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Abstract

ctsem allows for specification and fitting of a range of continuous and discrete time
dynamic models with stochastic system noise. The models may include multiple in-
dicators (dynamic factor analysis), multiple, interrelated, potentially higher order pro-
cesses, and time dependent (varying within subject) and time independent (not vary-
ing within subject) covariates. Classic longitudinal models like latent growth curves
and latent change score models are also possible. Version 1 of ctsem provided struc-
tural equation model based functionality by linking to the OpenMx software, allowing
mixed effects models (random means but fixed regression and variance parameters) for
multiple subjects. For version 2 of the R package ctsem, we include a Bayesian specifi-
cation and fitting routine that uses the Stan probabilistic programming language, via
the rstan package in R. This allows for all parameters of the dynamic model to in-
dividually vary, using an estimated population mean and variance, and any time in-
dependent covariate effects, as a prior. Frequentist approaches with ctsem are docu-
mented in a forthcoming JSS publication (Driver, Voelkle, Oud, in press), and in R vi-
gnette form at https://cran.r-project.org/package=ctsem/vignettes/ctsem.pdf.
The Bayesian approach is discussed more fully and conceptually in a preprint article
available at https://www.researchgate.net/publication/310747801_Hierarchical_
Bayesian_Continuous_Time_Dynamic_Modeling, but here we provide more specifics on
the software for getting started with the Bayesian approach included in version 2.

Keywords: hierarchical time series, Bayesian, longitudinal, panel data, state space, structural
equation, continuous time, stochastic differential equation, dynamic models, Kalman filter, R.

1. Overview

1.1. Subject Level Latent Dynamic model

This section describes the fundamental subject level model, and where appropriate, the name
of the ctModel argument used to specify specific matrices. The description of the full model,
including subject level likelihood and population model, is provided at the end of this docu-
ment. Although we do not describe it explicitly, the corresponding discrete time autoregres-
sive / moving average models can be specified and use the same set of parameter matrices we
describe, although the meaning is of course somewhat different.

https://cran.r-project.org/package=ctsem/vignettes/ctsem.pdf 
https://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
https://www.researchgate.net/publication/310747801_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
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1.2. Subject level latent dynamic model

The subject level dynamics are described by the following stochastic differential equation:

dη(t) =

(

Aη(t) + b +Mχ(t)

)

dt +GdW(t) (1)

Vector η(t) ∈ Rv represents the state of the latent processes at time t . The matrix A ∈ Rv×v

(DRIFT) represents the so-called drift matrix, with auto effects on the diagonal and cross
effects on the off-diagonals characterizing the temporal dynamics of the processes.

The continuous time intercept vector b ∈ Rv (CINT), in combination with A, determines the
long-term level at which the processes fluctuate around.

Time dependent predictors χ(t) represent inputs to the system that vary over time and are
independent of fluctuations in the system. Equation 4 shows a generalized form for time
dependent predictors, that could be treated a variety of ways dependent on the assumed time
course (or shape) of time dependent predictors. We use a simple impulse form shown in
Equation 5, in which the predictors are treated as impacting the processes only at the instant
of an observation occasion u. When necessary, the evolution over time can be modeled by
extending the state matrices, for an example see Driver, Oud, and Voelkle (In Press).

χ(t) =
∑

u ∈U

xuδ(t − tu ) (2)

Here, time dependent predictors xu ∈ Rl (tdpreds) are observed at measurement occasions
u ∈ U. The Dirac delta function δ(t − tu ) is a generalized function that is ∞ at 0 and 0
elsewhere, yet has an integral of 1 (when 0 is in the range of integration). It is useful to model
an impulse to a system, and here is scaled by the vector of time dependent predictors xu . The
effect of these impulses on processes η(t) is then M ∈ Rv×l (TDPREDEFFECT).

W(t) ∈ Rv (DIFFUSION) represents independent Wiener processes, with a Wiener process
being a random-walk in continuous time. dW(t) is meaningful in the context of stochastic
differential equations, and represents the stochastic error term, an infinitesimally small incre-
ment of the Wiener process. Lower triangular matrix G ∈ Rv×v represents the effect of this
noise on the change in η(t). Q, where Q = GG⊤, represents the variance-covariance matrix of
the diffusion process in continuous time.

1.3. Subject level measurement model

The latent process vector η(t) has measurement model:

y(t) = Λη(t) + τ + ϵ(t) where ϵ(t) ∼ N(0c ,Θ) (3)

y(t) ∈ Rc is the vector of manifest variables, Λ ∈ Rc×v (LAMBDA) represents the factor
loadings, and τ ∈ Rc (MANIFESTMEANS) the manifest intercepts. The residual vector
ϵ ∈ Rc has covariance matrix Θ ∈ Rc×c (MANIFESTVAR).

1.4. Overview of hierarchical model

Parameters for each subject are first drawn from a simultaneously estimated higher level
distribution over an unconstrained space, then a set of parameter specific transformations
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are applied so that a) each parameter conforms to necessary bounds and b) is subject to the
desired prior, then a range of matrix transformations are applied to generate the continuous
time matrices described, as well as all relevant discrete time instantiations (More variability
in measurement time intervals thus means more computations). The higher level distribution
has a multivariate normal prior. A more comprehensive description is found at the end of
this document.

