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1 Introduction

This document provides examples for using the wildlifeDI package for in-
vestigating dynamic interaction patterns in wildlife telemetry data. Dynamic
interaction can be defined as the inter-dependency in the movements of two indi-
viduals. Traditional methods for measuring dynamic interaction treat telemetry
data as a spatial point-pattern, and examine interactions based on distances be-
tween paired points (i.e., those simultaneous in time) vs. expectations based
on the distribution of distances between all points. Newer methods attempt to
measure dynamic interaction as the cohesiveness (or similarity) in correspond-
ing movement segments. Several measures of dynamic interaction are included
in this suite of tools. In the following sections I will outline the functionality
of each method, along with some guidelines and tips for where and when to
use each method, and how to interpret results. These tools assume one has a
working knowledge of the adehabitat package and classes (i.e., ltraj objects)
used for working with movement data in R (Calenge 2006).

Finally, please notify me if you find a bug/fix that needs to be looked at!

1.1 Some Terminology

Before we go any further it is imperative that we clarify some terminology that
will be used in the following explanations (Table 1).

2 Data

We examine a GPS telemetry dataset representing the movement of two deer
over a one week interval. These data are provided as part of the wildlifeDI
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Table 1: Terminology used in describing dynamic interaction methods.
Symbol Explanation

α or β Individuals (telemetry data)
fix A telemetry record (spatial location and time stamp)
segment The vector connecting two consecutive fixes
Tαβ Temporally simultaneous fixes, based on a time threshold tc
Sαβ Spatially proximal fixes, based on a distance threshold dc
STαβ Spatially proximal and temporally simultaneous fixes, based on dc

and tc

package, and are a subset of the data set explored in the case study in Long
et al. (2014). For more information on how the deer data was collected or for
citation please see the papers by Webb et al. (2009, 2010).

library(wildlifeDI)

data(deer)

deer

##

## *********** List of class ltraj ***********

##

## Type of the traject: Type II (time recorded)

## Irregular traject. Variable time lag between two locs

##

## Characteristics of the bursts:

## id burst nb.reloc NAs date.begin date.end

## 1 37 37 551 0 2005-03-08 00:03:00 2005-03-13 23:47:00

## 2 38 38 567 0 2005-03-08 00:02:00 2005-03-13 23:47:00

##

##

## infolocs provided. The following variables are available:

## [1] "pkey"

As you can see, there are two individuals contained in this dataset, which
are named based on their ids: id = 37 and id = 38. The deer data represent
the movement of these two individual deer over a one week period, with GPS
fixes attempted at a 15 minute interval.

In order to utilize the tools, each individuals movement trajectory needs to
be stored asa seperate ltraj object, which is simple to do. Here we simply
extract the 1st and 2nd bursts in order to extract seperate ltraj objects for
each individual.

deer37 <- deer[1]

deer37

##

## *********** List of class ltraj ***********

##
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## Type of the traject: Type II (time recorded)

## Irregular traject. Variable time lag between two locs

##

## Characteristics of the bursts:

## id burst nb.reloc NAs date.begin date.end

## 1 37 37 551 0 2005-03-08 00:03:00 2005-03-13 23:47:00

##

##

## infolocs provided. The following variables are available:

## [1] "pkey"

deer38 <- deer[2]

deer38

##

## *********** List of class ltraj ***********

##

## Type of the traject: Type II (time recorded)

## Irregular traject. Variable time lag between two locs

##

## Characteristics of the bursts:

## id burst nb.reloc NAs date.begin date.end

## 1 38 38 567 0 2005-03-08 00:02:00 2005-03-13 23:47:00

##

##

## infolocs provided. The following variables are available:

## [1] "pkey"

2.1 Checking for temporal overlap

Before embarking on analysis of dynamic interaction, it is worthwhile to check
whether two telemetry datasets overlap temporally. This can be easily done
using the checkTO funciton. The function tells us first if the two datasets overlap
temporally (a necessary condition for spatial-temporal interaction), then it gives
us the timings of the start and end of the overlap period.

checkTO(deer37,deer38)

## $TO

## [1] TRUE

##

## $TOstart

## [1] "2005-03-08 00:03:00 GMT"

##

## $TOend

## [1] "2005-03-13 23:47:00 GMT"

Here we can clearly see that the two deer overlap for essentially the whole
period, as these data were hand picked for this purpose. However, this will not
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always be the case, and thus checkTO can be a useful function for identifying
if, and when, two telemetry datasets overlap temporally.

