()

function to estimate the overhead.

R> load <- data.frame(load = c(10, 20, 100, 200))

R> ovhd <- overhead(usl.model, newdata = load)

R> ovhd

ideal contention coherency

1 0.100 0.0250 0.000470

2 0.050 0.0263 0.000991

3 0.010 0.0275 0.005166

4 0.005 0.0276 0.010384

We can see that the ideal execution time for running 10 jobs in parallel is 1/10 of the execution
time of running the jobs unparallelized. To get the total fraction we have to add the overhead
for contention (2.5%) and for coherency delays (0.047%). This gives a total of 12.54%. So
with 10 jobs in parallel we are only about 8 times faster than running the same workload in a
serial way.

Equation 3 shows that the percentage of time spent on dealing with contention will converge
to the value ofσ. Equation 4 explains that coherency delays will grow beyond any limit if the
degree of parallelism is large enough. This corresponds to the observation that adding more
parallelism will sometimes make performance worse.

A stacked barplot can be used to visualize how the different effects change with an increasing
degree of parallelism. Note that the result matrix must be transposed to match the format
needed for for the barplot() command.

R> barplot(height = t(ovhd), names.arg = load[, 1], xlab = names(load),

+ legend.text = TRUE)

Figure 6 shows the resulting plot. It clearly shows the decrease in ideal execution time when
the degree of parallelism is increased. It also shows how initially almost only contention
contributes to the total execution time. For higher degrees of parallelism the impact of
coherency delays grows. Note how the difference in ideal execution time between 100 and
200 parallel jobs effectively has no effect on the total execution time.
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