1.5. Install software and prepare data

Install ctsem software:

install.packages("ctsem")

Prepare data in long format, each row containing one time point of data for one subject. We
need a subject id column containing numbers from 1 to total subjects, rising incrementally
with each subject going down the data structure. This is to ensure coherence with the internal
structure of the Stan model. The column is named by default ”id”, though this can be changed
in the model specification. We also need a time column ”time”, containing numeric values
for time, columns for manifest variables (the names of which must be given in the next step
using ctModel), columns for time dependent predictors (these vary over time but have no
model estimated and are assumed to impact latent processes instantly), and columns for time
independent predictors (which predict the subject level parameters, that are themselves time
invariant – thus the values for a particular time independent predictor must be the same
across all observations of a particular subject).

id time Y1 Y2 TD1 TI1 TI2 TI3

[1,] 1 -0.05 -5.62 -11.52 0.471 0.529 -0.992 0.837

[2,] 1 1.25 -4.21 -10.39 0.824 0.529 -0.992 0.837

[3,] 1 2.10 -4.65 -10.36 0.124 0.529 -0.992 0.837

[4,] 1 3.03 -4.35 -9.92 -1.115 0.529 -0.992 0.837

[5,] 1 3.98 -5.24 -10.53 -0.063 0.529 -0.992 0.837

[6,] 2 36.06 -1.01 -17.12 0.377 1.138 0.323 0.147

[7,] 2 36.88 -2.10 -17.65 -0.159 1.138 0.323 0.147

[8,] 2 37.87 -2.53 -17.69 0.907 1.138 0.323 0.147

At present, missingness is fine on manifest indicators, but not allowed elsewhere.

1.6. Model specification

Specify model using ctModel(type="stanct",...). ”stanct” specifies a continuous time
model in Stan format, ”standt” specifies discrete time, while ”omx” is the classic ctsem be-
haviour and prepares an OpenMx model. Other arguments to ctModel proceed as normal,
although some matrices used for type ‘omx’ are not relevant for the Stan formats, either
because the between subject matrices have been removed, or because time dependent and
independent predictors are now treated as fixed regressors and only require effect (or design)
matrices. These differences are documented in the help for ctModel.

model<-ctModel(type=✬stanct✬,

n.latent=2, latentNames=c(✬eta1✬,✬eta2✬),
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Argument Sign Default Meaning

n.manifest c Number of manifest indicators per individual at each
measurement occasion.

n.latent v Number of latent processes.
LAMBDA Λ n.manifest × n.latent loading matrix relating latent to

manifest variables.
manifestNames Y1, Y2, etc n.manifest length character vector of manifest names.
latentNames eta1, eta2, etc n.latent length character vector of latent names.
T0VAR Q∗

1
free lower tri n.latent × n.latent matrix of latent process ini-

tial covariance, specified with standard deviations on di-
agonal and (partial) correlations on lower triangle.

T0MEANS η1 free n.latent × 1 matrix of latent process means at first time
point, T0.

MANIFESTMEANS τ free n.manifest × 1 matrix of manifest means.
MANIFESTVAR Θ free diag lower triangular matrix of var / cov between manifests,

specified with standard deviations on diagonal and (par-
tial) correlations on lower triangle.

DRIFT A free n.latent × n.latent matrix of continuous auto and cross
effects.

CINT b 0 n.latent × 1 matrix of continuous intercepts.
DIFFUSION Q free lower triangular n.latent × n.latent matrix containing

standard deviations of latent process on diagonal, and
(partial) correlations on lower off-diagonals.

n.TDpred l 0 Number of time dependent predictors in the dataset.
TDpredNames TD1, TD2, etc n.TDpred length character vector of time dependent pre-

dictor names.
TDPREDEFFECT M free n.latent × n.TDpred matrix of effects from time depen-

dent predictors to latent processes.
n.TIpred p 0 Number of time independent predictors.
TIpredNames TI1, TI2, etc n.TIpred length character vector of time independent

predictor names.

n.manifest=2, manifestNames=c(✬Y1✬,✬Y2✬),

n.TDpred=1, TDpredNames=✬TD1✬,

n.TIpred=3, TIpredNames=c(✬TI1✬,✬TI2✬,✬TI3✬),

LAMBDA=diag(2))

This generates a first order bivariate latent process model, with each process measured by a
single, potentially noisy, manifest variable. A single time dependent predictor is included in
the model, and three time independent predictors. Additional complexity or restrictions may
be added, the table below shows the basic arguments one may consider and their link to the
dynamic model parameters. For more details see the ctsem help files or papers. Note that
for the Stan implementation, ctModel requires variance covariance matrices (DIFFUSION,
T0VAR, MANIFESTVAR) to be specified with standard deviations on the diagonal, corre-
lations (partial, if > 2 latent processes) the lower off diagonal, and zeroes on the upper off
diagonal.

