
adephylo: exploratory analyses for the

phylogenetic comparative method

Thibaut Jombart and Stéphane Dray

December 12, 2016

Contents

1 Introduction 1

2 First steps 2
2.1 Data representation: why we are not reinventing the weel 2
2.2 Installing the package . 3
2.3 Getting started . 4
2.4 Putting data into shape . 4

2.4.1 Making a phylo object . 4
2.4.2 Making a phylo4d object 5

3 Exploratory data analysis 6
3.1 Quantifying and testing phylogenetic signal 6

3.1.1 Moran’s I . 7
3.1.2 Abouheif’s test . 8
3.1.3 Phylogenetic decomposition of trait variation 10

3.2 Modelling phylogenetic signal . 13
3.2.1 Using orthonormal bases 13
3.2.2 Autoregressive models . 17

3.3 Using multivariate analyses . 17

1 Introduction

This document describes the adephylo package for the R software. adephylo

aims at implementing exploratory methods for the analysis of phylogenetic
comparative data, i.e. biological traits measured for taxa whose phylogeny is
also provided. This package extends and replaces implementation of phylogeny-
related methods in the ade4 package http://pbil.univ-lyon1.fr/ADE-4/

home.php?lang=eng.
Procedures implemented in adephylo rely on exploratory data analysis.

They include data visualization and manipulation, tests for phylogenetic

1

http://pbil.univ-lyon1.fr/ADE-4/home.php?lang=eng
http://pbil.univ-lyon1.fr/ADE-4/home.php?lang=eng

autocorrelation, multivariate analysis, computation of phylogenetic proximities
and distances, and modelling phylogenetic signal using orthonormal bases.

These methods can be used to visualize, test, remove or investigate the
phylogenetic signal in comparative data. The purpose of this document is to
provide a general view of the main functionalities of adephylo, and to show
how this package can be used along with ape, phylobase and ade4 to analyse
comparative data.

2 First steps

2.1 Data representation: why we are not reinventing the
weel

Data representation can be defined as the way data are stored in a software (R,
in our case). Technically, data representation is defined by classes of objects
that contain the information. In the case of phylogeny and comparative data,
very efficient data representation are already defined in other packages. Hence,
it makes much more sense to use directly objects from these classes.

Phylogenies are best represented in Emmanuel Paradis’s ape package
(http://ape.mpl.ird.fr/), as the class phylo. As ape is by far the
largest package dedicated to phylogeny, using the phylo class assures a
good interoperability of data. This class is defined in an online document:
http://ape.mpl.ird.fr/misc/FormatTreeR_28July2008.pdf.

However, data that are to be analyzed in adephylo do not only contain
trees, but also traits associated to the tips of a tree. The package phylobase

(http://r-forge.r-project.org/projects/phylobase/) is a collaborative
effort designed to handling such data. Its representation of phylogenies slightly
differs from that of ape; the class phylo4 was originally an extension of the
phylo class into formal (S4) class, but it has now evolved into something more
original. The S4 class phylo4d (‘d’ for ‘data’) can be used to store a tree
and data associated to tips, internal nodes, or even edges of a tree. Classes of
phylobase are described in a vignette of the package, accessible by typing:

> vignette("phylobase")

As trees and comparative data are already handled by ape and phylobase, no
particular data format shall be defined in adephylo. In particular, we are no
longer using phylog objects, which were used to represent phylogenies in ade4

in a very ad hoc way, without much compatibility with other packages. This
class is now deprecated, but all previous functionalities available for phylog

objects have been re-implemented and – in some cases – improved in adephylo.

2

http://ape.mpl.ird.fr/
http://ape.mpl.ird.fr/misc/FormatTreeR_28July2008.pdf
http://r-forge.r-project.org/projects/phylobase/

2.2 Installing the package

What is tricky here is that a vignette is basically available once the package is
installed. Assuming you got this document before installing the package, here
are some clues about installing adephylo.

First of all, adephylo depends on other packages, being methods, ape,
phylobase, and ade4. These dependencies are mandatory, that is, you
actually need to have these packages installed before using adephylo.
Also, it is better to make sure you are using the latest versions of these
packages. This can be achieved using the update.packages command, or by
installing devel versions from R-Forge (http://r-forge.r-project.org/).
In all cases, the latest version of adephylo can be found from
http://r-forge.r-project.org/R/?group_id=303.

