
The RepeatABEL package - a tutorial

Lars Rönneg̊ard

August 19, 2016

mailto:lrn@du.se

Introduction

This vignette gives an introduction to the RepeatABEL package. The package
performs GWAS for data where there are repeated observations on individuals
that may be related. Various random effects can be fitted. Random polygenic
effects are fitted by default, but also other random effects can be fitted in-
cluding spatial effects. A model without the fixed SNP effect is fitted using the
hglm package for estimating variance components (see Ronnegard, Shen & Alam
(2010) hglm: A package for fitting hierarchical generalized linear models. The
R Journal 2:20-28). These variance component estimates are subsequently used
in the GWAS where each marker is fitted one at a time. Thus, this is similar
to using the polygenic_hglm function and subsequently the mmscore function
in GenABEL. The package consists of three main functions rGLS, preFitModel
and simulate_PhenData.

Theory for the rGLS function

The rGLS function is the main function of the package and by default fits a
linear mixed model including permanent environmental effects p and polygenic
effects g with correlation matrix given by the genomic relationship matrix (aka
kinship matrix) in

y = Xβ +Zg +Zp+ e (1)

where y is the studied trait, β are fixed effects, e are residuals with e ∼ N(0, σ2
e)

having residual variance σ2
e . Furthermore, X and Z are model matrices. The

random effects are assumed multivariate normal such that p ∼ N(0, Iσ2
p) and

g ∼ N(0,Gσ2
g) where G is the genomic relationship matrix. Thus the estimated

(co)variance matrix for this model is

V̂ = ZGZT σ̂2
g +ZZT σ̂2

p + Iσ̂2
e . (2)

Subsequently, a linear model is fitted (using generalized least squares, GLS) for
each marker where the covariate xSNP is coded as 0,1,2:

y = Xβ + xSNPβ + ε (3)

with
ε ∼ N(0, σ2

ε V̂). (4)

A Wald test is used to compute the P value for SNP effect β.
The computations are made fast by applying a eigen-decomposition of V̂

and using the built-in qr function in R to fit the linear models (3).

Using the rGLS function

The following example illustrates the use of the function. There are two data
objects to be included in the input: a GenABEL object including the genotypic
information and a data frame including the phenotypic information. The name
of the ID variable in the phenotype data frame should be ”id” (otherwise specify
id.name equal to the ID variable name).

In this example there are 360 observations from 100 individuals, and there
are 5792 SNP to be tested.

1

http://journal.r-project.org/archive/2010-2/
http://journal.r-project.org/archive/2010-2/

> library(RepeatABEL)

> #GenABEL object including IDs and marker genotypes

> data(gen.data)

> #Phenotype data with repeated observations

> data(Phen.Data)

The data frame Phen.Data includes the trait value y, two covariates (age
and sex) and the ID of the individuals. We wish to include age and sex as fixed
effects so the function input is

> GWAS1 <- rGLS(y ~ age + sex, genabel.data = gen.data,

phenotype.data = Phen.Data)

[1] "GRM ready"

[1] "Variance component estimation ready"

[1] "Rotation matrix ready"

[1] "Rotate LMM started"

[1] "Rotate LMM ready"

The computations in this function consists of four parts: construction of the
GRM, variance component estimation using the hglm function, rotating the GLS
using eigen-decomposition transforming it to an ordinary least squares (OLS)
problem, and finally fitting an OLS for each SNP. How far the computations
have come is shown in the output.

The class of the output object GWAS1 is gwaa.scan, so we can apply the
generic functions summary() and plot() defined by the GenABEL package.

> summary(GWAS1)

Summary for top 10 results, sorted by P1df

Chromosome Position Strand A1 A2 effB

rs120315 1 3725352 + T C 2.1696316

rs9670687 1 4779800 - C A -2.0412127

rs891586 2 8024318 + A G -1.6669267

rs1352451 2 8022651 - A C 1.6169429

rs1252282 2 8167984 - A T -0.9982089

rs7633966 1 3721952 + C T 1.8586037

rs9922492 1 3729983 + C T -1.8586037

rs4378234 1 4800348 - G T -1.9012073

rs7499832 3 10242953 - G C -1.0897248

rs6561272 1 3715538 - T G -1.9073305

se_effB chi2.1df P1df Pc1df

rs120315 0.4258979 NA 3.501204e-07 NA

rs9670687 0.5351582 NA 1.366120e-04 NA

rs891586 0.4478499 NA 1.975997e-04 NA

rs1352451 0.4564078 NA 3.959643e-04 NA

rs1252282 0.2825403 NA 4.109058e-04 NA

rs7633966 0.5325691 NA 4.832322e-04 NA

2

rs9922492 0.5325691 NA 4.832322e-04 NA

rs4378234 0.5509388 NA 5.588239e-04 NA

rs7499832 0.3182487 NA 6.167705e-04 NA

rs6561272 0.5726170 NA 8.656541e-04 NA

Extracting the genotypic variance, a 95% CI and the heritability

From the GWAS1 object, the estimated variance components for the prefitted
model, not including SNP effects, can be extracted as follows.