2.2 Static interaction analysis

Static interaction can be defined broadly as the spatial overlap of two individual
home ranges, or more recently, as the volume of intersection between two indi-
vidual utilization distributions (Macdonald et al. 1980, Millspaugh et al. 2004).
It is often useful to examine static interaction to investigate the potential for
dynamic interactions to exist. Here we investigate the simpler case of proportion
of home range overlap, to test for the potential fordynamic interaction between
deer37 and deer38. The proportion of overlap is calculated simply as:

SI =
HRα ∩HRβ
HRα ∪HRβ

where HR refers to the corresponding home range area. To compute the indi-
vidual home ranges, the 95% volume contour of the kernel density estimate will
be used, as this is easily computed in the adehabitatHR package. To compute
these metrics we will use the adehabitatHR and rgeos packages, so please make
sure they are installed on your machine.

library(adehabitatHR)

## Loading required package: sp

## Loading required package: deldir

## deldir 0.1-7

## Loading required package: ade4

## Loading required package: adehabitatMA

## Loading required package: adehabitatLT

## Loading required package: CircStats

## Loading required package: MASS

## Loading required package: boot

library(rgeos)

## rgeos version: 0.3-8, (SVN revision 460)

## GEOS runtime version: 3.4.2-CAPI-1.8.2 r3921

## Polygon checking: TRUE

#convert ltraj to SpatialPoints - required for kde

pts37 <- SpatialPoints(ld(deer37)[,1:2])

pts38 <- SpatialPoints(ld(deer38)[,1:2])

#compute kernel UD surface - use default method

# for obtaining h parameter

kde37 <- kernelUD(pts37)

kde38 <- kernelUD(pts38)

#extract 95% volume contour for HR analysis

hr37 <- getverticeshr(kde37,95)

hr38 <- getverticeshr(kde38,95)

#plot

plot(hr38)

plot(hr37,border="red",add=T)
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#Compute SI index

gArea(gIntersection(hr37,hr38))/gArea(gUnion(hr37,hr38))

## [1] 0.6391133

Here we can see there is substantial overlap in home ranges between these
two individuals, and thus some would suggest that this may be evidence of likely
dynamic interaction, which is what we will explore further. NOTE: The home
ranges we have computed here (saved as the objects hr37 and hr38) will be
used in later analysis.

2.3 Obtaining Simultaneous Fixes - Tαβ

Measurement of dynamic interaction often requires the identification of those
fixes that are deemed to be simultaneous in time (Tαβ) based on some time
tolerance threshold - tc. As this is rarely the case in real datasets, the func-
tion GetSimultaneous was deveoped to extract simultaneous fixes from two
movement datasets. The tolerance parameter (tc) can be used to allow the
times to deviate slightly and still be considered simultaneous. Note that that
ltraj objects, despite displaying date-time formats, measure times in seconds
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and thus the tc argument is given in seconds. The documentation for the
GetSimultaneous function tells us to pass in two trajectories, and a tc argu-
ment. In this example we will use 7.5 minutes as tc, which is 1/2 the sampling
interval (which is generally a good starting point) of 15 minutes. This means
that any two fixes that are within 7.5 minutes of eachother are deemed simul-
taneous. The result of the GetSimultaneous function is a list with two ltraj

objects which can be extracted.