We load adephylo, alongside some useful packages:

> library(ape)
> library(phylobase)
> library(ade4)
> library(adephylo)
> search()

[1] ".GlobalEnv" "package:adephylo" "package:ade4"
[4] "package:phylobase" "package:ape" "package:stats"
[7] "package:graphics" "package:grDevices" "package:utils"
[10] "package:datasets" "package:methods" "Autoloads"
[13] "package:base"

Note that possibly conflicting, deprecated functions or datasets from ade4

are masked by adephylo. In case the converse would occur (i.e. deprecated
function masking a function of adephylo), one can refer to the ‘good’ version
of a function by adding the prefix adephylo:: to the function. Hence, it is
possible to coerce the version of a masked function, using a kludge like:

> cat("\n=== Old - deprecated- version ===\n")

=== Old - deprecated- version ===

> orthogram <- ade4::orthogram
> args(orthogram)

function (x, orthobas = NULL, neig = NULL, phylog = NULL, nrepet = 999,
posinega = 0, tol = 1e-07, na.action = c("fail", "mean"),
cdot = 1.5, cfont.main = 1.5, lwd = 2, nclass, high.scores = 0,
alter = c("greater", "less", "two-sided"))

NULL

> cat("\n=== New version === \n")

=== New version ===

3

http://r-forge.r-project.org/
http://r-forge.r-project.org/R/?group_id=303

> orthogram <- adephylo::orthogram
> args(orthogram)

function (x, tre = NULL, orthobas = NULL, prox = NULL, nrepet = 999,
posinega = 0, tol = 1e-07, cdot = 1.5, cfont.main = 1.5,
lwd = 2, nclass, high.scores = 0, alter = c("greater", "less",

"two-sided"))
NULL

Luckily, this should not be required as long as one is not playing with loading
and unloading ade4 once adephylo is loaded.

2.3 Getting started

All the material of the package is summarized in a manpage accessible by typing:

> ?adephylo

The html version of this manpage may be preferred to browse easily the
content of adephylo; this is accessible by typing:

> help("adephylo", package="adephylo", html=TRUE)

To revert help back to text mode, simply type:

> options(htmlhelp = FALSE)

2.4 Putting data into shape

While this is not the purpose of this document to go through the details of
phylo, phylo4 and phylo4d objects, we shall show briefly how these objects
can be obtained.

2.4.1 Making a phylo object

The simplest way of turning a tree into a phylo object is using ape’s function
read.tree. This function reads a tree with the Newick (or ‘parentetic’) format,
from a file (default, argument file) of from a character string (argument text).

> data(ungulates)
> ungulates$tre

[1] "((Antilocapra_americana,((Gorgon_taurinus,Oryx_leucoryx)W1,(Taurotragus_livingstoni,Tautragus_oryx)W2,(Gazella_thompsoni,(Saiga_tatarica,(Ovis_canadensis,Ovis_aries)W3)W6)W7)W10)W11,((Rangifer_tarandus,Alces_alces,Capreolus_capreolus,(Odocoileus_virginianus,Odocoileus_hemionus)W4)W8,(Dama_dama,Axis_axis,(Cervus_canadensis,Cervus_scoticus)W5)W9)W12)Root;"

> myTree <- read.tree(text=ungulates$tre)
> myTree

Phylogenetic tree with 18 tips and 13 internal nodes.

Tip labels:
Antilocapra_americana, Gorgon_taurinus, Oryx_leucoryx, Taurotragus_livingstoni, Tautragus_oryx, Gazella_thompsoni, ...

Node labels:
Root, W11, W10, W1, W2, W7, ...

Rooted; no branch lengths.

4

> plot(myTree, main="ape's plotting of a tree")

It is easy to convert ade4’s phylog objects to a phylo, as phylog objects
store the Newick format of the tree in the $tre component.

Note that phylo trees can also be constructed from alignements (see
read.GenBank, read.dna, dist.dna, nj, bionj, and mlphylo, all in ape), or
even simulated (for instance, see rtree).

Also note that, if needed, conversion can be done back and forward with
phylo4 trees:

> temp <- as(myTree, "phylo4")
> class(temp)

[1] "phylo4"
attr(,"package")
[1] "phylobase"

> temp <- as(temp, "phylo")
> class(temp)

[1] "phylo"

> all.equal(temp, myTree)

[1] TRUE

2.4.2 Making a phylo4d object

phylo4d objects are S4 objects, and are thus created in a particular way. These
objects can be obtained in two ways, by reading a Nexus file containing tree and
data information, or by ‘assembling’ a tree and data provided for tips, nodes,
or edges.

