
Computation of the integrated flow of particles between polygons
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Abstract

To quantify the flow of particles over a heterogeneous area, some models require the integration of a pointwise

dispersal function over source and target polygons. This calculation is a non-trivial task and may require a

great deal of computing time. In this paper, an efficient and accurate algorithm is presented to integrate general

individual dispersal functions between pairs of convex or non-convex polygons. Geometric calculations are

performed using standard tools from computational geometry. Numerical integration is then performed either

by a grid method or by an adaptive cubature method. The procedure is illustrated with a case study. It is

shown that the cubature method is much more efficient than the grid method and that its error estimates are

accurate. The algorithm is implemented in a C++ program, Califlopp.

Keywords:

Califlopp; Computational geometry; Cubature; DCUTRI; GENESYS model; Gene flow model; Integrated particle
flow.

1 Introduction

In the environmental sciences, predictions are now often based on explicit spatial models. In general, spatial
heterogeneity is taken into account by meshing. In other words, space is partitioned into homogeneous cells and
flow between cells is modelled by equations derived from theoretical physical models. For instance, lava flow rates
can be derived from a model for the downslope flow of a Bingham liquid (e.g., Dragoni, 1986 and Vicari, 2007).
In Ojo (2007), pollutant transport in surface waters is modelled through partial differential equations. In Lenser
(2007), movement of passive biomass in oceans is represented by movement tensors computed from numerical
simulations involving the flow field.

Alternatively, for transport through a media considered as spatially homogeneous, as in the case of airborne
transport, movement can be modelled using a dispersal function. For example, the dispersion of aircraft noise near
airports is represented in Moreno-Jiménez (2003) by an equation in which the decrease of the sonorous pressure
level is a function of the distance between the source and the affected site.

Dispersal functions are also used in agricultural models that focus on the diffusion of pollen, seeds (GENESYS:
Colbach et al., 2001a,b; MAPOD: Angevin et al., 2008) or spores (BLIGHTSPACE: Skelsey, 2007). In such
applications, the space is partitioned into fields or sub-regions inside fields, and simulation involves the computation
of the amount of particles exchanged between cells. The inter-cell particle flow is determined from a plant-to-plant
(or individual) dispersal function and from cell features such as crop density and genotype.

For models that involve a dispersal function and two-dimensional source and target cells, dispersion calculation
is most often based on a point grid for the purpose of simplicity. Such a discretization requires rather heavy
computations. Another limitation of current implementations is that they are restricted to cells with simple shapes
such as quadrilaterals. As a result of our experience in gene flow modelling over landscapes, we have tried to
compensate for both these gaps.

The calculation of the particle flow between polygons is a non-trivial programming task. Relatively simple
algorithms can be designed for integrating the dispersal function over pairs of polygons, but they may not be able
to properly address the wide diversity of polygon sizes and shapes encountered in actual crop fields. Moreover, the
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calculation requires a great deal of computing time and therefore imposes severe limits on the size of the total area
to be studied.

The algorithm for particle flow computation described in this paper aims to provide an efficient solution for
this type of calculation. It first involves geometric computations: decomposition of polygons into non-overlapping
convex parts, polygon triangulation (O’Rourke, 1998) and polygon intersection (O’Rourke, 1982). The particle
flow is then computed using numerical integration. A required precision can be specified and an error estimate
is provided (Berntsen, 1992). The algorithm can be used for any set of simple polygons. The dispersal function
must be stationary, which means that it is invariant when both the target and source points are shifted together.
However, it may be non-isotropic, for example, if we are dealing with a gradient due to wind. A polygon is
considered as simple if it is bounded, connected and if it has no hole. A simple polygon does not need to be convex
and may have an arbitrary number of vertices.

2 Integrated flow

2.1 Definition and main simplification

The basic inputs of the methods are the coordinates of the vertices of each polygon and the individual dispersal
function φ. All points of the source polygon are considered to be emitting, while all points of the target polygon
may receive a particle: the source and target areas are considered as continuous. Furthermore, the densities of
emitting points and receiving points are supposed to be spatially homogeneous within a polygon. The individual
dispersal function φ between two points x and y in R

2 is assumed to depend uniquely on y − x, so that φ is a
function of two-dimensional vectors. As a special case, dispersal may be isotropic and therefore depend only on
the Euclidean distance between x and y.