deers <- GetSimultaneous(deer37,deer38,tc=7.5*60)

deer37.sim <- deers[1]

deer38.sim <- deers[2]

deer37.sim

##

## *********** List of class ltraj ***********

##

## Type of the traject: Type II (time recorded)

## Irregular traject. Variable time lag between two locs

##

## Characteristics of the bursts:

## id burst nb.reloc NAs date.begin date.end

## 1 37 37 546 0 2005-03-08 00:03:00 2005-03-13 23:47:00

##

##

## infolocs provided. The following variables are available:

## [1] "pkey"

deer38.sim

##

## *********** List of class ltraj ***********

##

## Type of the traject: Type II (time recorded)

## Irregular traject. Variable time lag between two locs

##

## Characteristics of the bursts:

## id burst nb.reloc NAs date.begin date.end

## 1 38 38 546 0 2005-03-08 00:02:00 2005-03-13 23:47:00

##

##

## infolocs provided. The following variables are available:

## [1] "pkey"

As you can now see, these trajectories have an equal number (nb.reloc =

546) of simultaneous fixes based on the supplied tc value of 7.5 minutes. Also,
recall that in the original data deer37 and deer38 contained 551 and 567 fixes,
respectively. However, as we just demonstrated only 546 of these fixes were
deemed to be simultaneous. The Function GetSimultaneous is used internally
with most methods, so it is generally not used on its own, however it can be
useful to obtain simultaneous fixes for other analyses, which is why it is included
here.
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3 Measuring Dynamic Interaction

3.1 Prox - Proximity analysis (Bertrand et al. 1996)

Proximity analysis can be a useful, simple way to examine attraction in wildlife
telemetry studies. Of interest is determining the proportion of the Tαβ (simul-
taneous fixes) that are STαβ (simultaneous and proximal fixes) based on the
given distance threshold dc. It is simply calculated as:

Prox =
Tαβ
STαβ

Further, it can be useful to measure the variability in proximity through time.
Thus, simply creating a time-series graphic of dαβ can be of interest.

The function Prox can be used to implement proximity analysis in R. It
requires that the user define tc to be passed to the function GetSimultaneous.
The Prox function also requires the user to pass in an appropriate dc value
for determining the spatial threshold at which fixes are proximal. Throughout
this analysis we use a tc of 7.5 minutes and dc of 50 meters. Note: the spatial
coordinates of the deer data are stored in UTM format making meters the
appropriate spatial unit.

Prox(deer37, deer38, tc=7.5*60, dc=50)

## [1] 0.4139194

Here the Prox statistic is 0.4139, an indication that there is definitely attrac-
tion by this pair. A Prox value of 0.4139 means that 41.39% of the simultaneous
fixes were within the defined distance threshold dc (50 m) of each other. We
will also compute the proximity for each simultaneous fix stored in a dataframe
by setting the option local = TRUE.

prox.df <- Prox(deer37, deer38, tc=7.5*60, dc=50, local=TRUE)

plot(prox.df$date,prox.df$prox,type="l")
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We can use this graphic to examine the local-scale variation in proximity
between the two deer. For instance, it appears the two deer remained close
together from mid-day Thursday until around Sunday morning. Examining
temporal variation in Prox can be useful for exploring temporal covariates as-
sociated with attraction behaviour.

3.2 Mapping contacts

Given telemetry data, of interest is to create a map of where contacts occur
across the landscape. The most straightforward way to do this is to first iden-
tify which fixes are deemed a contact (i.e., as with Prox), then to map these
points. The function contacts facilitates mapping of contacts, where a contact
point is defined as the mid-point of the straight-line between two fixes that are
determined to be a contact (based on thresholds dc and tc).

The contacts function returns a SpatialPointsDataFrame which can be
used to map contact locations. For more information on these types of ’Spatial’
obects see help(sp).

spts <- contacts(deer37,deer38,tc=7.5*60, dc=50)

plot(spts)
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Here we can see that there are some hot-spots (or clusters) where contacts
appear on the landscape. It is unknown if these hot-spots are significant, or
unexpected, based on the patterns of the original telemetry data. Mapping
contacts is still an understudied area of dynamic interaction analysis and more
research is needed into how best to use and interpret maps of contacts. Fur-
ther, research into how contact data can be linked to underlying environmental
variables is warranted.