Nexus files containing both tree and data can be read by phylobase’s
function readNexus (see corresponding manpage for more information). The
other way of creating a phylo4d object is using the constructor, also named
phylo4d. This is a function that takes two arguments: a tree (phylo or phylo4
format) and a data.frame containing data, for tips by default (see ?phylo4d

for more information). Here is an example:

> ung <- phylo4d(myTree, ungulates$tab)
> class(ung)

[1] "phylo4d"
attr(,"package")
[1] "phylobase"

5

> table.phylo4d(ung)

Data are stored inside the @data slot of the object. They can be accessed
using the function tdata:

> x <- tdata(ung, type="tip")
> head(x)

afbw mnw fnw ls
Antilocapra_americana 50586 3832 3908 1.8
Gorgon_taurinus 165000 18600 14500 1.0
Oryx_leucoryx 87700 6840 6490 1.0
Taurotragus_livingstoni 405000 36300 28500 1.0
Tautragus_oryx 316000 26800 24700 1.0
Gazella_thompsoni 21300 2500 2500 1.0

3 Exploratory data analysis

3.1 Quantifying and testing phylogenetic signal

In this document, the terms ‘phylogenetic signal’ and ‘phylogenetic
autocorrelation’ are used interchangeably. They refer to the fact that values
of life-history traits or ecological features are not independent in closely related
taxa. Several procedures are implemented by adephylo to measure and test
phylogenetic autocorrelation.

6

3.1.1 Moran’s I

The function moran.idx computes Moran’s I, the most widely-used
autocorrelation measure. It can also provide additionnal information (argument
addInfo), being the null value of I (i.e., the expected value in absence of
phylogenetic autocorrelation), and the range of variation of I. It requires the
degree of relatedness of tips on the phylogeny to be modelled by a matrix of
phylogenetic proximities. Such a matrix can be obtained using different methods
implemented by the function proxTips.

> W <- proxTips(myTree, met="Abouheif")
> moran.idx(tdata(ung, type="tip")$afbw, W)

[1] 0.1132682

> moran.idx(tdata(ung, type="tip")[,1], W, addInfo=TRUE)

[1] 0.1132682
attr(,"I0")
[1] -0.05882353
attr(,"Imin")
[1] -0.5217391
attr(,"Imax")
[1] 1.000699

From here, it is quite straightforward to build a non-parametric test based
on Moran’s I. For instance (taken from ?moran.idx):

> afbw <- tdata(ung, type="tip")$afbw
> sim <- replicate(499, moran.idx(sample(afbw), W)) # permutations
> sim <- c(moran.idx(afbw, W), sim)
> cat("\n=== p-value (right-tail) === \n")

=== p-value (right-tail) ===

> pval <- mean(sim>=sim[1])
> pval

[1] 0.146

> plot(density(sim), main="Moran's I Monte Carlo test for 'bif'") # plot
> mtext("Density of permutations, and observation (in red)")
> abline(v=sim[1], col="red", lwd=3)
>

7

Here, afbw is likely not phylogenetically autocorrelated.

3.1.2 Abouheif’s test

The test of Abouheif (see reference in ?abouheif.moran) is designed to test
the existence of phylogenetic signal. In fact, it has been shown that this test
amounts to a Moran’s I test with a particular proximity matrix (again, see
references in the manpage). The implementation in abouheif.moran proposes
different phylogenetic proximities, using by default the original one.

The function can be used on different objects; in particular, it can be used
with a phylo4d object. In such case, all traits inside the object are tested.
The returned object is a krandtest, a class of object defined by ade4 to store
multiple Monte Carlo tests. Here is an example using the ungulates dataset:

> ung.abTests <- abouheif.moran(ung)
> ung.abTests

class: krandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byrow = TRUE),

obs = res$obs, alter = alter, names = test.names)

Number of tests: 4

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 afbw 0.1653920 -Inf greater 1.000

8

2 mnw 0.3681410 Inf greater 0.001
3 fnw 0.3843272 Inf greater 0.001
4 ls 0.3002425 Inf greater 0.001

other elements: adj.method call

> plot(ung.abTests)

In this case, it seems that all variables but afbm are phylogenetically structured.