The aim of the methods presented in this paper is to calculate the integrated flow from A to B for any pair of
polygons A and B, in other words:

F(A, B) =

∫
A

∫
B

φ(y − x) dy dx. (1)

With the variable change (x, y) → (x, t = y − x), it can be shown that

F(A, B) =

∫
Ǎ⊕B

area(A ∩ (B − t))φ(t) dt (2)

where B − t is the polygon B translated by vector t, Ǎ is the reflection of A with respect to the origin, and Ǎ⊕B

denotes the Minkowski sum, i.e., the set of points t = y − x, where x ∈ A and y ∈ B. Expression (2) requires 2D
integration instead of 4D integration for expression (1). Sections 3 and 4 are devoted to the calculation of (2).

2.2 Example of an application

Much research has recently been devoted to gene flow models because they allow us to study how different types
of agriculture can co-exist within a given landscape. In particular, the GENESYS model (Colbach et al., 2001a,b)
for oilseed rape attempts to describe and predict cross-pollination between conventional and genetically-modified
(GM) varieties of the same crop species. It includes an empirical dispersal function that was fitted to experimental
data (Lavigne (1998)). In the GENESYS model, the rate of cross-pollination on a given non-GM field B is calculated
as the proportion of pollen arriving on B that has been emitted by GM fields. In the simplest case, this is equal
to:

C(B) =

∑
GM

qA F(A, B)∑
GM

qA F(A, B) +
∑

non-GM
qA F(A, B)

, (3)

where
∑

GM
(respectively

∑
non-GM

) is the summation over GM (respectively non-GM) fields A, and qA denotes
the quantity of pollen per square meter emitted by field A. The quantity F(A, B) is as defined in equations (1)
and (2), with φ(y − x) representing the proportion of particles emitted at point x that arrives at point y. Thus,
in order to calculate the cross-pollination rate for all non-GM fields, it is necessary to calculate F(A, B) for all
pairs of fields where A is any oilseed rape field and B is a non-GM oilseed rape field. Note that the second term
in the denominator of C(B) includes F(B, B), since the major source of non-GM pollen for field B is usually field
B itself. In the GENESYS model, cross-pollination is evaluated over several years with different crop allocations
from one year to the next. Consequently, F(A, B) is calculated, by default, over all pairs of fields.

2



3 Geometric algorithms

The numerical computation of an integral of the type (2) requires the evaluation of the following:

• the polygon A ∩ (B − t),

• its area,

• the polygon Ǎ ⊕ B.

Standard algorithms for these computations are available from computational geometry (see O’Rourke (1998) for
an introduction).

In the specific case when both polygons A and B are convex, the intersection A∩ (B − t) is computed using the
“chasing” algorithm (O’Rourke, 1982). The complexity of this algorithm is linear with respect to the total number
of A and B vertices. The computation of the area of A∩ (B − t) from its vertex coordinates is performed using the
well-known formula for polygon area (based on signed areas of triangles and valid even for non-convex polygons).
The Minkowski sum Ǎ ⊕ B is computed using the star diagram-based algorithm (Guibas, 1983), which results in
a linear complexity as well.

One way to extend this approach to non-convex polygons is to decompose A and B into unions of non-overlapping
convex polygons (see Figure 1). The total flow between A and B is the sum of partial flows between parts of A

and parts of B:

F(A, B) =
n∑

i=1

m∑
j=1

F(Ai, Bj) (4)

where n (resp. m) is the number of convex parts of A (resp. B). The condition related to non-overlapping is as
follows: two distinct parts Ai and Ai′ may intersect only at their boundaries. Convex decomposition is achieved
using a standard approach (Hertel, 1983):

• the non-convex polygon is triangulated using the ear-removal algorithm,

• edges of the triangulation are removed as long as all parts remain convex.

The following geometric computations are therefore involved in the algorithm: convex decomposition of arbitrary
polygons, intersection of convex polygons, polygon areas and the Minkowski sum of convex polygons.

4 Numerical integration

An example of an integrand is shown in Figure 2. In general, numerical integration performance highly depends
on integrand smoothness. In this case, the integrand is the product of two terms: area(A ∩ (B − t)) and the
dispersal function φ(t). The function t → area(A ∩ (B − t)) is piecewise linear. The integrand is therefore, at
best, a piecewise continuously differentiable function. The actual smoothness of the integrand also depends on the
dispersal function φ. In general, φ shows a peak at the origin. Eventually, φ may be singular at the origin (an
example is given in Section 5). When A and B are overlapping, the origin is located inside the integration domain.
When they are adjacent, as in Figure 2, it lies at the boundary of the integration domain, and when A and B do
not intersect, it lies outside.