3.3 Ca - Coefficent of association (Cole 1949, Bauman
1998)

The coefficient of association (Ca) statistic measures the proportion of fixes that
are STαβ based on the given distance threshold dc. It is simply calculated as:

Ca =
2AB

A+B

where AB is the number of STαβ fixes, and A and B are the number of fixes in
α and β respectively. It has been suggested in the literature that a cut-off of
0.5 can be used to identify attraction (Ca > 0.5) and avoidance (Ca < 0.5).

The function Ca can be used to implement the Ca statistic in R. Again, we
use threshold values of tc = 7.5 minutes and dc = 50 meters.
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Ca(deer37, deer38, tc=7.5*60, dc=50)

## [1] 0.4042934

Here the Ca statistic is 0.4043, an indication that there is moderate attrac-
tion by this pair. However, the Ca value is not > 0.5 and we would not expect
attraction based on the literature which suggests only Ca > 0.5 as attraction.
However, based on the Prox index, we know that some attraction behaviour
occurs, and Ca corroborates this evidence with a Ca = 0.4043 which is near 0.5.

3.4 Don - Doncaster’s (1990) non-parametric test of in-
teraction

Doncaster’s (1990) non-parametric test for interaction follows from Knox’s (1964)
test for space-time clustering. Essentially, Don is used to examine differences in
the the distribution of distances between Tαβ fixes, and the set of n2−n permu-
tations of non-Tαβ fixes. The cumulative distribution of the Tαβ fix distances
can be compared graphically with the cumulative distribution of the n2 − n
permuted distances. This can be useful, for example, to determine a suitable
distance threshold - dc by identifying where the Tαβ plot is below the expected
line based on the n2 − n permutations.

Upon selecting a suitable dc value, a contingency table can be constructed,
identifying the number of Tαβ and non-Tαβ (termed unpaired) fix distances
that are above and below the threshold dc. A χ2 test with 1 d.f. can be used
to examine statistically the difference in Tαβ and non-Tαβ distances above and
below dc.

The function Don computes Doncaster’s non-parametric test. It requires a
time threshold for simultaneous fixes (tc), along with a value for dc in appropri-
ate units. The output presents the cumulative distribution plot, the contingency
table of distances, and the χ2 test result. Significant χ2 values are indicative of
attraction, while non-significant results suggest indifference.

Don(deer37,deer38, tc=7.5*60, dc=50)

10



0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance <= (m)

pr
ob

ab
ili

ty

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

● ●
● ●

●

● ● ● ● ●

● ●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

## $conTable

## below.crit above.crit Totals

## Paired 226 320 546

## Non-Paired 3925 293637 297570

## Totals 4159 293957 298116

##

## $p.value

## [1] 0

The graph of the count of observed (black dots) vs. expected (grey line)
fix distances, for a range of distance intervals, suggests that there may be some
attraction at lower distance intervals, due to the observed values being to the
left of the expected line. The Don plot can often be used to examine differences
in the effect of the dc parameter and the range at which attraction behaviour
may occur. The significant p-value of 0 suggests significant attraction occurs,
an expected result given the Prox and Ca statistics. Also, we can reaffirm,
using the contingency table, that 226 paired (simultaneous) fixes are within the
defined distance threshold (dc = 50 m), and 320 paired (simultaneous) fixes are
not within the defined distance threshold.
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3.5 Minta’s (1992) test for spatial and temporal interac-
tion

