
Using SqlRender
Martijn J. Schuemie

2017-03-19

Contents

1 Introduction 1

2 SQL parameterization 1

2.1 Substituting parameter values . 2

2.2 Default parameter values . 2

2.3 If-then-else . 3

3 Translation to other SQL dialects 3

3.1 Functions and structures supported by translateSql . 4

3.2 String concatenation . 5

3.3 Temp tables . 5

3.4 Implicit casts . 6

3.5 Schemas and databases . 7

3.6 Random selection . 8

3.7 Optimization for massively parallel processing . 8

4 Debugging parameterized SQL 9

5 Developing R packages that contain parameterized SQL 9

1 Introduction

This vignette describes how one could use the SqlRender R package.

2 SQL parameterization

One of the main functions of the package is to support parameterization of SQL. Often, small variations
of SQL need to be generated based on some parameters. SqlRender offers a simple markup syntax inside
the SQL code to allow parameterization. Rendering the SQL based on parameter values is done using the
renderSql() function.

1

2.1 Substituting parameter values

The @ character can be used to indicate parameter names that need to be exchange for actual parameter
values when rendering. In the following example, a variable called a is mentioned in the SQL. In the call to
the renderSql function the value of this parameter is defined:

sql <- "SELECT * FROM table WHERE id = @a;"
renderSql(sql, a = 123)$sql

#> [1] "SELECT * FROM table WHERE id = 123;"

Note that, unlike the parameterization offered by most database management systems, it is just as easy to
parameterize table or field names as values:

sql <- "SELECT * FROM @x WHERE id = @a;"
renderSql(sql, x = "my_table", a = 123)$sql

#> [1] "SELECT * FROM my_table WHERE id = 123;"

The parameter values can be numbers, strings, booleans, as well as vectors, which are converted to comma-
delimited lists:

sql <- "SELECT * FROM table WHERE id IN (@a);"
renderSql(sql, a = c(1, 2, 3))$sql

#> [1] "SELECT * FROM table WHERE id IN (1,2,3);"

2.2 Default parameter values

For some or all parameters, it might make sense to define default values that will be used unless the user
specifies another value. This can be done using the {DEFAULT @parameter = value} syntax:

sql <- "{DEFAULT @a = 1} SELECT * FROM table WHERE id = @a;"
renderSql(sql)$sql

#> [1] " SELECT * FROM table WHERE id = 1;"

renderSql(sql, a = 2)$sql

#> [1] " SELECT * FROM table WHERE id = 2;"

Defaults for multiple variables can be defined:

sql <- "{DEFAULT @a = 1} {DEFAULT @x = 'my_table'} SELECT * FROM @x WHERE id = @a;"
renderSql(sql)$sql

#> [1] " SELECT * FROM my_table WHERE id = 1;"

2

2.3 If-then-else

Sometimes blocks of codes need to be turned on or off based on the values of one or more parameters. This is
done using the {Condition} ? {if true} : {if false} syntax. If the condition evaluates to true or 1,
the if true block is used, else the if false block is shown (if present).

sql <- "SELECT * FROM table {@x} ? {WHERE id = 1}"
renderSql(sql, x = FALSE)$sql

#> [1] "SELECT * FROM table "

renderSql(sql, x = TRUE)$sql

#> [1] "SELECT * FROM table WHERE id = 1"

Simple comparisons are also supported:

sql <- "SELECT * FROM table {@x == 1} ? {WHERE id = 1};"
renderSql(sql, x = 1)$sql

#> [1] "SELECT * FROM table WHERE id = 1;"

renderSql(sql, x = 2)$sql

#> [1] "SELECT * FROM table ;"

As well as the IN operator:

sql <- "SELECT * FROM table {@x IN (1,2,3)} ? {WHERE id = 1}; "
renderSql(sql, x = 2)$sql

#> [1] "SELECT * FROM table WHERE id = 1; "

3 Translation to other SQL dialects

SQL for one platform (e.g. Microsoft SQL Server) will not always execute on other platforms (e.g. Oracle). The
translateSql() function can be used to translate between different dialects, but there are some limitations.
A first limitation is that the starting dialect has to be SQL Server. The reason for this is that this
dialect is in general the most specific. For example, the number of days between two dates in SQL Server
has to be computed using the DATEDIFF function: DATEDIFF(dd,a,b). In other languages one can simply
subtract the two dates: b-a. Since you’d need to know a and b are dates, it is not possible to go from other
languages to SQL Server, only the other way around.
A second limitation is that currently only these dialects are supported as targets: Oracle, PostgreSQL,
Microsoft PDW (Parallel Data Warehouse), Impala, Netezza, and Amazon Redhift.
A third limitation is that only a limited set of translation rules have currently been implemented, although
adding them to the list should not be hard.
A last limitation is that not all functions supported in one dialect have an equivalent in other dialects.
Below an example:

3

https://github.com/OHDSI/SqlRender/blob/master/inst/csv/replacementPatterns.csv

sql <- "SELECT DATEDIFF(dd,a,b) FROM table; "
translateSql(sql, targetDialect = "oracle")$sql

#> [1] "SELECT (CAST(b AS DATE) - CAST(a AS DATE)) FROM table ; "

The targetDialect parameter can have the following values:

• “oracle”
• “postgresql”
• “pdw”
• “redshift”
• “impala”
• “netezza”
• “sql server” (no translation)

3.1 Functions and structures supported by translateSql

These SQL Server functions have been tested and were found to be translated correctly to the various dialects:

Table 1: Functions supported by translateSql

Function Function Function Function
ABS DATEDIFF LOG10 ROW_NUMBER
ACOS DATEFROMPARTS LOWER RTRIM
ASIN DATETIMEFROMPARTS LTRIM SIN
ATAN DAY MAX SQRT
AVG EOMONTH MIN SQUARE
CAST EXP MONTH STDEV
CEILING FLOOR NEWID* SUM
CHARINDEX GETDATE PI TAN
CONCAT HASHBYTES** POWER UPPER
COS ISNULL RAND* VAR
COUNT LEFT RANK YEAR
COUNT_BIG LEN RIGHT
DATEADD LOG ROUND

* Not supported on PDW ** Requires special priviliges on Oracle
Similarly, many SQL syntax structures are supported. Here is a non-exhaustive lists of things that we know
will translate well:

SELECT * FROM table; -- Simple selects

SELECT * FROM table_1 INNER JOIN table_2 ON a = b; -- Selects with joins

SELECT * FROM (SELECT * FROM table_1) tmp WHERE a = b; -- Nested queries

SELECT TOP 10 * FROM table; -- Limiting to top rows

SELECT * INTO new_table FROM table; -- Selecting into a new table

4

CREATE TABLE table (field INT); -- Creating tables

INSERT INTO other_table (field_1) VALUES (1); -- Inserting verbatim values

INSERT INTO other_table (field_1) SELECT value FROM table; -- Inserting from SELECT

DROP TABLE table; -- Simple drop commands

IF OBJECT_ID('ACHILLES_analysis', 'U') IS NOT NULL -- Drop table if it exists
DROP TABLE ACHILLES_analysis;

IF OBJECT_ID('tempdb..#cohorts', 'U') IS NOT NULL -- Drop temp table if it exists
DROP TABLE #cohorts;

WITH cte AS (SELECT * FROM table) SELECT * FROM cte; -- Common table expressions

SELECT ROW_NUMBER() OVER (PARTITION BY a ORDER BY b) -- OVER clauses
AS "Row Number" FROM table;

SELECT CASE WHEN a=1 THEN a ELSE 0 END AS value FROM table; -- CASE WHEN clauses

SELECT * FROM a UNION SELECT * FROM b -- UNIONs

SELECT * FROM a INTERSECT SELECT * FROM b -- INTERSECTIONs

SELECT * FROM a EXCEPT SELECT * FROM b -- EXCEPT

3.2 String concatenation

String concatenation is one area where SQL Server is less specific than other dialects. In SQL Server,
one would write SELECT first_name + ' ' + last_name AS full_name FROM table, but this should be
SELECT first_name || ' ' || last_name AS full_name FROM table in PostgreSQL and Oracle. Sql-
Render tries to guess when values that are being concatenated are strings. In the example above, because
we have an explicit string (the space surrounded by single quotation marks), the translation will be correct.
However, if the query had been SELECT first_name + last_name AS full_name FROM table, SqlRender
would have had no clue the two fields were strings, and would incorrectly leave the plus sign. Another clue that
a value is a string is an explicit cast to VARCHAR, so SELECT last_name + CAST(age AS VARCHAR(3))
AS full_name FROM table would also be translated correctly. To avoid ambiguity altogether, it is probable
best to use the CONCAT() function to concatenate two or more strings.

3.3 Temp tables

Temp tables can be very useful to store intermediate results, and when used correctly can be used to
dramatically improve performance of queries. In Postgres, PDW, RedShift and SQL Server temp tables have
very nice properties: they’re only visible to the current user, are automatically dropped when the session
ends, and can be created even when the user has no write access. Unfortunately, in Oracle temp tables
are basically permanent tables, with the only difference that the data inside the table is only visible to the
current user. This is why, in Oracle, SqlRender will try to emulate temp tables by

1. Adding a random string to the table name so tables from different users will not conflict.
2. Allowing the user to specify the schema where the temp tables will be created.

5

For example:

sql <- "SELECT * FROM #children;"
translateSql(sql, targetDialect = "oracle", oracleTempSchema = "temp_schema")$sql

#> [1] "SELECT * FROM temp_schema.fp55zrfrchildren ;"

Note that the user will need to have write privileges on temp_schema.

