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cluster.Gen(clusterSim) 

 

Random cluster generation with known structure of clusters 

 

Models 

Metric data (dataType="m") 

model=1. No cluster structure. The observations are simulated from the uniform distribution 

over the unit hypercube. 

model=2. The observations are independently drawn from normal distribution with means and 

covariances are taken from arguments means and cov. 

model=3. Two elongated clusters in 2 dimensions. The observations in each of two clusters are 

independent bivariate normal random variables with means (0, 0), (1, 5), and covariance matrix   

( 1jj , 90.jl ). 

model=4. Three elongated clusters in 2 dimensions. The observations are independently drawn 

from bivariate normal distribution with means (0, 0), (1.5, 7), (3, 14) and covariance matrix   

( 1jj , 90.jl ). 

model=5. Three elongated clusters in 3 dimensions. The observations are independently drawn 

from multivariate normal distribution with means (1.5, 6, –3), (3, 12, –6), (4.5, 18, –9), and identity 

covariance matrix  , where 1jj  ( )31  j , 901312 . , and 9023 . . 

model=6. Five clusters in 2 dimensions that are not well separated. The observations are inde-

pendently drawn from bivariate normal distribution with means (5, 5), (–3, 3), (3, –3), (0, 0), (–5, –

5), and identity covariance matrix   ( 1jj , 90.jl ). 

model=7. Five clusters in 3 dimensions that are not well separated. The observations are inde-

pendently drawn from multivariate normal distribution with means (5, 5, 5), (–3, 3, –3), (3, –3, 3), 

(0, 0, 0), (–5, –5, –5), and covariance matrix  , where 1jj  ( )31  j , and 90.jl  

( 31  lj ). 

model=8. Five clusters in 2 dimensions. The observations are independently drawn from biva-

riate normal distribution with means (0, 0), (0, 10), (5, 5), (10, 0), (10, 10), and identity covariance 

matrix   ( 1jj , 0jl ). 

model=9. Five clusters in 3 dimensions. The observations are independently drawn from multi-

variate normal distribution with means (0, 0, 0), (10, 10, 10), (–10, –10, –10), (10, –10, 10), (–10, 

10, 10), and identity covariance matrix  , where 3jj  ( )31  j , and 2jl  ( 31  lj ). 

model=10. Four clusters in 2 dimensions. The observations are independently drawn from bi-

variate normal distribution with means (–4, 5), (5, 14), (14, 5), (5, –4), and identity covariance ma-

trix   ( 1jj , 0jl ). 

model=11. Four clusters in 3 dimensions. The observations are independently drawn from mul-

tivariate normal distribution with means (–4, 5, –4), (5, 14, 5), (14, 5, 14), (5, –4, 5), and identity 

covariance matrix  , where 1jj  ( )31  j , and 0jl  ( 31  lj ). 

model=12. Four clusters in 1 dimension. The observations are independently drawn from uni-

variate normal distribution with means –2, 4, 10, 16 respectively, and identity variance 502 .j  

( )41  j . 

model=13. Three elongated clusters in 2 dimensions. The observations are independently 

drawn from bivariate normal distribution with means (0, 0), (1.5, 7), (3, 14) and covariance matrices 















19.0

9.01
1 , 










5.10

05.1
2 , 










15.0

5.01
3 . 



2 
 

model=14. Four clusters in 3 dimensions. The observations are independently drawn from mul-

tivariate normal distribution with means (–4, 5, –4), (5, 14, 5), (14, 5, 14), (5, –4, 5), and covariance 

matrices 
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model=15. Five clusters in 3 dimensions that are not well separated. The observations are in-

dependently drawn from multivariate normal distribution with means (5, 5, 5), (–3, 3, –3), (3, –3, 

3), (0, 0, 0), (–5, –5, –5), and covariance matrices 
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model=16. Two elongated clusters in 2 dimensions. The observations in each of two clusters 

are independent bivariate normal random variables with means (0, 0), (1, 5), and covariance matri-

ces 
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model=21,22,... – if fixedCov=TRUE means should be read from 

means_<modelNumber>.csv and covariance matrix for all clusters should be read from 

cov_<modelNumber>.csv and if fixedCov=FALSE means should be read from 

means_<modelNumber>.csv and covariance matrices should be read separately for each cluster 

from cov_<modelNumber>_<clusterNumber>.csv, e.g. (inputType="csv") 

 

means_21.csv 
"V1","V2" 

"1",4,8 

"2",0,4 

cov_21_1.csv 
"V1","V2" 

"1",1.0,0.9 

"2",0.9,1.0 

cov_21_2.csv 
"V1","V2" 

"1",1.0,-0.9 

"2",-0.9,1.0 

 

Ordinal data (dataType="o"). The clusters in models 1, 2, ... contain continuous data and a 

discretization process is performed on each variable to obtain ordinal data. The number of catego-

ries jk  determines the width of each class intervals:   jij
i

ij
i

kxx }{min){max  . Independently for 

each variable each class interval receive category jk,,1  and the actual value of variable ijx  is re-

placed by these categories. 

Symbolic interval data (dataType="s"). To obtain symbolic interval data the data were gen-

erated for each model twice into sets A and B and minimal (maximal) value of  B

ij

A

ij xx ,  is treated as 

the beginning (the end) of an interval. 

 

Noisy variables. The noisy variables are simulated independently from the uniform distribution. 

We require that the variations of noisy variables in the generated data are similar to non-noisy vari-

ables (see Milligan [1985], Qiu and Joe [2006], p. 322). 

Outliers (for metric and symbolic interval data only). The outliers are generated independently 

for each variable for the whole data set from uniform distribution (the default range is [1, 10]). The 

generated values are randomly added to maximum of j-th variable or subtracted from minimum of j-

th variable.  
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