Note that other proximities than those proposed in abouheif.moran can
be used: on has just to pass the appropriate proximity matrix to the function
(argument W). For instance, we would like to use the correlation corresponding
to a Brownian motion as a measure of phylogenetic proximity.

First, we must estimate branch lengths, as our tree does not have any (ideally,
we would already have a tree with meaningful branch lengths):

> hasEdgeLength(ung)

[1] FALSE

> myTree.withBrLe <- compute.brlen(myTree)

Now, we can use ape’s function vcv.phylo to compute the matrix of
phylogenetic proximities, and use this matrix in Abouheif’s test:

> myProx <- vcv.phylo(myTree.withBrLe)
> abouheif.moran(ung, W=myProx)

class: krandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byrow = TRUE),

obs = res$obs, alter = alter, names = test.names)

Number of tests: 4

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 afbw 0.09113999 -Inf greater 1.000
2 mnw 0.17453316 Inf greater 0.001
3 fnw 0.16952884 Inf greater 0.001
4 ls 0.15842344 Inf greater 0.001

other elements: adj.method call

In the present case, traits no longer appear as phylogenetically autocorrelated.
Several explanation can be proposed: the procedure for estimating branch length
may not be appropriate in this case, or the Brownian motion may fail to describe
the evolution of the traits under study for this set of taxa.

9

3.1.3 Phylogenetic decomposition of trait variation

The phylogenetic decomposition of the variation of a trait proposed by Ollier
et al. (2005, see references in ?orthogram) is implemented by the function
orthogram. This function replaces the former, deprecated version from ade4.

The idea behind the method is to model different levels of variation on
a phylogeny. Basically, these levels can be obtained from dummy vectors
indicating which tip descends from a given node. A partition of tips can then
be obtained for each node. This job is achieved by the function treePart. Here
is an example using a small simulated tree:

> x <- as(rtree(5),"phylo4")
> plot(x,show.n=TRUE)

t2

t4

t1

t5

t3

> x.part <- treePart(x)
> x.part

X7 X8 X9
t2 1 0 0
t4 1 0 0
t5 0 1 1
t3 0 1 1
t1 0 1 0

The obtained partition can also be plotted:

10

> temp <- phylo4d(x, x.part)
> table.phylo4d(temp, cent=FALSE, scale=FALSE)

●

●

●

●

●

●

●

●

X
7

X
8

X
9

t2

t4

t1

t5

t3

0 0.2 0.8 1

● ●

What we would like to do is assess where the variation of a trait is structured
on the phylogeny; to do so, we could use these dummy vectors as regressors and
see how variation is distributed among these vectors. However, these dummy
vectors cannot be used as regressors because they are linearly dependent. The
orthogram circumvents this issue by transforming and selecting dummy vectors
into a new set of variables that are orthonormal. The obtained orthonormal
basis can be used to decompose the variation of the trait. Even if not necessary
to get an orthogram, this basis can be obtained from treePart:

> args(treePart)

function (x, result = c("dummy", "orthobasis"))
NULL

> temp <- phylo4d(x, treePart(x, result="orthobasis"))

And here are the first 8 vectors of the orthonormal basis for the ungulate dataset:

> temp <- phylo4d(myTree, treePart(myTree, result="orthobasis"))
> par(mar=rep(.1,4))
> table.phylo4d(temp, repVar=1:8, ratio.tree=.3)

11

Root

W11

W10

W1

W2

W7

W6
W3

W12

W8

W4

W9

W5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●
●

V.
1

V.
2

V.
3

V.
4

V.
5

V.
6

V.
7

V.
8

Antilocapra_americana

Gorgon_taurinus

Oryx_leucoryx

Taurotragus_livingstoni

Tautragus_oryx

Gazella_thompsoni

Saiga_tatarica

Ovis_canadensis

Ovis_aries

Rangifer_tarandus

Alces_alces

Capreolus_capreolus

Odocoileus_virginianus

Odocoileus_hemionus

Dama_dama

Axis_axis

Cervus_canadensis

Cervus_scoticus

−4 −2 2 4

● ●

The decomposition of variance achieved by projecting a trait onto this
orthonormal basis gives rise to several test statistics, that are performed by the
function orthogram. Like the abouheif.moran function, orthogram outputs a
krandtest object:

> afbw.ortgTest <- orthogram(afbw, myTree)
> afbw.ortgTest

class: krandtest
Monte-Carlo tests
Call: orthogram(x = afbw, tre = myTree)

Number of tests: 4

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 R2Max 0.3298815 -Inf greater 1.000
2 SkR2k 8.2600870 Inf greater 0.001
3 Dmax 0.2066299 -Inf greater 1.000
4 SCE 0.1797097 -Inf greater 1.000

other elements: adj.method call

Here again, afbw does not seem to be phylogenetically structured.

