
EloRating - a brief tutorial
version 0.43

Christof Neumann & Lars Kulik

November 23, 2014

Contents

1 Preliminary remarks 2

2 Package installation and data preparation 2

3 Using EloRating 2
3.1 Data checks . 3
3.2 Elo rating calculations . 3
3.3 Extract Elo ratings . 3
3.4 Plotting Elo ratings . 4

4 Incorporating presence data and undecided interactions 4

5 Further functions 7
5.1 hierarchy stability with stab.elo() . 7
5.2 individual rating trajectories with traj.elo() 8
5.3 individuals() . 9
5.4 winprob() . 9
5.5 creatematrix() . 9
5.6 randomsequence() . 11
5.7 David’s scores with DS() . 11
5.8 randomelo() . 12
5.9 proportion of unknown relationships with prunk() 12

1

1 Preliminary remarks

The EloRating package is work in progress. If you have any criticism, suggestions or bugs
to report, please let us know.

We describe here the main functionalities of the EloRating package.1 Note that for the
sake of this tutorial, we first present an example with the minimal amount of data required: a
sequence of decided dominance interactions along with the dates2 of these interactions. Even
though the package is capable of dealing with undecided interactions (in fact the example
file contains this information), we decided to omit this aspect for the sake of clarity in the
first part (section 3). In addition, this first example is not linked to ’presence’ data. In other
words, here we assume that all individuals that occur in the data set were present over the
entire study period. For the same example utilizing information about presence/absence of
individuals and undecided interactions/draws see section 4.

The fictional data set presented here comprises 250 dominance interactions of 10 individ-
uals.

2 Package installation and data preparation

To install the package, just use (given you have a working internet connection):

> install.packages("EloRating")

We assume that you store your data on dominance interactions in some sort of spreadsheet
software. While it is possible to read data directly from Excel files (.xls or .xlsx) or SPSS
files (.sav),3 we suggest that you store your data in simple (tab-separated) text files. For
example, from Excel this is possible via File>Save as... and then choosing ”tab-delimited
text file” as file format.4

3 Using EloRating

Start by loading the package and reading the raw data.5

> library(EloRating)

> xdata <- read.table(system.file("ex-sequence.txt", package = 'EloRating'),
header=T)

1Note that one additional package (zoo) has to be installed to make our package functional (e.g. by
install.packages("zoo"))

2Dealing with calendar dates in R is prone to unexpected behaviour. We decided to stick to a specific
format (”YYYY-MM-DD”) and the functions assume that dates appear in this format in the objects from
which the functions work.

3see the R packages gdata, xlsx and foreign
4you may also save your file as comma delimited or something similar, but note that you then may need

to modify the arguments to read.table() or use read.csv()
5The example files are in the above described tab-delimited text format and can be found in the package

directory. If you don’t know where that is check .libPaths()

2

Keep in mind that as soon as you use your own data it might be nessary to include
absolute paths with the filename.6 For example:

> xdata <- read.table("c:\\temp\\ex-sequence.txt", header = TRUE,

sep = "\t")

3.1 Data checks

We then go on and check whether the data meet the formatting requirements for the
remaining functions of the package to work. If there is something appearing not quite right
with your data, this function will tell you. ”Warnings”can sometimes be ignored (see below),
whereas ”errors” need to be fixed before the next step. More details on the possible warning
and error messages can be found in the help files (?seqcheck).

> seqcheck(winner=xdata$winner, loser=xdata$loser, Date=xdata$Date)

no presence data supplied

Everything seems to be fine with the interaction sequence...OK

3.2 Elo rating calculations

This doesn’t give any error message, and so we can go on and calculate the actual Elo
ratings and store the results of the calculations in an object we name res. Note that in
order to ignore possible ”warnings” from seqcheck() the argument runcheck=FALSE has to
be set.