Minta (1992) introduced three statistics (LAA, LBB , and Lixn) for examing
spatial and temporal interactions between animals. All three of the statistics
require the delineation of a ’shared-area’ between the two animals. If home
ranges can be estimated, the shared-area can be defined as the spatial inter-
section between the individual home ranges, defined a priori. In this case, the
Lixn statistic is computed using the "spatial" method. With the "spatial"

method home ranges are divided (through a spatial intersection) into three ar-
eas: belonging to α only, belonging to β only, and shared by α and β (also
termed the overlap zone). If home ranges cannot be estimated, but some over-
lap zone is known, Lixn can still be computed. In this case, one should use the
"frequency" method. The known overlap zone may be some area known to be
associated with both individuals (e.g., a natural reserve site, or an important
feeding ground). Note: with modern telemetry datasets, home ranges are easily
estimated using one of a host of methods, and thus the "spatial" method is
usually the appropriate choice with Lixn.

The first two statistics computed (LAA and LBB), represent spatial interac-
tion statistics. They examine how each individual utilizes the shared area. The
number of fixes contained in each area (i.e., α’s area, β’s area and the shared
area), are tested against expectations representing the probability of finding the
animal in a given area derived from either the overlap areal percentages (method
= "spatial") or based on the proportions of all fixes contained in each area
(method = "frequency"). For more information on the formulation of each cal-
culation see Minta (1992). Essentially, LAA (respectively LBB) tests how each
individual uses their independent and shared home range areas. When LAA ' 0,
α uses the shared area randomly, while LAA > 0 indicates spatial attraction to
the shared area, and LAA < 0 indicates spatial avoidance of the shared area.
LBB is interpreted identically with respect to β.

Using the same expectation probabilities derived for use with LAA and LBB ,
the Lixn statistic is a function of the ratio of simultaneous use (and avoidance)
of the shared area and solitary use (and avoidance) of the shared area. Thus,
the Lixn statistic is a measure of the simultaneity of use of the shared area.
Note that this does not directly account for the actual distance between the two
individuals, so when the shared area is large, the interpretation of interaction
may be different from when the shared area is small. When Lixn ' 0 it suggests
both individuals use the shared area randomly. Lixn > 0 indicates use of the
shared area that is simultaneous (i.e., attraction), while Lixn < 0 indicates use
of the shared area that is solitary (i.e., avoidance).

The Minta (1992) statistics (LAA, LBB , and Lixn) are all drawn from ob-
served and expected values taken from a 2x2 contingency table. Thus, a χ2 test
with 1 d.f. can be used to make statistical inferences on the (LAA, LBB , and
Lixn) values.

As with previous methods, the user is required to submit a value for tc to be
passed to the function GetSimultaneous internally. If method="spatial" the
user is required to imput the home-ranges, stored as a SpatialPolygons* object
for each individual. If method="frequency" the user is required to pass in the
overlap zone (OZ), stored as a SpatialPolygons* object. Here we use the home
ranges, previously calculated in section 2.1 (i.e., the objects hr37 and hr38),
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which will be passed into the Lixn function. Along with the LAA, LBB , and
Lixn statistics and their associated p-values, the function returns contingency
tables for the expected probabilities, observed values, and odds depicting the
simultaneous and solitary use of the shared area by each individual.

Lixn(deer37, deer38, method='spatial', tc=7.5*60,

hr1=hr37, hr2=hr38)

## $pTable

## A b

## B 0.6163124 0.08295322

## b 0.2650585 0.03567584

##

## $nTable

## A b

## B 469 33

## b 38 0

##

## $oTable

## A b

## B 1.3937321 0.7285981

## b 0.2625724 0.0000000

##

## $Laa

## [1] 0.7265264

##

## $p.AA

## [1] 0.0006475082

##

## $Lbb

## [1] 1.737211

##

## $p.BB

## [1] 0

##

## $Lixn

## [1] 0.3408538

##

## $p.IXN

## [1] 0.1630721

Interpretation of the LAA, LBB reveals that both are > 0, and both are
significant (p-values < 0.05). The positive and significant values suggest that
both deer37 and deer38 are attracted to the shared-area (the overlap area of the
home ranges). The value for Lixn is also positive, suggesting some evidence of
simultaneous use of the shared area, but this value is not-significant. The posi-
tive Lixn result (however not significant) here corroborates what was observed
before, that there is some evidence of attraction in this pair of deer.
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3.6 Cs - Coefficient of sociality (Kenward et al. 1993)

The coefficient of sociality (Cs) incorporates the mean distances of Tαβ fixes
(DO) and the mean distances of the n2 permutations of all fixes (DE) into a
single statistic.

