BayesianTools-package | BayesianTools |
AM | The Adaptive Metropolis Algorithm |
applySettingsDefault | Provides the default settings for the different samplers in runMCMC |
BayesianTools | BayesianTools |
checkBayesianSetup | Checks if an object is of class 'BayesianSetup' |
convertCoda | Convert coda::mcmc objects to BayesianTools::mcmcSampler |
correlationPlot | Flexible function to create correlation density plots |
createBayesianSetup | Creates a standardized collection of prior, likelihood and posterior functions, including error checks etc. |
createBetaPrior | Convenience function to create a beta prior |
createLikelihood | Creates a standardized likelihood class |
createMcmcSamplerList | Convenience function to create an object of class mcmcSamplerList from a list of mcmc samplers |
createMixWithDefaults | Allows to mix a given parameter vector with a default parameter vector |
createPosterior | Creates a standardized posterior class |
createPrior | Creates a standardized prior class |
createPriorDensity | Fits a density function to a multivariate sample |
createProposalGenerator | Factory that creates a proposal generator |
createSmcSamplerList | Convenience function to create an object of class SMCSamplerList from a list of mcmc samplers |
createTruncatedNormalPrior | Convenience function to create a truncated normal prior |
createUniformPrior | Convenience function to create a simple uniform prior distribution |
DE | Differential-Evolution MCMC |
DEzs | Differential-Evolution MCMC zs |
DIC | Deviance information criterion |
DR | The Delayed Rejection Algorithm |
DRAM | The Delayed Rejection Adaptive Metropolis Algorithm |
DREAM | DREAM |
DREAMzs | DREAMzs |
gelmanDiagnostics | Runs Gelman Diagnotics over an BayesianOutput |
generateParallelExecuter | Factory to generate a parallel executer of an existing function |
generateTestDensityMultiNormal | Multivariate normal likelihood |
getCredibleIntervals | Calculate confidence region from an MCMC or similar sample |
getPanels | Calculates the panel combination for par(mfrow = ) |
getPossibleSamplerTypes | Returns possible sampler types |
getPredictiveDistribution | Calculates predictive distribution based on the parameters |
getPredictiveIntervals | Calculates Bayesian credible (confidence) and predictive intervals based on parameter sample |
getSample | Extracts the sample from a bayesianOutput |
getVolume | Calculate posterior volume |
GOF | Standard GOF metrics |
likelihoodAR1 | AR1 type likelihood function |
likelihoodIidNormal | Normal / Gaussian Likelihood function |
logSumExp | Funktion to compute log(sum(exp(x)) |
M | The Metropolis Algorithm |
MAP | calculates the Maxiumum APosteriori value (MAP) |
marginalLikelihood | Calcluated the marginal likelihood from a set of MCMC samples |
marginalPlot | Plot MCMC marginals |
mcmcMultipleChains | Run multiple chains |
Metropolis | Creates a Metropolis-type MCMC with options for covariance adaptatin, delayed rejection, Metropolis-within-Gibbs, and tempering |
metropolisRatio | Funktion to calculate the metropolis ratio |
plotSensitivity | Performs a one-factor-at-a-time sensitivity analysis for the posterior of a given bayesianSetup within the prior range. |
plotTimeSeries | Plots a time series, with the option to include confidence and prediction band |
plotTimeSeriesResiduals | Plots residuals of a time series |
plotTimeSeriesResults | Creates a time series plot typical for an MCMC / SMC fit |
runMCMC | Main wrapper function to start MCMCs, particle MCMCs and SMCs |
sampleMetropolis | gets samples while adopting the MCMC proposal generator |
setupStartProposal | Help function to find starvalues and proposalGenerator settings |
smcSampler | SMC sampler |
stopParallel | Function to close cluster in BayesianSetup |
testDensityBanana | Banana-shaped density function |
testDensityInfinity | Test function infinity ragged |
testDensityMultiNormal | 3d Mutivariate Normal likelihood |
testDensityNormal | Normal likelihood |
testLinearModel | Fake model, returns a ax + b linear response to 2-param vector |
tracePlot | Trace plot for MCMC class |
Twalk | T-walk MCMC |
updateProposalGenerator | To update settings of an existing proposal genenerator |
VSEM | Very simple ecosystem model |
vsemC | C version of the VSEM model |
VSEMcreateLikelihood | Create an example dataset, and from that a likelihood or posterior for the VSEM model |
VSEMcreatePAR | Create a random radiation (PAR) time series |
VSEMgetDefaults | returns the default values for the VSEM |
WAIC | calculates the WAIC |