12

3.2 Modelling phylogenetic signal

3.2.1 Using orthonormal bases

The previous section describing the orthogram has shown that testing
phylogenetic signal underlies a model of phylogenetic structure. In the case of
the orthogram, several tests are based on the decomposition of the variance of a
trait onto an orthonormal basis describing tree topology. In fact, it is possible to
extend this principle to any orthonormal basis modelling phylogenetic topology.
Another example of such bases is offered by Moran’s eigenvectors, which can
be used to model different observable phylogenetic structures (see references in
me.phylo).

Moran’s phylogenetic eigenvectors are implemented by the function
me.phylo (also nicknamed orthobasis.phylo). The returned object is a
data.frame with the class orthobasis defined in ade4; columns of this object are
Moran’s eigenvectors. An orthobasis can be coerced to a regular data.frame
or to a matrix using as.data.frame and as.matrix.

> me.phylo(myTree.withBrLe)

Orthobasis with 18 rows and 17 columns
Only 6 rows and 4 columns are shown

ME 1 ME 2 ME 3 ME 4
Antilocapra_americana -0.4437356 0.0007632929 -0.1441052 4.038249e-16
Gorgon_taurinus -0.9373732 0.0123304634 -1.5429045 2.121320e+00
Oryx_leucoryx -0.9373732 0.0123304634 -1.5429045 2.121320e+00
Taurotragus_livingstoni -0.9373732 0.0123304634 -1.5429045 -2.121320e+00
Tautragus_oryx -0.9373732 0.0123304634 -1.5429045 -2.121320e+00
Gazella_thompsoni -0.8932566 -0.0455675921 0.7757824 -5.887847e-16

Moran’s eigenvectors are constructed from a matrix of phylogenetic proximities
between tips. Any proximity can be used (argument prox); the 5 proximities
implemented by the proxTips function are available by default, giving rise to
different orthobases:

> ung.listBas <- list()
> ung.listBas[[1]] <- phylo4d(myTree, as.data.frame(me.phylo(myTree.withBrLe, method="patristic")))
> ung.listBas[[2]] <- phylo4d(myTree, as.data.frame(me.phylo(myTree, method="nNodes")))
> ung.listBas[[3]]<- phylo4d(myTree, as.data.frame(me.phylo(myTree, method="Abouheif")))
> ung.listBas[[4]] <- phylo4d(myTree, as.data.frame(me.phylo(myTree, method="sumDD")))
> par(mar=rep(.1,4), mfrow=c(2,2))
> invisible(lapply(ung.listBas, table.phylo4d, repVar=1:5, cex.sym=.7, show.tip.label=FALSE, show.node=FALSE))

13

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●●
●

●

●●
●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●
●

M
E

.1

M
E

.2

M
E

.3

M
E

.4

M
E

.5

−3 −2 2 3
●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●

●
●
●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

M
E

.1

M
E

.2

M
E

.3

M
E

.4

M
E

.5

−3 −2 2 3
●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●
●●
●

●
●●
●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

M
E

.1

M
E

.2

M
E

.3

M
E

.4

M
E

.5

−3 −2 2 3
●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●
●●
●

●
●●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●
●

M
E

.1

M
E

.2

M
E

.3

M
E

.4

M
E

.5

−3 −2 2 3
●●

In this case, the first Moran’s eigenvectors are essentially similar. In other
cases, however, the orthobases built from different proximities can be quite
different.

One of the interests of Moran’s eigenvectors in phylogeny is to account for
phylogenetic autocorrelation in a linear model. This can be achieved using the
appropriate eigenvector as covariate. Here is an example when studying the link
of two traits in ungulate dataset.

