
Examples of usage of the TSdist

package.

Usue Mori, Alexander Mendiburu and
Jose A. Lozano

In this document we show some examples of usage of the functions in the
TSdist package for R.

1 Examples of distance calculations between nu-
meric vectors

The distance calculation between times series saved as univariate and numeric
vectors can be made with the functions of the type MethodDistance of the
TSdist package. Of course, Method must be substituted by the name of a
specific distance measure. For a complete list of distance measures available
in the package and the function names of each of them, the reader can access
the documentation files. In the following paragraphs we show some examples of
usage of these functions.

The example.series1 and example.series2 objects are two numeric vec-
tors that represent two different synthetic series which have been generated
based on the shapes that define the Two Patterns synthetic database of series
(Geurts, 2002) (See Figure 1).

0 20 40 60 80 100

(a) example.series1.

0 20 40 60 80 100

(b) example.series2.

Figure 1: The two example series of the same length included in the TSdist
package.

Additionaly, example.series3 and example.series4 represent two ARMA(3,2)

1

series of coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2) but with different
lengths, 100 and 120, and generated with different random seeds (See Figure 2).

0 20 40 60 80 100

(a) example.series3.

0 20 40 60 80 100 120

(b) example.series4.

Figure 2: The two example series of different lengths included in the TSdist
package.

Example 1 To calculate the distance between two series such as example.series1
and example.series2:

R> DissimDistance(example.series1, example.series2)

[1] 1.655318

R> CCorDistance(example.series1, example.series2)

[1] 1.192903

R> CorDistance(example.series1, example.series2)

[1] 1.399347

R> ARPicDistance(example.series1, example.series2)

[1] 0.1315731

Example 2 The Lp distances are a special case, because they can also be called
by the wrapper function LPDistance:

R> ManhattanDistance(example.series1, example.series2)

[1] 185.1962

is equivalent to:

R> LPDistance(example.series1, example.series2, method="manhattan")

[1] 185.1962

2

Example 3 Many of the distance measures require the definition of a parame-
ter, which must be included in the call to the corresponding function:

R> EDRDistance(example.series1, example.series2, epsilon=0.1)

[1] 80

R> ERPDistance(example.series1, example.series2, g=0)

[1] 98.29833

Example 4 Some distance measures can be computed between series of differ-
ent lengths but in some other cases this is not possible. In these latter cases,
the distance can not be computed and the function will return NA and an error
message:

R> LCSSDistance(example.series3, example.series4, epsilon=0.1)

[1] 16

R> FourierDistance(example.series3, example.series4)

[1] NA

Error : The length of the series must be equal

Example 5 Other errors will be specific to each distance measure and will be
determined based on their definition. As in the previous case, when encountering
an error, an NA value will be returned and the corresponding error message will
be printed. As an example, the window function defined for DTW can not exceed
the size of the time series being compared.

R> length(example.series3)

[1] 100

R> length(example.series4)

[1] 120

R> DTWDistance(example.series3, example.series4, sigma=105)

[1] NA

Error : The window size exceeds the length of the first series

3

2 Examples of distance calculations between time
series objects

The wrapper function called TSDistances enables the calculation of distance
measures between univariate time series objects of type ts, xts (Ryan and
Ulrich, 2013) and zoo (Zeileis and Grothendieck, 2005). This function just
takes care of the conversion of data types and then makes use of the chosen
MethodDistance function. In the following paragraphs we show some examples
of usage of this function.

The zoo.series1 and zoo.series2 time series included in the package are
replicas of the example.series1 and example.series2 objects introduced pre-
viously but saved in a zoo format with a specific time index.

Example 6 A basic call to the TSDistances function for two series like these
is done in the following manner:

R> TSDistances(zoo.series1, zoo.series2, distance="cor")

[1] 1.399347

R> TSDistances(zoo.series1, zoo.series2, distance="dtw", sigma=10)

[1] 123.8757

The distance calculation between ts or xts objects is made in the same
manner.

3 Examples of distance matrix calculations

In this section, we show how to calculate distance matrices from time series
databases.

The example.database object included in the package is a matrix that rep-
resents a database with 6 ARMA(3,2) series of coefficients AR=(1, -0.24, 0.1)
and MA=(1, 1.2) but with different innovations. The 6 series are set in a matrix
in a row-wise format. Additionally, the zoo.database object included in the
package is a multivariate zoo object that saves the series of example.database
but with a specific time index.