Also note that because Oracle has a limit on table names of 30 characters, temp table names are only
allowed to be at most 22 characters long because else the name will become too long after appending
the session ID.

Futhermore, remember that temp tables are not automatically dropped on Oracle, so you will need to explicitly
TRUNCATE and DROP all temp tables once you’re done with them to prevent orphan tables accumulating in
the Oracle temp schema.

If possible, try to avoid using temp tables altogether. Sometimes one could use Common Table Expressions
(CTEs) when one would normally use a temp table. For example, instead of

SELECT * INTO #children FROM person WHERE year_of_birth > 2000;
SELECT * FROM #children WHERE gender = 8507;

you could use

WITH children AS (SELECT * FROM person WHERE year_of_birth > 2000)
SELECT * FROM children WHERE gender = 8507;

3.4 Implicit casts

One of the few points where SQL Server is less explicit than other dialects is that it allows implicit casts. For
example, this code will work on SQL Server:

CREATE TABLE #temp (txt VARCHAR);

INSERT INTO #temp
SELECT '1';

SELECT * FROM #temp WHERE txt = 1;

Even though txt is a VARCHAR field and we are comparing it with an integer, SQL Server will automatically
cast one of the two to the correct type to allow the comparison. In contrast, other dialects such as PosgreSQL
will throw an error when trying to compare a VARCHAR with an INT.

You should therefore always make casts explicit. In the above example, the last statement should be replaced
with either

SELECT * FROM #temp WHERE txt = CAST(1 AS VARCHAR);

or

6

SELECT * FROM #temp WHERE CAST(txt AS INT) = 1;

3.5 Schemas and databases

In SQL Server, tables are located in a schema, and schemas reside in a database. For example,
cdm_data.dbo.person refers to the person table in the dbo schema in the cdm_data database. In other
dialects, even though a similar hierarchy often exists they are used very differently. In SQL Server, there is
typically one schema per database (often called dbo), and users can easily use data in different databases.
On other platforms, for example in PostgreSQL, it is not possible to use data across databases in a single
session, but there are often many schemas in a database. In PostgreSQL one could say that the equivalent of
SQL Server’s database is the schema.

We therefore recommend concatenating SQL Server’s database and schema into a single parameter, which we
typically call @databaseSchema. For example, we could have the parameterized SQL

SELECT * FROM @databaseSchema.person

where on SQL Server we can include both database and schema names in the value: databaseSchema =
"cdm_data.dbo". On other platforms, we can use the same code, but now only specify the schema as the
parameter value: databaseSchema = "cdm_data".

The one situation where this will fail is the USE command, since USE cdm_data.dbo; will throw an error.
It is therefore preferred not to use the USE command, but always specify the database / schema where a
table is located. However, if one wanted to use it anyway, we recommend creating two variables, one called
@database and the other called @databaseSchema. For example, for this parameterized SQL:

SELECT * FROM @databaseSchema.person;
USE @database;
SELECT * FROM person

we can set database = "cdm_data" and the other called databaseSchema = "cdm_data.dbo". On platforms
other than SQL Server, the two variables will hold the same value and only on SQL Server will they be
different. Within an R function, it is even possible to derive one variable from the other, so the user of your
function would need to specify only one value:

foo <- function(databaseSchema, dbms) {
database <- strsplit(databaseSchema, "\\.")[[1]][1]
sql <- "SELECT * FROM @databaseSchema.person; USE @database; SELECT * FROM person;"
sql <- renderSql(sql, databaseSchema = databaseSchema, database = database)$sql
sql <- translateSql(sql, targetDialect = dbms)$sql
return(sql)

}
foo("cdm_data.dbo", "sql server")

#> [1] "SELECT * FROM cdm_data.dbo.person; USE cdm_data; SELECT * FROM person;"

foo("cdm_data", "postgresql")

#> [1] "SELECT * FROM cdm_data.person; SET search_path TO cdm_data; SELECT * FROM person;"

7

3.6 Random selection

Sometimes one needs to select a random set of rows from a table. One way to achieve this is to sort the table
by a random number, and pick the top n. For example, in SQL Server one could use this code:

SELECT column FROM
(SELECT column, ROW_NUMBER() OVER (ORDER BY RAND()) AS rn FROM table) tmp

WHERE rn <= 1

SqlRender will translate this correctly to the supported dialects, except Microsoft PDW which does not
support random number generation. Another disadvantage of this approach is that the selection is truly
random and will be different every time, making the process non-reproducible.