> est.hglm <- GWAS1@call$hglm

> cat("Genotypic and permanent env. variance components:","\n",

est.hglm$varRanef,", resp.","\n",

"The residual variance is", est.hglm$varFix,".","\n")

Genotypic and permanent env. variance components:

1.376368 1.354224 , resp.

The residual variance is 3.090352 .

Furthermore, the standard errors for the estimated variance components are
computed on a log scale. Thereby, 95% confidence intervals can be computed
for the variance components. Here the computations for the genotypic variance
are shown.

> logVCE <- est.hglm$SummVC2[[1]]

> cat("Estimate and SE for the genotypic variance on a natural log scale:",

"\n", logVCE[1],"and",logVCE[2],", resp.", "\n \n",

"Confidence interval: [", exp(logVCE[1] - 1.96*logVCE[2]) , "," ,

exp(logVCE[1] + 1.96*logVCE[2]) , "]" , "\n")

Estimate and SE for the genotypic variance on a natural log scale:

0.3194482 and 0.2494617 , resp.

Confidence interval: [0.8440896 , 2.244299]

The heritability for this example is computed as:

> cat("Heritability:",

est.hglm$varRanef[1]/(est.hglm$varFix + sum(est.hglm$varRanef)),

"\n")

Heritability: 0.236451

Using the preFitModel function

The function preFitModel is used for variance component estimation and in-
creases the flexibility of modeling in the rGLS function.

3

Fitting the same model as above

To start with we have a look at how the model in the previous section can
be fitted in two steps using the preFitModel function and thereafter the rGLS

function. Note that the results are exactly the same as in the previous section.

> #The same results can be computed using the preFitModel as follows

> fixed=y ~ age + sex

> Mod1 <- preFitModel(fixed, random=~1|id,

genabel.data = gen.data,

phenotype.data = Phen.Data,

corStruc=list(id=list("GRM","Ind")))

[1] "GRM ready"

> GWAS1b <- rGLS(fixed, genabel.data = gen.data,

phenotype.data = Phen.Data, V = Mod1$V)

[1] "Rotation matrix ready"

[1] "Rotate LMM started"

[1] "Rotate LMM ready"

> summary(GWAS1b)

Summary for top 10 results, sorted by P1df

Chromosome Position Strand A1 A2 effB

rs120315 1 3725352 + T C 2.1696316

rs9670687 1 4779800 - C A -2.0412127

rs891586 2 8024318 + A G -1.6669267

rs1352451 2 8022651 - A C 1.6169429

rs1252282 2 8167984 - A T -0.9982089

rs7633966 1 3721952 + C T 1.8586037

rs9922492 1 3729983 + C T -1.8586037

rs4378234 1 4800348 - G T -1.9012073

rs7499832 3 10242953 - G C -1.0897248

rs6561272 1 3715538 - T G -1.9073305

se_effB chi2.1df P1df Pc1df

rs120315 0.4258979 NA 3.501204e-07 NA

rs9670687 0.5351582 NA 1.366120e-04 NA

rs891586 0.4478499 NA 1.975997e-04 NA

rs1352451 0.4564078 NA 3.959643e-04 NA

rs1252282 0.2825403 NA 4.109058e-04 NA

rs7633966 0.5325691 NA 4.832322e-04 NA

rs9922492 0.5325691 NA 4.832322e-04 NA

rs4378234 0.5509388 NA 5.588239e-04 NA

rs7499832 0.3182487 NA 6.167705e-04 NA

rs6561272 0.5726170 NA 8.656541e-04 NA

The only information transferred from the preFitModel function to rGLS is
the estimated (co)variance matrix Mod1$V. The corStruc option specifies the
correlation structure to be applied on each random effect. In the example we
wish to fit polygenic effects and permanent environmental effects. The former
requires a correlatioon structure given by the GRM whereas the permanent envi-
ronmental effects are iid. Consequently, corStruc=list(id=list("GRM","Ind")

4

)) is specfied.

A model having several different random effects

In this (fake) example there are 60 observations on each nest and there are 6
different nests. We wish to include these as random effect too, and to start with
they are modelled as independent random effects.

> # In this example there are 6 nests and 60 observations per nest

> Phen.Data$nest <- rep(1:6, each=60)

> # A model including polygenic effects,

> # permanent environmental effects, and nest effect as random

> Mod2 <- preFitModel(fixed, random=~1|id + 1|nest,

genabel.data = gen.data, phenotype.data = Phen.Data,

corStruc=list(id=list("GRM","Ind") , nest=list("Ind")))

> GWAS2 <- rGLS(fixed, genabel.data = gen.data,

phenotype.data = Phen.Data, V = Mod2$V)

Spatial modelling

This example shows how random effects having a spatial correlation structure
can be included to account for populaton structure. The spatial model used is a
Conditional AutoRegressive (CAR) model and the input spatial information is
given by a neighborhood matrix. (A neighborhood matrix has a non-zero value
for an element (i,j) where the subject (nest in our example) i and j come from
neighboring locations. The diagonal elements are zero.) Here the neighborhood
matrix (D) is a 6 × 6 matrix

> D= matrix(0,6,6)