> afbw <- log(ungulates$tab[,1])
> neonatw <- log((ungulates$tab[,2]+ungulates$tab[,3])/2)
> names(afbw) <- myTree$tip.label
> names(neonatw) <- myTree$tip.label
> plot(afbw, neonatw, main="Relationship between afbw and neonatw")
> lm1 <- lm(neonatw~afbw)
> abline(lm1, col="blue")
> anova(lm1)

Analysis of Variance Table

Response: neonatw
Df Sum Sq Mean Sq F value Pr(>F)

afbw 1 12.1625 12.1625 159.43 9.81e-10 ***
Residuals 16 1.2206 0.0763

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

14

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

10.0 10.5 11.0 11.5 12.0 12.5 13.0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

10
.5

Relationship between afbw and neonatw

afbw

ne
on

at
w

Are the residuals of this model independent?

> resid <- residuals(lm1)
> names(resid) <- myTree$tip.label
> temp <- phylo4d(myTree,data.frame(resid))
> abouheif.moran(temp)

class: krandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byrow = TRUE),

obs = res$obs, alter = alter, names = test.names)

Number of tests: 1

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 resid 0.4566173 Inf greater 0.001

other elements: adj.method call

> table.phylo4d(temp)

15

Root

W11

W10

W1

W2

W7
W6
W3

W12

W8

W4

W9

W5

●

●
●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

re
si

d

Antilocapra_americana
Gorgon_taurinus
Oryx_leucoryx
Taurotragus_livingstoni
Tautragus_oryx
Gazella_thompsoni
Saiga_tatarica
Ovis_canadensis
Ovis_aries
Rangifer_tarandus
Alces_alces
Capreolus_capreolus
Odocoileus_virginianus
Odocoileus_hemionus
Dama_dama
Axis_axis
Cervus_canadensis
Cervus_scoticus

−3 −2 1 2

●●●

No, residuals are clearly not independent, as they exhibit strong phylogenetic
autocorrelation. In this case, autocorrelation can be removed by using the first
Moran’s eigenvector as a covariate. In general, the appropriate eigenvector(s)
can be chosen by usual variable-selection approaches, like the forward selection,
or using a selection based on the existence of autocorrelation in the residuals.

> myBasis <- me.phylo(myTree, method="Abouheif")
> lm2 <- lm(neonatw~myBasis[,1] + afbw)
> resid <- residuals(lm2)
> names(resid) <- myTree$tip.label
> temp <- phylo4d(myTree,data.frame(resid))
> abouheif.moran(temp)

class: krandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byrow = TRUE),

obs = res$obs, alter = alter, names = test.names)

Number of tests: 1

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 resid 0.1805854 Inf greater 0.001

other elements: adj.method call

> anova(lm2)

16

Analysis of Variance Table

Response: neonatw
Df Sum Sq Mean Sq F value Pr(>F)

myBasis[, 1] 1 0.1630 0.1630 3.1444 0.09649 .
afbw 1 12.4427 12.4427 240.0840 1.227e-10 ***
Residuals 15 0.7774 0.0518

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The link between the two variables is still very statistically significant, but
this time the model is not invalid because of non-independence of residuals.

3.2.2 Autoregressive models

Autoregressive models can also be used to remove phylogenetic autocorrelation
from residuals. This approach implies the use of a phylogenetically lagged
vector, for some or all of the variates of a model (see references in ?proxTips).
The lag vector of a trait x, denoted x̃, is computed as:

x̃ = Wx

where W is a matrix of phylogenetic proximities, as returned by proxTips.
Hence, one can use an autoregressive approach to remove phylogenetic
autocorrelation quite simply. We here re-use the example from the previous
section:

> W <- proxTips(myTree, method="Abouheif", sym=FALSE)
> lagNeonatw <- W %*% neonatw
> lm3 <- lm(neonatw ~ lagNeonatw + afbw)
> resid <- residuals(lm3)
> abouheif.moran(resid,W)

class: krandtest
Monte-Carlo tests
Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byrow = TRUE),

obs = res$obs, alter = alter, names = test.names)

Number of tests: 1

Adjustment method for multiple comparisons: none
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 x 0.1658522 Inf greater 0.001

other elements: adj.method call

Here, this most simple autoregressive model may not be sufficient to account for
all phylogenetic signal; yet, phylogenetic autocorrelation is no longer detected
at the usual threshold α = 0.05.

3.3 Using multivariate analyses

Multivariate analyses can be used to identify the main biodemographic strategies
in a large set of traits. This could be the topic of an entire book. Such
application is not particular to adephylo, but some practices are made easier by
the package, used together with ade4. We here provide a simple example, using

17

the maples dataset. This dataset contains a tree and a set of 31 quantitative
traits (see ?maples).