Two general methods for numerical integration are considered:

• a simple randomized discretization of the integral,

• a two-dimensional adaptive cubature method.

The first method, referred to here as the “grid” method, involves simple discretizations of the integral based
on regular grids (see Figure 3). An approximation of the integral is obtained by summing up the integrand at all
grid points and by multiplying the sum by the area of a grid tile. When the grid location is uniformly randomized,
the approximation is an unbiased estimator of the integral. Furthermore, by using independent replicates, it is
possible to assess the precision of the result. This method is quite robust (unbiasedness and convergence even
for non-smooth integrands). However, the sampling scheme is rather simplistic and does not perform as well as
adaptive schemes.
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When several replicates are used, the final integral approximation is obtained by averaging.
The second method (see Figure 4) is based on the DCUTRI algorithm (Berntsen, 1992). This algorithm provides

approximations of two-dimensional integrals defined on polygonal domains. An initial triangulation must be entered
into DCUTRI. The contribution of the integral of each triangle is approximated using a linear combination of 37
integrand values (cubature rule). The cubature rule has a degree 13: it provides an exact result for any polynomial
integrand with a degree less than or equal to 13. Local error estimates as proposed in DCUTRI are obtained by
comparing the results of lower degree cubature rules using the same integrand values. The triangle with the largest
error estimate is selected and divided into four sub-triangles. Once again, the contributions of the sub-triangles to
the integral are approximated based on the cubature rule. This step is iterated until a nominal error is determined.
The error estimation procedure is empirical (see Berntsen (1992) for details). It does not ensure convergence for
any integrand. For instance, if the integral on a triangle is greater than the nominal error, and if the integrand
happens to be null at all points involved in the cubature rule, DCUTRI will fail to determine the nominal error.

Adaptive cubature is expected to perform better when singularities lie on the edges of the initial triangulation.
For instance, if the dispersal function is singular at the origin and if the domain of integration Ǎ⊕B contains the
origin, a quicker convergence is expected when the origin is a vertex of the triangulation. Therefore,

• if Ǎ ⊕ B does not contain the origin, it is triangulated from an arbitrary vertex,

• if Ǎ ⊕ B contains the origin O, it is triangulated from O (see Figure 4).

A further refinement is to avoid integration over areas where the dispersal function is considered as negligible,
that is, beyond a chosen distance rmax. Thus, instead of integrating over the whole Minkowski sum Ǎ ⊕ B, it is
possible to integrate only on its intersection with a disk centered at the origin and with radius rmax: the dispersion
over the part of the Minkowski sum outside the disk is considered to be null. In practice, it is simpler to replace
the disk by a regular polygon, e.g., an octogon containing it (see Figure 5). Integration is therefore still performed
on a convex polygon.

5 A case study

5.1 Test data

To illustrate contrasted situations, four pairs of polygons were studied:

• (1,1): two identical convex polygons,

• (2,3): two convex polygons next to each other,

• (4,5): two polygons next to each other, one convex, the other non-convex,

• (6,6): two identical, highly irregular polygons.

These polygons are plotted in Figure 6; their areas and the number of vertices are given in Table 1.
Pairs of identical and pairs of contiguous polygons are the most complex cases for integration. In addition,

they are of particular importance in the gene flow applications because the major pollen sources of a given field
are itself and the contiguous fields.

The individual dispersal function, φ(t), is the oilseed rape pollen dispersal function described by Klein (2006)
up to a distance of 50 meters, and by Devaux (2006) for distances greater than 50 meters. It is equal to:

d + er + fr2 when 0 ≤ r ≤ 1.5
ab

a + rc
when 1.5 < r ≤ 50

ab

a + hc

(1 + h)g

(1 + r)g
when 50 < r

where r is the length of the vector t between the source and target points, and a = 3.80, b = 0.039, c = 3.12,
d = 0.34, e = −0.405, f = 0.128, g = −2.29 , h = 50. Distances are given in meters. A plot of the dispersal
function is shown in Figure 7.
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pair polygon 1 polygon 2 estimated flow error number of
vertices area (m2) vertices area (m2) evaluations

1–1 4 12 780 - - 12 273.70 3.63 1 011 200
2–3 4 18 690 4 22 260 167.28 0.056 1 475 520
4–5 4 8 880 6 12 280 132.47 0.016 1 438 720
6–6 17 15 470 - - 14 613.90 2.32 11 364 800

Table 1: Geometrical features of the tested pairs of polygonal fields and results of the randomized discretization
method. The grid step is equal to 0.25 m; 50 replicates have been generated. The errors are calculated by the
procedure described in Section 5.2. The last column is the average number of evaluations of the dispersal function
at each grid generation.