Cs =
DE −DO

DE +DO

Generally, the following interpretation of Cs has been suggested: Cs ' 1 in-
dicates attraction, while Cs ' -1 indicates avoidance. However, because the
observed values are paired, a Wilcox signed-rank test can be used to determine
the significance of Cs, rather than relying on the more subjective interpretation.

The Cs statistic is calculated using the function Cs, which produces output
giving the observed and expected fix distances, the Cs value, and one-sided p-
values resulting from the Wilcox signed-rank test for significant attraction and
avoidance.

Cs(deer37, deer38, tc=7.5*60)

## $Do

## [1] 422.3163

##

## $De

## [1] 873.9819

##

## $Cs

## [1] 0.3484272

##

## $p.Attract

## [1] 7.403068e-53

##

## $p.Avoid

## [1] 1

First, we see that the Cs statistic (Cs = 0.3484) is definitely above 0, al-
though it is closer to 0 than 1. From here, we can use the significant test to
aid our interpretation, we can see there is significant attraction (p.Attract <

0.05),but no evidence of significant avoidance (p.Avoid > 0.05).

3.7 HAI - Half-weight association index (Atwood and Wells
2003)

The HAI utilizes the shared area between the two individual home ranges (often
termed the overlap zone). HAI is calculated in identical fashion to Ca, but HAI
provides a more spatially localized approach, focusing only on the fixes within
the shared area (overlap zone). The statistic takes the following form:

HAI =
n

n+
a+ b

2

where n is the number of STαβ fixes in the shared area based on user given
thresholds for tc and dc, and a and b are the number of solitary fixes, for α
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and β respectively, in the shared area. Essentially, HAI tests STαβ use of the
shared area against solitary use of the shared area. This is useful, as interaction
would not be expected outside of the shared area of the home ranges. When
HAI ' 1 it is an indication of attraction, and when HAI ' 0 it is an indication
of avoidance.

The HAI statistic can be computed via the function HAI. Like Ca, HAI
requires that the user input values for the thresholds tc and dc, but also like
Lixn that the user provide a polygon for defining the overlap zones. The overlap
zone (OZ) must be a SpatialPolygons* object. The output is simply the value
of the HAI statistic, which can be interpreted identically to Ca, that is a cut-off
of 0.5 can be used to identify attraction (HAI > 0.5) and avoidance (HAI < 0.5).

Below we use the package rgeos and the function gIntersection to com-
pute the intersection between the two deer home ranges and delineate the overlap
zone, stored as object oz.

#compute overlap zone

#install.packages('rgeos')

library(rgeos)

oz <- gIntersection(hr37, hr38)

HAI(deer37, deer38, oz, tc=7.5*60, dc=50)

## [1] 0.2935961

Here we see that HAI is 0.2942, which suggests there is little evidence of
attraction in the shared area of the home range (HAI < 0.5). In comparison
with Ca = 0.4043, HAI is found to be lower here, which suggests there may
have been a number of simultaneous fixes outside of the shared-area that were
within the dc = 50m threshold.