First of all, we seek a summary of the variability in traits using a principal
component analysis. Missing data are replaced by mean values, so they are
placed at the origin of the axes (the ‘non-informative’ point).

> f1 <- function(x){
+ m <- mean(x,na.rm=TRUE)
+ x[is.na(x)] <- m
+ return(x)
+ }
> data(maples)
> traits <- apply(maples$tab, 2, f1)
> pca1 <- dudi.pca(traits, scannf=FALSE, nf=1)
> barplot(pca1$eig, main="PCA eigenvalues", col=heat.colors(16))

PCA eigenvalues

0
2

4
6

8
10

12

One axis shall be retained. Does this axis reflect a phylogenetic structure?
We can represent this principal component onto the phylogeny. In some cases,
positive autocorrelation can be better perceived by examining the lag vector
(see previous section on autoregressive models) instead of the original vector.
Here, we shall plot both the retained principal component, and its lag vector:

> tre <- read.tree(text=maples$tre)
> W <- proxTips(tre)
> myComp <- data.frame(PC1=pca1$li[,1], lagPC1=W %*% pca1$li[,1])
> myComp.4d <- phylo4d(tre, myComp)
> nodeLabels(myComp.4d) <- names(nodeLabels(myComp.4d))
> table.phylo4d(myComp.4d)

18

18

19
20

21
22
23

24

25

26
27

28

29

30
31

32
33

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●
●
●
●
●

●

●

●
●
●

●

●

●

P
C

1

la
gP

C
1

A_palmatum
A_amoenum
A_sieboldianum
A_japonicum
A_shirasawanum
A_tenuifolium
A_saccharum
A_carpinifolium
A_diabolicum
A_mono
A_micranthum
A_rufinerve
A_crataegifolium
A_pensylvanicum
A_spicatum
A_distylum
A_nipponicum

−2 −1 1 2

●●

It is quite clear that the main component of diversity among taxa separates
descendants from node 19 from descendants of node 24. Phylogenetic
autocorrelation can be checked in ‘PC1’ (note that testing it in the lag vector
would be circulary, as the lag vector already otimizes positive autocorrelation),
for instance using Abouheif’s test:

> myTest <- abouheif.moran(myComp[,1], W=W)
> plot(myTest, main="Abouheif's test using patristic proximity")
> mtext("First principal component - maples data", col="blue", line=1)

19

Abouheif's test using patristic proximity

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0
20

0
40

0
60

0
80

0
10

00 First principal component − maples data

To dig further into the interpretation of this structure, one can have a look at
the loadings of the traits, to see to which biological traits these opposed life
histories correspond:

> ldgs <- pca1$c1[,1]
> plot(ldgs, type="h", xlab="Variable", xaxt="n", ylab="Loadings")
> s.label(cbind(1:31, ldgs), lab=colnames(traits), add.p=TRUE, clab=.8)
> temp <- abs(ldgs)
> thres <- quantile(temp, .75)
> abline(h=thres * c(-1,1), lty=2, col="blue3", lwd=3)
> title("Loadings for PC1")
> mtext("Quarter of most contributing variables indicated in blue", col="blue")

20

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Variable

Lo
ad

in
gs

 MatHt

 SdSz

 LfPt

 InflPd

 Pet

 TCSA

 Infl

 LfPr

 IndLA
 ShLA

 Bif

 Dom CATA.P

 CATA.S

 CATP.P

 CATP.S

 DMTA.P

 DMTA.S

 HTCA.mx
 HTCA.S HTCV.P

 HTCV.S

 HTSL.P
 HTSL.S

 HTTA.P

 HTTA.S

 HTTL.P
 HTTL.S

 HTTP.P
 HTTP.S

 Lf.Thickness

Loadings for PC1

Quarter of most contributing variables indicated in blue

As a reminder, species with a large black symbol would be on the top of this
graph, while species with a large white symbol would lie on the bottom.

21

	Introduction
	First steps
	Data representation: why we are not reinventing the weel
	Installing the package
	Getting started
	Putting data into shape
	Making a phylo object
	Making a phylo4d object

	Exploratory data analysis
	Quantifying and testing phylogenetic signal
	Moran's I
	Abouheif's test
	Phylogenetic decomposition of trait variation

	Modelling phylogenetic signal
	Using orthonormal bases
	Autoregressive models

	Using multivariate analyses