5.2 Obtaining reference values

To obtain reference results, we first apply the grid method, which is a robust method, with high-resolution (0.25 m
spacing) grids and 50 replicates. To determine the precision of the results, a basic bootstrap interval (Davison,
1997) is calculated for each pair of polygons at a confidence level equal to 99%, from 10, 000 bootstrap replicates.
The absolute error is estimated by half the width of this interval. The results are shown in Table 1. The errors
are rather small, supporting our hypothesis that the results calculated with 0.25 m-tiled grids are precise enough
to be considered as reference values.

It should be observed that the usual way of estimating the confidence interval using the quantiles of the Student
distribution is not appropriate here because the distribution of the replicates is not symmetric, as illustrated by
Figure 8 on the pair of polygons (1,1), in the case of 100 replicates of 1 m-tiled grids.

The number of evaluations increases as the polygon shape becomes more irregular and has to be decomposed into
many convex subpolygons. For example, the highly irregular polygon 6 is decomposed into 7 convex subpolygons.
To calculate the integrated flow onto itself with a 0.25 m-tiled grid, the number of evaluations is more than ten
times greater than the number of evaluations required for the four-sided polygon 1 onto itself.

5.3 Comparison of the grid and cubature precisions

The precision of the cubature method is assessed from the absolute difference between the integral approximation
calculated using the cubature method and the reference value. Assessing the precision of the grid method is not
as straightforward since the result is stochastic. The criterion used for comparison is the 99th percentile of the
absolute difference between the integral estimate and the reference value. The computation of the 99th percentile
was performed using a Monte-Carlo procedure based on independent grid replicates. In order to compare the
efficiencies of the cubature and the grid methods, the number of integrand evaluations required to obtain given
precisions was computed for both methods. The results are shown in Figure 9.

As for running time, adaptive cubature is much more effective: to reach the same error bound, it executes about
ten times less evaluations than the grid method for the pair of polygons (1,1), and up to a hundred times less for
the other pairs.

5.4 Assessment of error estimation by the cubature method

The cubature method provides integral approximations and error estimates. The error estimates are based on
empirical rules. In order to determine whether these errors tend to be over or under-estimated, we compared
different values of the relative errors estimated by the cubature method with the relative differences between the
results and the reference values. The result of this comparison is illustrated by Figure 10: all the points are above
the diagonal. The errors estimated by the cubature method are greater than the expected values, and we can
reasonably hypothesize that the required precision is reached with a safe margin.

5.5 Practical limitations

The running time rapidly increases at the same time as the number of polygon vertices. Figure 11 shows two
polygons with similar global shapes, but polygon 1bis has 12 extra vertices compared to polygon 1. The particle
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flow on polygon 1 (respectively 1bis) was computed using the cubature method with a required relative precision
equal to 0.1%. The number of integrand evaluations is 10 times greater for the “noisy” polygon 1bis than for
polygon 1. It is therefore recommended to remove any spurious polygon vertices before particle flow computation.

The required precision is another critical factor for computation speed. For instance, flow computation between
polygons 4 and 5, using the cubature method is two times as long for a required relative precision of 0.1% than for
a required relative precision of 5% (see Figure 9).

Integration by adaptive cubature is quite efficient (compared to integration based on grid sampling). However,
it should be observed that adaptive cubature may fail to converge, as discussed in Section 4. It is therefore
recommended to test flow computation based on adaptive cubature before intensive use. In particular, it is possible
to compare flows computed by adaptive cubature and by grid sampling.

5.6 Application with non-isotropic dispersal

For airborne pollen plants, the dispersal is non-isotropic; pollination is dependent on the wind direction and
intensity. The grid and cubature methods can be applied in this case as well.

To illustrate this, we chose the maize pollen dispersal model, BR-IG, described in Grimaud (2007), with
Linear Quasilikelihood estimation of the parameters. The main wind direction is orientated from west to east
(see Figure 12).

