
Consistent Banner Comments for R Scripts
Bill Venables
2016-12-05

Contents
Rationale . 1
How to use it . 2
Arguments . 3
Examples . 3
Notes . 4

The number of leading hash characters . 4
Sending text strings to the clipboard . 5
Gratuitous advice . 5

Rationale

This tiny package is purely for the convenience of authors who wish to document their code with
the occasional block of clearly marked comments in order to make the code more easily navigable.

A common practice is to use comment lines enclosed in some kind of band, or box of display
characters. We call such a block of comments a banner comment, and by using them sparingly
and judiciously code can be made much easier to navigate visually and hence to maintain.

Examples might include blocks such as the following to initiate a major code section:

###
###
###
SECTION 1
DATA INPUT AND INITIALIZATION
###
###
###

Subsections might be flagged by less prominent comments such as one like this

##--
Primary data input -
##--

or a more minor one like

##...................................
Some minor glitches in the data
need special treatment here
##...................................

Banner comments look much better if there is a consistent formatting throughout the script so
that sections and sub-sections can be readily identified. This is quite easy to do, but to do it
properly can take some editing and drafting time.

1

The simple tool we offer here aims to make the formatting tasks essentially no more work than
typing the text itself. It presumes that while the R script is being drafted there will be a console
window open as well, but this is almost de rigeur these days.

How to use it

The package bannerCommenter provides a single main function, banner, along with a few helpers.

To make a banner such as the first one above you could simply type the text into the console
window via a call to the main function:
library(bannerCommenter)
banner("Section 1:", "Data input and initialization", emph = TRUE)

###
###
###
SECTION 1:
DATA INPUT AND INITIALIZATION
###
###
###

This provides a formatted comment that can be copy-and-pasted into the script. However, if the
operating system allows it, as well as displaying the comment in the console window the result is
also copied onto a clipboard file or pipe, so the “copy” part of the copy-and-paste should not be
required.

Two other conveniences are also provided.

1. Since this is likely to be a common form of banner comment, a simple front-end function
section() is provided which simply called banner(..., emph = TRUE), that is with the emph
argument having a different default value.

2. Rather than typing strings with quite delimiters separated by commas, if the function is
called with no string arguments, and in an interactive session of course, the strings are read
from the terminal, line by line, with prompts issued as with the scan function. An empty line
indicates the lines are complete.

An example, again with the same banner comment, is as follows

> section()
1: Section 1
2: Data input and initialization
3:

###
###
###
SECTION 1
DATA INPUT AND INITIALIZATION
###
###
###

>

2

At this point the user should be able to paste the banner comment into the script in the usual
way. If the automatic clipboard facility is not available the band displayed in the console window,
essentially for checking, can easily be used for manual copy-and-paste.

In a series of similar comment banners the function would normally be invoked by command line
recall making only the typing of the text itself necessary.

Arguments

At first sight banner seems to have a bewildering number of arguments, but most have sensible
defaults and there are four front-end functions like section that handle simple special cases where
the default values are slightly different.

The full list of arguments to banner and their default values are listed in the table below. Note that
some argument defaults refer to the values of other arguments.

Argument Meaning Default

x, ... One or more strings, which may be missing. <none>
(Single strings may be further broken by ‘\n’.)

emph Do you want emphasis, i.e. a bigger, bolder banner? FALSE
snug Do you want any box to be close fitting? FALSE
upper Do you want the text to be in upper case? emph
centre Do you want the text lines to be centred? !snug && emph
leftSideHashes How many hash characters to the left? 2 + emph
rightSideHashes How many hash characters to the right leftSideHashes
minHashes How long do you want the bands (at least)? (!snug) * (65 + 10 * emph)
numLines How many lines above and below do you want? 1 + emph
bandChar What character do you want to use for the bands? "#"
center Foreign, alternative spelling of ‘centre’ centre