> res <- elo.seq(winner=xdata$winner, loser=xdata$loser, Date=xdata$Date,

runcheck=TRUE)

> summary(res)

Elo ratings from 10 individuals

total (mean/median) number of interactions: 250 (50/49)

range of interactions: 19 - 75

date range: 2000-01-01 - 2000-09-06

startvalue: 1000

uppon arrival treatment: average

k: 100

proportion of draws in the data set: 0

3.3 Extract Elo ratings

The most obvious task perhaps is to obtain Elo ratings of specific individuals on a specific
date. This can be achieved by running the function extract.elo() on the object res that
was just created. In the output, individuals are ordered by descending Elo ratings.

> extract.elo(res, "2000-05-28")

c d a f k s g n w z

1342 1214 1161 1133 1011 1000 958 844 799 538

6see also ?setwd

3

> extract.elo(res, "2000-05-28", IDs=c("s", "a", "c", "k"))

c a k s

1342 1161 1011 1000

3.4 Plotting Elo ratings

eloplot() produces quick plots that visualize the development of Elo ratings over time.
Note that the example data set contains a rather modest number of interactions and indi-
viduals. With larger data sets (both in terms of interactions and individuals), such plots
can become messy quickly. Even though it is possible to restrict plotting to date ranges
and subsets of individuals, we recommend to create custom plots by directly accessing the
res object. Specifically, res$mat contains raw Elo ratings in a day-by-ID matrix, while the
original dates can be found in res$truedates.

The following plot produces Figure 1.

> eloplot(res)

Restricting the date range and selecting only a subset of individuals results in Figure 2.

> eloplot(res,ids=c("s", "a", "w", "k", "c"),

from="2000-06-05", to="2000-07-04")

Please note, the plotting function will plot a maximum of 20 individuals. Because we
meant the plotting function to be an exploratory tool, you can also select ids="random.20"
if you have more than 20 individuals. Please note also that individuals for which you have
observed interactions on only one day in the selected date range (regardless of how many
interactions on that day!), such individuals will be omitted from the plot. If you wish to plot
such individuals as single points in the graph, you will have to use the approach mentioned
above, i.e. use the res$mat and res$truedates objects. If you need help with that, please
get in touch with us.

4 Incorporating presence data and undecided interac-
tions

This section demonstrates how to incorporate presence data and undecided interactions.
Please note that the presence data needs to cover every day during your data collection, i.e.
also those days on which no interactions were observed. We start by reading the additional
”presence matrix”, followed by reformatting the date column in this object to a date format
that R is capable of dealing with.

> xpres <- read.table(system.file("ex-presence.txt", package = "EloRating"),

header = T)

> xpres[, 1] <- as.Date(as.character(xpres[, 1]))

4

600

800

1000

1200

1400

date

E
lo

−
ra

tin
g

2000−01−01 2000−06−01 2000−09−06
first day last day

d
k
n
w
z
c
g
f
a
s

Figure 1: Elo ratings of 10 individuals over the entire study period.

Next, we rerun seqcheck() and elo.seq() with the additional presence= argument as
well as incorporating the information about undecided interactions draw= into the latter
function.

> seqcheck(winner=xdata$winner, loser=xdata$loser,

Date=xdata$Date, presence=xpres)

presence data supplied, see below for details

Everything seems to be fine with the interaction sequence...OK

#####################################

presence data seems to be fine and matches interaction sequence...OK

#####################################

> res2 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date,

presence = xpres, draw = xdata$Draw)

5

800

900

1000

1100

1200

1300

date

E
lo

−
ra

tin
g

2000−06−05 2000−07−04
first day last day

s
a
w
k
c

Figure 2: Elo ratings of 5 individuals over a month.

Extracting Elo ratings takes advantage of the presence data by either omitting absent IDs
from the output or returning them as NA. The differences in ratings stem from incorporating
undecided interactions.