3.8 Cr - Shirabe’s (2006) correlation coefficient

The correlation coefficient (Cr) was proposed by Shirabe (2006) to measure the
degree of correlation in movement data represented as a path as opposed to as
points (that is, as n - 1 movement segments). The Cr statistic takes the form of
a multivariate Pearson product-moment correlation coefficient (see Shirabe 2006
for more details on how Cr is computed). Essentially, Cr is based on computing
differences in the simultaneous path segments between α and β. The differences
are defined as deviations from the respective path mean vectors. Interpretation
of the Cr statistic is similar to a typical correlation coefficient: Cr ' 1 indicates
correlated movements, while Cr' −1 indicates negatively correlated movements
(e.g., repulsion), and Cr ' 0 indicates random movement, with respect to the
other individual. It is important to note that Cr does not account for the
distance between the two individuals at any point in its derivation, thus it is up
to the analyst to infer whether the correlations measured are in fact meaningful.

Cr(deer37, deer38, tc=7.5*60)

## [1] 0.3706059
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A Cr value of 0.3706 indicates that there is some evidence for cohesive be-
haviour. Specifically, we interpret Cr like a correlation coefficient. It is difficult
to know in this case if the slightly positive Cr value suggests that the two deer
movements are correlated, but based on the result from Prox, we would expect
this behaviour to occurr from Thursday to Sunday.

3.9 DI - Dynamic interaction index (Long and Nelson
2013)

The global dynamic interaction index (DI) proposed by Long and Nelson (2013)
is similar to the Cr statistic in that it uses path based analysis. The DI index
attempts to measure cohesiveness in two independent components of movement:
direction (often termed azimuth) and speed (generally measured using segment
displacements). The DI index includes two main differences from the Cr statistic
in its formulation; 1) DI does not depend on the respective path mean vectors,
and 2) DI can disentangle the independent effects of correlation in direction
and speed. Further, the DI statistic provides a spatially and temporally local
alternative (di) that can be computed for each pair of simultaneous movement
segments. The di index affords the ability to investigate the spatial and temporal
dynamics of dynamic interaction behaviour, through plots of di through time,
or maps of di. Thus, the local version – di can be said to measure the dynamics
of dynamic interaction behaviour. Note, similar to the Cr statistic, DI and di
do not consider the distance separating the two individuals, and it is up to the
analyst to determine if the necessary conditions exist for interactive behaviour.

dit =

1−

(
|dαt − d

β
t |

dαt + dβt

)δ× cos
(
θαt − θ

β
t

)

DI =

n−1∑
t=1

dit

where dαt (β respectively) are movement displacements for segment t, and θαt
(β respectively) are movement azimuths for segment t. The parameter δ is a
scaling factor for the displacement component (denoted as α in Long and Nelson
2013).

Calculation of DI and di is computed via the function DI. It allows the user
to select if they would like time- and/or distance-based weights to be computed.
The DI function outputs the value of the DI (along with DIθ and DId). If option
local = TRUE the function returns a dataframe with columns corresponding to
the local measures (di, di.theta, and di.d – and time- and/or distance-based
weights if set to TRUE). For more detailed information see the documentation,
but see also Long and Nelson (2013).

DI(deer37, deer38, tc=7.5*60)

## $DI

## [1] 0.1510688

##

## $DI.theta
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## [1] 0.1735282

##

## $DI.d

## [1] 0.5910381

Here we see the global DI value that is close to zero (DI=0.1511), suggesting
there is little cohesion in the movements of the two deer. From the two other
metrics, we can see that the cohesiveness in movement displacement (DId =
0.591) is much higher than the cohesiveness in movement direction (DIθ =
0.1735). The strong cohesiveness in movement displacement suggests that the
two deer move at similar speeds at similar times, whether or not they are moving
in the same direction (as evident by the low DIθ).

Much like with Prox, in order to further examine local level dynamics in
the cohesiveness of movement, a time-series plot of di can be used to identify
temporal trends in cohesive movement behaviour.

#obtain the local di analysis data-frame

di.df <- DI(deer37, deer38, tc=7.5*60, local=TRUE)

#Examine the temporal dynamics of local di

plot(di.df$date, di.df$di,type="l")
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Here we see that the time-series plot of di reveals very abrupt fluctuations
in di, from low to high values. These fluctuations may suggest little evidence
of any periods where sustained cohesive (positive di) or opposing (negative di)
movement occurs. In previous analysis, I have found it useful to use a temporal
window in order to smooth out the fine-scale fluctuations in di to get a better
idea of broader trends. Here I use a 12 hour window in order to re-plot the local
level di, and view the dynamic changes in di.