Examples

As well as section there are three other front-end functions that simply act as a call to banner
with different default values for some of the arguments. Rather than describe them in detail it
suffices simply to provide a few example, beginning with the primary function itself.
txt <- "This is the text of a comment"
banner(txt) ## default heavy style

###
This is the text of a comment
###

banner(txt, centre = TRUE, bandChar = "-")

##---
This is the text of a comment --
##---

boxup(txt, snug = TRUE, bandChar = "=")

##===================================
This is the text of a comment =

3

##===================================

open_box(txt, bandChar = ":")

##:::::::::::::::::::::::::::::::::
This is the text of a comment
##:::::::::::::::::::::::::::::::::

block("This is a chatty comment. Entering it this way just",
"saves a tiny bit of typing but it can be useful if",
"you need multiple initial hash marks, as you may when",
"using Emacs/ESS, for example.",
"Or if you want the lines centred for some odd reason.",
center = TRUE)

This is a chatty comment. Entering it this way just
saves a tiny bit of typing but it can be useful if
you need multiple initial hash marks, as you may when
using Emacs/ESS, for example.
Or if you want the lines centred for some odd reason.

boxup("") ## short lines of uniform length, for use as a separator

##--

section("") ## heavier, longer double lines to separate bigger things

##
##

Notes

The number of leading hash characters

In some editing systems, where a comment has only white space before it on a single line, the
number of leading comment characters is significant. It affects how the line is changed under
automatic reformatting. For example, Emacs/ESS adopts this convention by default:

• A line with a single leading comment character, only, is aligned so that it begins near the
middle of the line. (I have no explanation as to why!)

• A line with two leading comment characters, only, is aligned as if it were an active code line.
This is often useful.

• A line with three or more leading comment characters is aligned so that it begins in the first
column and so occupies the whole line.

Some commentators recommend using a single leading comment character for all comments, and
RStudio, for example, facilitates this choice. However if the same code is handled by Emacs/Ess
the comments are liable to be right shifted to start in the middle of the line (unless the default is
changed, of course, which is not initially very clear).

This may be useful to keep in mind when two or more systems may be used to maintain the same
R scripts.

4

Sending text strings to the clipboard

A helper function used in this package may be useful in its own right. The function
copy_to_clipboard allows text strings to be copied to a clipboard file (or pipe) in a reasonably cross
platform way, at least for Linux, Windows and Mac OS.

A call such as
copy_to_clipboard(txt)

will return txt invisibly, but will have the side effect of transferring any strings in the txt object to
a clipboard device. In effect it behaves like a print method, but with the “printing” going on to a
clipboard device rather than on to stdout.

To work on Linux the system command xclip has to be installed and visible on the PATH and on
Mac OS the system command pbcopy has similarly to be installed and visible. On Windows it should
work universally.

Note that this is not a file or pipe connection in itself, but a function which transfers strings to
an appropriate clipboard device. Thus, for example, to write a short data frame onto a clipboard
device in a way that works across the three platforms, you may need to do something like the
following:
library(dplyr)
mtcarsText <- datasets::mtcars %>%

capture.output(write.table(.)) %>%
copy_to_clipboard(sep = "\n")

At this point mrcarsText is a character string vector with the lines of datasets::mtcars as its
elements, and the information would be available on the clipboard for a paste operation.

Gratuitous advice

Use sparingly and judiciously. Most comments will simply be done by typing the # character and
proceeding. They will usually not require fancy banners. A potential danger of providing this
simple facility is that some authors may be tempted to overdo their script decoration. Comments
are important, but excessive decoration can detract from the aesthetics rather than enhance, and
even with this package making them can waste a lot of time.

People who find the package useful but would like to suggest other tweaks or front-ends are
welcome to contact the author at the email address given in the package itself.

5

	Rationale
	How to use it
	Arguments
	Examples
	Notes
	The number of leading hash characters
	Sending text strings to the clipboard
	Gratuitous advice