> extract.elo(res2, "2000-05-28")

c d f a k g n w z

1340 1211 1136 1092 962 960 873 860 566

> # note that "s" is absent and omitted

> extract.elo(res2, "2000-05-28", IDs=c("s", "a", "c", "k"))

c a k s

1340 1092 962 NA

> # note that "s" is absent and returned as NA

Likewise, eloplot() omits absent IDs from the resulting plots.

6

600

800

1000

1200

date

E
lo

−
ra

tin
g

2000−01−01 2000−06−01 2000−09−06
first day last day

d
k
n
w
z
c
g
f
a
s

Figure 3: Elo ratings of 10 individuals over the entire study period. Note that several
individuals were absent during parts of the date range and are therefore appear with gaps
in the plot (e.g. ”c” and ”f”). Compare to Figure 1

> eloplot(res2)

> eloplot(res2, ids=c("s", "a", "w", "k", "c"),

from="2000-06-05", to="2000-07-04")

5 Further functions

In addition to calculate, extract and display/plot Elo ratings, our package also provides
some more functions that may be useful in some contexts.

5.1 hierarchy stability with stab.elo()

stab.elo() can be used to calculate an index of hierarchy stability (S, see Neumann et
al. (2011) and McDonald and Shizuka (2013)). Please note that in contrast to the original

7

900

1000

1100

1200

date

E
lo

−
ra

tin
g

2000−06−05 2000−07−04
first day last day

s
a
w
k
c

Figure 4: Elo ratings of 5 individuals over a month. Note that individual ”c” is not displayed
in the plot, since it has not been present during the date range supplied to eloplot().
Compare to Figure 2

publication, S now is limited to a range between 0 and 1, where 1 indicates a stable hierarchy
in which no rank changes occured.

> stab.elo(res2, from="2000-05-05", to="2000-06-05")

[1] 0.9674

5.2 individual rating trajectories with traj.elo()

traj.elo() provides information about Elo rating trajectories over time.

> traj.elo(res2, ID=c("f", "n"),

from="2000-05-05", to="2000-06-05")

ID fromDate toDate slope Nobs

1 f 2000-05-05 2000-06-05 1.696998 6

2 n 2000-05-05 2000-06-05 3.904463 5

8

5.3 individuals()

individuals() provides information about which/how many individuals were present on
specific dates. When applied over a date range, the average number of individuals can be
returned as can the coefficient of variation of the number of individuals present on each
date. Note that this function has little relevance when the calculation of Elo ratings (see
above) is not supplemented by presence data.

> individuals(res2, from="2000-05-05", to="2000-05-05", outp="N")

[1] 8

> individuals(res2, from="2000-05-05", to="2000-06-05", outp="N")

[1] 8.3125

> individuals(res2, from="2000-05-05", to="2000-06-05", outp="CV")

[1] 0.07125283

> individuals(res2, from="2000-05-05", to="2000-06-05", outp="IDs")

[1] "d" "k" "n" "w" "z" "c" "g" "f" "a" "s"

5.4 winprob()

winprob() simply returns the expected probablity of an individual winning given its own
Elo rating and that of its opponent.

> winprob(1000,1200)

[1] 0.2397501

> winprob(1200,1000)

[1] 0.7602499

> winprob(1200,1200)

[1] 0.5

5.5 creatematrix()

creatematrix() returns a square matrix which can be used with other, matrix-based
algorithms to calculate dominance scores or ranks (e.g. I&SI (de Vries 1998) or David’s
score (David 1987, Gammell et al. 2003, de Vries et al. 2006, see section 5.8)). If undecided
interactions (ties/draws) are present in the data, the user can decide on how to treat them
(either 0.5 or 1 for both individuals, or they are omitted (default)). Individuals that were
absent during the specified date range are excluded from the matrix by default. In addition,
the matrix can be restricted to individuals that had interactions (i.e. observed interactions)
in the date range.