Another option is to sort the table using the hash of a value in the table. For example, on SQL Server:

SELECT column FROM
(SELECT column,

ROW_NUMBER() OVER (ORDER BY HASHBYTES('MD5',CAST(person_id AS varchar))) AS rn
FROM table) tmp

WHERE rn <= 1

This will be correctly translated to all dialects, and the selection will be the same every time. However, this
solution has the disadvantage that the MD5 hash function on Oracle requires special privileges to be granted
to the user, and these can only be granted by the sys user (not the system user):

GRANT EXECUTE ON DBMS_CRYPTO TO <user>;

3.7 Optimization for massively parallel processing

Both PDW and RedShift are massively parallel processing platforms, meaning they consist of many nodes that
work together. In such an environment, significant increases in performance can be achieved by finetuning
the SQL for these platforms. Probably most importantly, developers can specify the way data is distributed
over the nodes. Ideally, data in a node only needs to be combined with data in the same node. For example,
if I have two tables with the field person_id, I would like all records with the same person ID to be on the
same node, so a join on person_id can be performed locally without exchanging data between nodes.

SQL Server SQL, our source dialect, does not allow for these optimizations, so we’ve introduced the notion of
hints. In the following example, a hint is provided on which field should be used for the distribution of data
across nodes:

--HINT DISTRIBUTE_ON_KEY(person_id)
SELECT * INTO one_table FROM other_table;

which will translate into the following on PDW:

--HINT DISTRIBUTE_ON_KEY(person_id)
IF XACT_STATE() = 1 COMMIT;
CREATE TABLE one_table WITH (DISTRIBUTION = HASH(person_id)) AS
SELECT * FROM other_table;

The hint should be formatted as shown above, and directly precede the statement where the table is created.

8

4 Debugging parameterized SQL

Debugging parameterized SQL can be a bit complicated; Only the rendered SQL can be tested against a
database server, but changes to the code should be made in the parameterized (pre-rendered) SQL. Two
functions have been developed to aid the debugging process: renderSqlFile() and translateSqlFile().
These can be used to read SQL from file, render or translate it, and write it back to file. For example:

translateSqlFile("parameterizedSql.txt", "renderedSql.txt")

will render the file, using the default parameter values specified in the SQL. What works well for us is editing
in the parameterized file, (re)running the command above, and have the rendered SQL file open in a SQL
client for testing. Any problems reported by the server can be dealt with in the source SQL, and can quickly
be re-rendered.

5 Developing R packages that contain parameterized SQL

Often, the SQL code will become part of an R package, where it might be used to perform initial data-
preprocessing and extraction before further analysis. We’ve developed the following practice for doing so: The
parameterized SQL should be located in the inst/sql/ folder of the package. The parameterized SQL for SQL
Server should be in the inst/sql/sql_server/ folder. If for some reason you do not want to use the translation
functions to generate the SQL for some dialect (e.g because dialect specific code might be written that gives
better performance), a dialect-specific version of the parameterized SQL should be placed in a folder with the
name of that dialect, for example inst/sql/oracle/. SqlRender has a function loadRenderTranslateSql()
that will first check if a dialect-specific version is available for the target dialect. If it is, that version will be
rendered, else the SQL Server version will be rendered and subsequently translated to the target dialect.

The createRWrapperForSql() function can be used to create an R wrapper around a rendered SQL file,
using the loadRenderTranslateSql() function . For example, suppose we have a text file called test.sql
containing the following parameterized SQL:

{DEFAULT @selected_value = 1}
SELECT * FROM table INTO result where x = @selected_value;

Then the command

createRWrapperForSql(sqlFilename = "test.sql",
rFilename = "test.R",
packageName = "myPackage")

would result in the file test.R being generated containing this R code:

#' Todo: add title
#'
#' @description
#' Todo: add description
#'
#' @details
#' Todo: add details
#'
#' @param connectionDetails An R object of type \code{ConnectionDetails} created ...
#' @param selectedValue

9

#'
#' @export
test <- function(connectionDetails, selectedValue = 1) {

renderedSql <- loadRenderTranslateSql("test.txt", packageName = "myPackage",
dbms = connectionDetails$dbms, selected_value = selectedValue)

conn <- connect(connectionDetails)

writeLines("Executing multiple queries. This could take a while")
executeSql(conn, renderedSql)
writeLines("Done")

dummy <- dbDisconnect(conn)
}

This code expects the file test.sql to be located in the inst/sql/sql_server/ folder of the package source.

Note that the parameters are identified by the declaration of default values, and that snake_case names (our
standard for SQL) are converted to camelCase names (our standard for R).

10

	Introduction
	SQL parameterization
	Substituting parameter values
	Default parameter values
	If-then-else

	Translation to other SQL dialects
	Functions and structures supported by translateSql
	String concatenation
	Temp tables
	Implicit casts
	Schemas and databases
	Random selection
	Optimization for massively parallel processing

	Debugging parameterized SQL
	Developing R packages that contain parameterized SQL