Example 7 The TSDatabaseDistances function calculates the pairwise dis-
tance between all the rows in a matrix, so the calculation of the distance matrix
can be done easily for the example.database object:

R> TSDatabaseDistances(example.database, distance="tquest",

+ tau=0)

4

series1 series2 series3 series4 series5

series2 0.10257949

series3 0.06673680 0.05260503

series4 0.05891984 0.09107687 0.02323843

series5 0.08248698 0.12273356 0.09874005 0.04785523

series6 0.04706714 0.03049604 0.01984044 0.02876312 0.06191323

R> TSDatabaseDistances(example.database, distance="euclidean")

series1 series2 series3 series4 series5

series2 71.93748

series3 58.67650 60.33323

series4 69.81260 95.93199 60.53757

series5 62.26896 82.10133 69.00826 73.20674

series6 99.88996 118.57977 94.73737 84.40461 108.50799

Example 8 The zoo.database object is not a matrix, but the TSDatabaseDis-

tances function can also deal with this type of time series databases:

R> TSDatabaseDistances(zoo.database, distance="tquest",

+ tau=0)

series1 series2 series3 series4 series5

series2 0.10257949

series3 0.06673680 0.05260503

series4 0.05891984 0.09107687 0.02323843

series5 0.08248698 0.12273356 0.09874005 0.04785523

series6 0.04706714 0.03049604 0.01984044 0.02876312 0.06191323

R> TSDatabaseDistances(zoo.database, distance="euclidean")

series1 series2 series3 series4 series5

series2 71.93748

series3 58.67650 60.33323

series4 69.81260 95.93199 60.53757

series5 62.26896 82.10133 69.00826 73.20674

series6 99.88996 118.57977 94.73737 84.40461 108.50799

Example 9 An additional capability of the TSDatabaseDistances function is
that the distance matrix between two databases can also be calculated. In this
case, all the pairwise distances between the series in the first database and the
second database are calculated.

For example, if we separate the example.database database into two sets
and apply TSDatabaseDistances, then we obtain the following distance matrix:

R> database1<-example.database[1:3,]

R> database2<-example.database[4:6,]

R> TSDatabaseDistances(database1, database2, distance="tquest",

+ tau=mean(example.database))

5

series4 series5 series6

series1 0.05345349 0.08355246 0.04768702

series2 0.07685220 0.12273356 0.03049604

series3 0.02003566 0.09874005 0.01984044

R> TSDatabaseDistances(database1, database2, distance="euclidean")

series4 series5 series6

series1 69.81260 62.26896 99.88996

series2 95.93199 82.10133 118.57977

series3 60.53757 69.00826 94.73737

4 Use of TSdist to solve classification and clus-
tering problems

The most common usage of time series distance measures is within clustering and
classification tasks, and all the measures included in this package can be useful
within these two frameworks. For this reason, the TSdist package includes two
functions (OneNN and KMedoids) which implement the 1-NN classifier and the
K-medoids clustering algorithm, respectively.

Given a pair of train/test time series datasets and the class values of the
series in the training set, the oneNN function outputs the predicted class values
for the test series. Additionally, if the ground truth class values of the series in
the testing set are provided by the user, the error obtained in the classification
process is also calculated.

For example, suppose we want to classify the series in the example.database2
database included in TSdist, which contains 100 series from 6 very different
classes. In order to simulate a typical classification framework, we divide the
database into two sets by randomly selecting 30% of the series for training pur-
poses and 70% for testing.

R> set.seed(100)

R> trainindex <- sample(1:100, 30, replace=FALSE)

R> train <- example.database2[[1]][trainindex,]

R> test <- example.database2[[1]][-trainindex,]

R> trainclass <- example.database2[[2]][trainindex]

R> testclass <- example.database2[[2]][-trainindex]

Then, to apply the 1-NN classifier to the testing set with different distance
measures, we use the following commands:

R> OneNN(train, trainclass, test, testclass, "euclidean")

$classes

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4

[39] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6

6

$error

[1] 0

R> OneNN(train, trainclass, test, testclass, "acf")