> creatematrix(res2)

9

a c d f g k n s w z

a 0 5 5 2 9 4 2 1 10 6

c 0 0 4 7 3 4 1 1 5 2

d 2 0 0 2 5 5 4 0 8 10

f 0 2 0 0 2 6 4 0 6 5

g 0 0 0 0 0 4 3 0 6 2

k 1 0 3 0 0 0 2 0 2 6

n 0 0 0 0 2 0 0 0 2 3

s 3 0 2 1 3 0 0 0 2 2

w 2 0 0 0 0 1 1 0 0 11

z 0 0 0 2 1 1 0 0 0 0

> sum(creatematrix(res2))

[1] 200

> creatematrix(res2, drawmethod="0.5")

a c d f g k n s w z

a 0.0 6.0 6.0 2.5 10.0 4.0 2.0 1.0 13.0 6.5

c 1.0 0.0 4.0 7.5 3.0 4.0 1.0 1.5 6.0 2.5

d 3.0 0.0 0.0 3.5 5.0 5.5 4.0 0.5 8.0 12.0

f 0.5 2.5 1.5 0.0 2.5 6.5 5.0 0.5 6.5 5.0

g 1.0 0.0 0.0 0.5 0.0 4.0 3.0 0.0 8.0 2.5

k 1.0 0.0 3.5 0.5 0.0 0.0 2.5 0.0 3.0 7.0

n 0.0 0.0 0.0 1.0 2.0 0.5 0.0 0.0 2.5 4.0

s 3.0 0.5 2.5 1.5 3.0 0.0 0.0 0.0 2.5 2.0

w 5.0 1.0 0.0 0.5 2.0 2.0 1.5 0.5 0.0 12.0

z 0.5 0.5 2.0 2.0 1.5 2.0 1.0 0.0 1.0 0.0

> sum(creatematrix(res2, drawmethod="0.5"))

[1] 250

> # "c" and "n" are omitted

> creatematrix(res2, c("2000-06-10", "2000-06-16"))

a d f g k s w z

a 0 0 0 1 0 0 0 0

d 0 0 0 0 0 0 0 0

f 0 0 0 0 1 0 0 1

g 0 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 0 0

w 0 0 0 0 0 0 0 0

z 0 0 0 0 0 0 0 0

> creatematrix(res2, c("2000-06-10", "2000-06-16"),

onlyinteracting=TRUE)

10

a f g k z

a 0 0 1 0 0

f 0 0 0 1 1

g 0 0 0 0 0

k 0 0 0 0 0

z 0 0 0 0 0

5.6 randomsequence()

Finally, randomsequence() creates random data sets, which can be used for simulations
for example. It returns a list with two data.frames (named ”seqdat” and ”pres” for the
actual sequence and presence data, respectively). By default, it creates a sequence of 100
interactions between 10 individuals. All IDs are present the entire time and there are no
undecided interactions. Also by default, IDs are simply single letters and in order to produce
realistic data, IDs that appear earlier in alphabetic order are more likely to win any given
interaction (alphabet=TRUE). The proportion of reversals (against that order) is by default
set to reversals=0.1.

> rdata <- randomsequence()

> xres <- elo.seq(rdata$seqdat$winner, rdata$seqdat$loser,

rdata$seqdat$Date, presence=rdata$pres)

> summary(xres)

Elo ratings from 10 individuals

total (mean/median) number of interactions: 100 (20/21)

range of interactions: 13 - 24

date range: 2000-01-01 - 2000-04-09

startvalue: 1000

uppon arrival treatment: average

k: 100

proportion of draws in the data set: 0

5.7 David’s scores with DS()

With this function you can calculate David’s scores (David 1987, Gammell et al. 2003,
de Vries et al. 2006). Note that this function only works on square matrices (see above
[section 5.5] for how to create a matrix from a sequence).