> D[1,2] = D[2,1] = 1

> D[5,6] = D[6,5] = 1

> D[2,4] = D[4,2] = 1

> D[3,5] = D[5,3] = 1

> D[1,6] = D[6,1] = 1

> D[3,4] = D[4,3] = 1

where for instance nests 1 and 2 are defined as neighbors. The model includ-
ing polygenic effects, permanent environmental effects and a spatial correlation
between nests is then fitted as

> Mod3 <- preFitModel(y ~ age + sex, random=~1|id + 1|nest,

genabel.data = gen.data, phenotype.data = Phen.Data,

corStruc=list(id=list("GRM","Ind") ,

nest=list("CAR")), Neighbor.Matrix=D)

> GWAS2b <- rGLS(fixed, genabel.data = gen.data,

phenotype.data = Phen.Data, V = Mod3$V)

5

Using the simulate_PhenData function

The third function included in the RepeatABEL package is a simulation function
where one can simulate phenotypic data having repeated observations. The
input genotype information is given by a GenABEL object.

Suppose for instance we want to simulate 4 observations from each individual
and the three variance components (polygenic, permanent env., residual) are 1.

> VC.poly <- VC.perm <- VC.res <- 1

> n.obs <- rep(4, nids(gen.data))

In this example, the GenABEL object gen.data is used as input and an
additive genetic effect of 2.0 is simulated at the location of SNP number 1000.
The phenotype data is then simulated as

> Phen.Sim <- simulate_PhenData(y ~ 1,

genabel.data = gen.data,

n.obs = n.obs, SNP.eff = 2, SNP.nr = 1000,

VC = c(VC.poly, VC.perm,VC.res))

The simulated data can then be fitted as

> GWAS.sim1 <- rGLS(y ~ 1, genabel.data = gen.data,

phenotype.data = Phen.Sim)

The data set gen.data includes information on sex, so we can also add a
fixed sex effect to our simulations. Here a sex effect of 1.0 is simulated

> Phen.Sim <- simulate_PhenData(y ~ sex,

genabel.data = gen.data, n.obs = n.obs, SNP.eff = 2,

SNP.nr = 1000, VC = c(VC.poly, VC.perm, VC.res), beta = c(0,1))

where beta is a vector specifying the simulated values of the fixed effects
and since we fit an intercept and a sex effect the length of beta is two. The
data can then be fitted as

> GWAS.sim1 <- rGLS(y ~ sex, genabel.data = gen.data,

phenotype.data = Phen.Sim)

> plot(GWAS.sim1, main="Simulation results")

The produced Manhattan plot is given below

6

Simulation results

Chromosome

−
lo
g 1
0(
P
−
va
lu
e)

0
1

2
3

4
5

6

1 2 3 X

7

Simulating year effects using the simulate_PhenData func-
tion

Year effects can be added to the simulated response after running the simu-

late_PhenData function.

> Phen.Sim <- simulate_PhenData(y ~ sex,

genabel.data = gen.data, n.obs = n.obs, SNP.eff = 2,

SNP.nr = 1000, VC = c(VC.poly, VC.perm, VC.res), beta = c(0,1))

> ####### PRODUCE YEAR EFFECTS FOR EACH INDIVIDUAL

> sd.year = 1 #Standard Deviation of Year Effects

> beta <- rnorm(max(n.obs), 0, sd.year) #Simulated Year Effects

> year.effects <- years <- NULL

> for (i in 1:length(n.obs)) {

yr.i <- sort(sample(1:max(n.obs), n.obs[i]))

years <- c(years, yr.i)

year.effects <- c(year.effects, beta[yr.i])

}

> ########################

> #### A FUNCTION TO ADD A VARIABLE TO A LIST

> add.var <- function(x, add.new, new.name) {

x[[length(x) + 1]] <- add.new

names(x)[length(x)] <- new.name

return(x)

}

> #######################

> #ADDS A NEW PHENOTYPE WITH YEAR EFFECTS ADDED

> Phen.Sim <- add.var(Phen.Sim, Phen.Sim$y + year.effects, "y.yrs")

> #ADD YEAR AS FACTOR

> Phen.Sim <- add.var(Phen.Sim, as.factor(years), "Years")

> #######################

> #RUN THE ANALYSIS

> GWAS.sim1 <- rGLS(y.yrs ~ sex + Years, genabel.data = gen.data,

phenotype.data = Phen.Sim)

Simulating binary data using the simulate_PhenData func-
tion

Binary data can be simulated using a threshold model where a Gaussian response
is first simulated and all values greater than a specified threshold τ are 1’s on
the observed scale. The binary data can be simulated and analyzed using the
following code.

> Phen.Sim <- simulate_PhenData(y ~ sex,

genabel.data = gen.data, n.obs = n.obs, SNP.eff = 2,

SNP.nr = 1000, VC = c(VC.poly, VC.perm, VC.res), beta = c(0,1))

> tau = 0

> Phen.Sim$y_observed <- as.numeric(Phen.Sim$y > tau)

8

> GWAS.sim1 <- rGLS(y_observed ~ sex, genabel.data = gen.data,

phenotype.data = Phen.Sim)

9