$classes

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 4 4 4 3 4 4 3 3 4 4 3 4 3

[39] 3 4 3 3 3 3 4 6 6 5 6 5 5 5 6 6 5 6 6 6 6 5 5 6 5 5 6 5 5 6 5 5

$error

[1] 0.4142857

R> OneNN(train, trainclass, test, testclass, "dtw")

$classes

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4

[39] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6

$error

[1] 0

If we don’t provide the class values for the testing data, then only the clas-
sification result will be provided, but no error value:

R> OneNN(train, trainclass, test, "ar.pic")

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 5 4 4 3 3 3 3 5 4 5 4 4 4 5 3

[39] 4 5 3 3 4 4 4 5 5 5 6 5 5 3 6 5 5 3 6 6 3 5 6 5 3 5 5 5 6 3 4 3

Furthermore, if the selected distance measure requires the definition of any
parameters, these should be included at the end of the call:

R> OneNN(train, trainclass, test, testclass, "tquest", tau=85)

$classes

[1] 1 3 3 3 2 3 3 3 5 1 2 3 3 3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 6 4 4

[39] 4 6 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4 6 6 4 4 6 4 6 6 6 6

$error

[1] 0.2571429

In the case of clustering, the idea is similar, but in this case we use the
KMedoids function. Given the data and the number of clusters, this function
outputs the clustering result together with the F evaluation measure, (Wagner
and Wagner, 2007), if the ground truth clustering is provided by the user.

For example, to cluster the example.database3 database included in TSdist

using a variety of distances, first, we save the actual data on one object and the
ground truth clustering in another:

7

R> data(example.database3)

R> data <- example.database3[[1]]

R> ground.truth <- example.database3[[2]]

Then we apply the KMedoids function as follows:

R> KMedoids(data, 5, ground.truth, "dtw")

$clustering

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

[39] 4 4 3 3 5 3 5 5 3 5 3 5

$F

[1] 0.8933333

R> KMedoids(data, 5, ground.truth, "manhattan")

$clustering

[1] 1 1 1 2 1 2 3 2 1 2 2 4 1 2 5 1 4 1 4 1 5 2 5 5 5 5 2 4 2 4 3 3 2 3 1 2 3 2

[39] 3 2 5 5 2 5 1 2 5 2 5 2

$F

[1] 0.4907143

R> KMedoids(data, 5, ground.truth, "spec.glk")

$clustering

[1] 1 1 1 2 3 1 1 3 4 3 4 5 5 5 5 4 5 1 3 2 1 1 4 1 1 1 1 4 1 4 4 5 2 4 5 5 5 4

[39] 5 4 1 1 4 1 4 3 4 4 3 1

$F

[1] 0.4453704

As before, if the distance requires the definition of a parameter, we include
it at the end of the call:

R> KMedoids(data, 5, ground.truth, "edr", epsilon=0.1)

$clustering

[1] 1 1 1 2 1 2 3 2 1 1 4 2 5 1 2 1 3 5 2 5 1 5 5 2 4 2 5 1 5 3 3 2 3 2 3 3 3 3

[39] 2 3 2 4 4 4 5 1 4 4 4 2

$F

[1] 0.5431746

Finally, if the ground truth clustering is not provided, then only the cluster-
ing result will be provided, but no F value.

R> KMedoids(data, 5, "edr", epsilon=0.1)

[1] 1 1 1 2 1 2 3 2 1 1 4 2 5 1 2 1 3 5 2 5 1 5 5 2 4 2 5 1 5 3 3 2 3 2 3 3 3 3

[39] 2 3 2 4 4 4 5 1 4 4 4 2

8

References

P. Geurts. Contributions to decision tree induction: bias/variance tradeoff and
time series classification. PhD thesis, University of Liege, Belgium., 2002.

Jeffrey A. Ryan and Joshua M. Ulrich. xts: eXtensible Time Series, 2013. URL
http://cran.r-project.org/package=xts.

Silke Wagner and Dorothea Wagner. Comparing Clusterings - An Overview.
Technical Report 2006-04, Universität Karlsruhe (TH), 2007. URL http:

//digbib.ubka.uni-karlsruhe.de/volltexte/1000011477.

Achim Zeileis and Gabor Grothendieck. zoo: S3 Infrastructure for Regular and
Irregular Time Series. Journal of Statistical Software, 14(6):1–27, 2005.

9