> data(bonobos)

> DS(bonobos)

ID DS normDS

1 He 14.011236 5.0016051

2 Dz 11.635634 4.6622334

3 Ho 6.606742 3.9438202

4 De -1.285714 2.8163265

5 Ko -5.988764 2.1444623

6 Re -8.729133 1.7529810

7 Ki -16.250000 0.6785714

11

1 2 3 4 5

600

700

800

900

1000

1100

1200

1300

David's score

ra
nd

om
iz

ed
 a

ve
ra

ge
 E

lo
 r

at
in

g

Figure 5: David’s scores and average randomized Elo ratings from seven bonobos (data
taken from de Vries et al. 2006)

5.8 randomelo()

This is an experimental function to generate a set of random sequences based on an
interaction matrix. Based on the randomly generated sequences, Elo ratings are calculated.

> data(bonobos)

> xdata <- randomelo(bonobos, 100)

> res <- data.frame(ID=colnames(xdata[[1]]), avg=round(colMeans(xdata[[1]]),1))

Now, compare that to David’s scores (figure 5).7

> ds <- DS(bonobos)

> ds <- ds[order(ds$ID),]

> plot(ds$normDS, res$avg, xlab="David's score",

ylab="randomized average Elo rating", las=1)

5.9 proportion of unknown relationships with prunk()

This function lets you determine how large the proportion of dyads in your data set is
for which no interactions have been observed. You can use this function on both the results
of elo.seq() or an interaction matrix. If used on an eloobject, you will see as a result
the unknown relationships for all dyads that were found in the date range, and additionally

7Note, the plot you will get will differ because the generation of Elo ratings is based on random sequences

12

restricted to those dyads that were actually co-resident at some point during the date range.
In the example, this results in the identical output since all dyads were co-resident at some
point. Of course, the accuracy of the second part of the output depends on presence data
being supplied. Note, for matrices, we cannot control for coresidency, so the second part of
the output is omitted if prunk() is used with a matrix.

> data(adv); data(advpres)

> x <- elo.seq(winner=adv$winner, loser=adv$loser, Date=adv$Date,

presence=advpres)

> prunk(x, c("2010-01-01", "2010-01-15"))

pu.all dyads.all pu.cores dyads.cores

0.524 21.000 0.524 21.000

> mat <- creatematrix(x, c("2010-01-01", "2010-01-15"))

> prunk(mat)

pu.all dyads.all

0.524 21.000

References

David, H. A. (1987), ‘Ranking from unbalanced paired–comparison data’, Biometrika
74(2), 432–436.

de Vries, H. (1998), ‘Finding a dominance order most consistent with a linear hierarchy: a
new procedure and review’, Animal Behaviour 55(4), 827–843.

de Vries, H., Stevens, J. M. G. & Vervaecke, H. (2006), ‘Measuring and testing the steepness
of dominance hierarchies’, Animal Behaviour 71(3), 585–592.

Gammell, M. P., de Vries, H., Jennings, D. J., Carlin, C. M. & Hayden, T. J. (2003), ‘David’s
score: a more appropriate dominance ranking method than clutton-brock et al.’s index’,
Animal Behaviour 66(3), 601–605.

McDonald, D. B. & Shizuka, D. (2013), ‘Comparative transitive and temporal orderliness
in dominance networks’, Behavioral Ecology 24(2), 511–520.

Neumann, C., Duboscq, J., Dubuc, C., Ginting, A., Irwan, A. M., Agil, M., Widdig, A.
& Engelhardt, A. (2011), ‘Assessing dominance hierarchies: validation and advantages of
progressive evaluation with elo-rating’, Animal Behaviour 82(4), 911–921.

13

	Preliminary remarks
	Package installation and data preparation
	Using EloRating
	Data checks
	Elo rating calculations
	Extract Elo ratings
	Plotting Elo ratings

	Incorporating presence data and undecided interactions
	Further functions
	hierarchy stability with stab.elo()
	individual rating trajectories with traj.elo()
	individuals()
	winprob()
	creatematrix()
	randomsequence()
	David's scores with DS()
	randomelo()
	proportion of unknown relationships with prunk()