The results of the dispersal from the convex polygon 4 to the non-convex polygon 5 are illustrated by Fig-
ures 13 (a) and 13 (b), calculated in the same way as Figures 9 in Section 5.3 and 10 in Section 5.4. The same
observations can be made when dispersal is isotropic:

• the adaptive cubature method is more effective than the grid method in terms of running time, and increas-
ingly effective as the need for precision increases: it is nine times faster with a required precision of 5%, and
75 times faster with a required precision of 0.2% (see Figure 13 (a));

• the required precision has a strong impact on the computation speed for both methods: it takes 1.2 times
longer to calculate results with a precision of 0.2% than with a precision of 5% by the cubature method, and
10 times longer by the grid method (see Figure 13 (a));

• while the cubature method provides error estimates only, we can be reasonably confident that it reaches the
required precision with a safe margin: the errors resulting from this method tend to be over-estimated, as
illustrated by Figure 13 (b).

6 Conclusion

The algorithm presented in this paper makes it possible to integrate a large number of stationary dispersal functions
between pairs of convex or non-convex polygons. It includes a reliable estimation of its own accuracy so that the
computing load can be adjusted to a required level of precision. In practice, the more well-behaved the dispersal
function, the faster and more accurate the algorithm. However, it is quite general and may be used for a wide
range of situations.

The algorithm has been coded in a program known as Califlopp, which has recently been integrated into the
GENESYS model on oilseed rape gene flow, allowing this model to run on more general and larger agricultural
landscapes. It is hoped that Califlopp may be useful for many other models operating at the landscape scale in the
agricultural, ecological and environmental sciences.

7 Software availability

The Califlopp program that implements the algorithm is freely available from the first author and on the site:
http://www.inra.fr/miaj/public/logiciels/califlopp, under the GPL-like CeCILL-C licence.

It is written in C++ and the size of the source-files is 473K.
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Figure 1: Convex decomposition of a polygon.

O

A B

Figure 2: Example of integrand involved in the computation of the flow between two adjacent convex polygons.
Both polygons A and B are shown in the inset. The dispersal function is Gaussian. The domain of integration is
a convex polygon. The integrand at a given point t of the domain is the amount of particles exchanged by pairs of
points in A and B, separated by t. It is represented by colors ranging from blue (low values) to red (high values).

Figure 3: Randomized grids used to sample the integration domain. Several replicates (each represented with a
given symbol) can be generated in order to assess variability.
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0

Figure 4: Integration by adaptive cubature. The initial triangles are shown in solid lines. The sampling of the
domain of integration is adapted to the integrand.

rmax

O

Ǎ⊕B

Figure 5: Reduction and triangulation of the domain of integration. When the dispersal function is considered as
negligible beyond a given distance rmax from the origin, integration is restricted to the intersection of Ǎ ⊕ B with
a disk, approximated by an octogon (blue), of radius rmax and centered at the origin.

1

2

3
4

5
6

100 meters

Figure 6: The tested polygonal fields.
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Figure 7: The tested individual dispersal function for distances between the source and target points up to 2 meters
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Figure 8: Histograms of the results calculated by the grid method over 100 replicates for the pair of polygons (1,1);
the grid step is equal to 1 m.
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Figure 9: Number of evaluations executed by the grid and cubature methods to calculate results with the same
precision. Different values of the relative errors are plotted. Each point is labelled with the corresponding error
value. Its x-coordinate, (respectively, y-coordinate) is the number of evaluations executed by the cubature method
(respectively, grid method) to calculate results with the corresponding precision. Coordinates are logarithmic.
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Figure 11: A polygon and its noisy version. Polygon 1bis is obtained by adding vertices to polygon 1 without
modifying its general shape. Execution is longer with polygon 1bis onto itself than with polygon 1 onto itself with
both methods.
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Figure 12: The non-isotropic dispersion function on a point grid: dispersion is greater along the direction of the
main wind, here WE.

(a) Number of evaluations executed by the grid and cuba-
ture methods to calculate results with the same precision
(see Figure 9).

(b) Relative errors calculated by the cubature method
against true relative errors (see Figure 10). All the points
are above the diagonal; the errors estimated by the cuba-
ture method tend to be over-evaluated.

Figure 13: Results from polygon 4 to polygon 5 with the non-isotropic dispersion function. Coordinates are
logarithmic.
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