#Smoothed version of local di

di.df$smooth <- 0

#4 fixes/hour x 6 hours on either side of 12 hour centered window

w <- 4*6

n <- dim(di.df)[1] #no. of fixes

for (i in (w+1):(n-1-w)){
di.temp <- di.df$di[(i-w):(i+w)]

di.df$smooth[i] <- mean(di.temp,na.rm=T)

}

plot(di.df$date, di.df$smooth,type="l")
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From the smoothed time-series plot we can again see a similar pattern as
with Prox, wherby cohesive movement behaviour is strongest between mid-day
Thursday into early Sunday morning. Within this period there are variations
in the cohesive movement behaviour, perhaps related to the diurnal cyclical
behaviour associated with deer movements. In situations where periods of co-
hesive movement are interspersed with random movement, the time-series plot
of di (and/or smoothed di) can provide useful insight as to when and/or where
this behaviour occurs.

3.10 IAB - Interaction Statistic (Benhamou et al. 2014)

The IAB statistic takes an alternative view on testing for dynamic interac-
tion from telemetry data. It computes an index (IAB) analogous to the Bhat-
tacharyya coefficient between the two animals.

IAB(t) = exp
[
−0.5(DAB(t)/∆)2

]
where DAB is the distance between two simultaneous (Tαβ) telemetry fixes.
Instead of using a critical distance threshold, the IAB statistic uses a parameter
(∆) that represents the point maximum slope of the distance effect function
which measures the potential influence domain between the two animals. In
the R function ∆ is simply the dc parameter. Further, a novel simulation
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procedure is proposed for generating the expectation against which a statistical
test is based. That is, a wrapped shifting method is used to maintain the serial
correllation structure implicit to the movement data. At each shift, a sample
statistic (termed MAB) is computed to generate the distribution of values for
the test statistic.

Here I have also implemented a local version of the analysis, so that the
temporal variation in the IAB index can be graphed through time.

IAB(deer37, deer38, dc=50, tc=7.5*60)

## $IAB.obs

## [1] 0.3986007

##

## $IAB.exp

## [1] 0.01694352

##

## $P.attract

## [1] 0.001831502

##

## $P.avoid

## [1] 1

Here we can see that the IAB test suggests significant attraction (p = 0.0018)
and conversely no avoidance, which would be expected. The IAB statistic fur-
ther corroborates evidence from the other indices that there is attraction be-
tween these two deer.

df <- IAB(deer37, deer38, dc=50, tc=7.5*60, local=TRUE)

plot(df$date, df$Iab,type='l')

20



Tue Wed Thu Fri Sat Sun Mon

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

df$date

df
$I

ab

The local IAB analysis further corroborates the timing of interactive be-
havoiur observed using the local Prox analysis and the local di statistic. Here
we can see that the strongest interactions occur from midday Thursday until
Sunday morning. The shape of the local IAB graph is the opposite of that
observed with Prox.

4 Summary

In this vignette I have demonstrated how the various methods implemented
in the package wildlifeDI can be used to investigate interactive behaviour in
wildlife telemetry data. Many of these methods draw on functionality for de-
riving spatially proximal and temporally simultaneous fixes that are dependent
on the critical thresholds dc and tc. Thus, care must be taken to ensure the
selection of these thresholds as biologically relevant and appropriate with ones
dataset (e.g., related to the sampling interval). In this document I have at-
tempted not to argue for or against the use of any of the statistics in different
situations. Also, if you are aware of another method for measuring dynamic in-
teraction behaviour feel free to contact me and I will do my best to implement
it as I see fit. Finally, thanks for taking the time to utilize these tools and I
would appreciate any feedback and/or bugs identified.
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