These matrices may all be specified using a combination of character strings to name free
parameters, or numeric values to represent fixed parameters.

The parameters subobject of the created model object shows the parameter specification that
will go into Stan, including both fixed and free parameters, whether the parameters vary
across individuals, how the parameter is transformed from a standard normal distribution
(thus setting both priors and bounds), and whether that parameter is regressed on the time
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independent predictors.

head(model$pars,8)

matrix row col param value transform indvarying sdscale

1 T0MEANS 1 1 T0mean_eta1 NA (param) * 10 TRUE 1

2 T0MEANS 2 1 T0mean_eta2 NA (param) * 10 TRUE 1

3 LAMBDA 1 1 <NA> 1 <NA> FALSE 1

4 LAMBDA 1 2 <NA> 0 <NA> FALSE 1

5 LAMBDA 2 1 <NA> 0 <NA> FALSE 1

6 LAMBDA 2 2 <NA> 1 <NA> FALSE 1

7 DRIFT 1 1 drift_eta1_eta1 NA -log(exp(-param*1.5)+1)-.00001 TRUE 1

8 DRIFT 1 2 drift_eta1_eta2 NA (param)*.5 TRUE 1

TI1_effect TI2_effect TI3_effect

1 TRUE TRUE TRUE

2 TRUE TRUE TRUE

3 FALSE FALSE FALSE

4 FALSE FALSE FALSE

5 FALSE FALSE FALSE

6 FALSE FALSE FALSE

7 TRUE TRUE TRUE

8 TRUE TRUE TRUE

One may modify the output model to either restrict between subject differences (set some
parameters to not vary over individuals), alter the transformation used to determine the prior
/ bounds, or restrict which effects of time independent predictors to estimate. Plotting the
original prior, making a change, and plotting the resulting prior, are shown here – in this case
we believe the stochastic latent process innovation for our first latent process, captured by
row 1 and column 1 of the DIFFUSION matrix, to be small, so scale our prior accordingly
to both speed and improve sampling. Rather than simply scaling by 0.2 as shown here, one
could also construct a new form of prior, so long as the resulting distribution was within the
bounds required for the specific parameter. Note that the resulting distribution is a result of
applying the specified transformation to a standard normal distribution, with mean of 0 and
standard deviation of 1. To change the underlying standard normal, one would need to edit
the resulting Stan code directly.

par(mfrow=c(1,2))

plot(model,rows=11)

print(model$pars$transform[11])

[1] "exp(param*2) +.00001"

model$pars$transform[11]<- "(exp(param*2) +.0001)*.2"

plot(model,rows=11)
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The plots show the prior distribution for the population mean of DIFFUSION[1,1] in black,
as well as two possible priors for the subject level parameters. The blue prior results from
assuming the population mean is one standard deviation lower than the mean of the prior,
and marginalising over the prior for the standard deviation of the population distribution.
This latter prior can be scaled using the sdscale column of the parameters subobject, but is
by default a truncated normal distribution with mean 0 and SD 1.

Restrict between subject effects as desired. Unnecessary between subject effects will slow
sampling and hinder appropriate regularization, but be aware of the many parameter de-
pendencies in these models – restricting one parameter may lead to genuine variation in the
restricted parameter expressing itself elsewhere. The prior scale for between subject variance
may need to be restricted when limited data (in either the number of time points or number
of subjects) is available, to ensure adequate regularisation. Here we restrict MANIFESTVAR
effects between subjects, and set all prior scales for the standard deviation of the population
distribution to 0.2, from the default of 1.0. A rough interpretation of this change in sdscale
is simply that we expect lower values for the population standard deviation, but to better
interpret the effect of this latter change, see the section on standard deviation transformations.

model$pars[c(15,18),]$indvarying<-FALSE

model$pars$sdscale[1:28] <- .5

Also restrict which parameters to include time independent predictor effects for in a similar
way, for similar reasons. In this case, the only adverse effects of restriction are that the
relationship between the predictor and variables will not be estimated, but the subject level
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parameters themselves should not be very different, as they are still freely estimated. Note
that such effects are only estimated for individually varying parameters anyway – so after the
above change there is no need to set the tipredeffect to FALSE for the T0VAR variables, it is
assumed. Instead, we restrict the tipredeffects on all parameters, and free them only for the
manifest intercept parameters.

model$pars[,c(✬TI1_effect✬,✬TI2_effect✬,✬TI3_effect✬)]<-FALSE

model$pars[c(19,20),c(✬TI1_effect✬,✬TI2_effect✬,✬TI3_effect✬)]<-TRUE

1.7. Model fitting

Once model specification is complete, the model is fit to the data using the ctStanFit function
as follows – depending on the data, model, and number of iterations requested, this can take
anywhere from a few minutes to days. Current experience suggests 300 iterations is often
enough to get an idea of what is going on, but more may be necessary for robust inference.
This will of course vary massively depending on model and data. For the sake of speed for
this example we only sample for 200 iterations with a lowered max treedepth - this latter
parameter controls the maximum number of steps the Hamiltonian sampler is allowed to take
per iteration, with each increase of 1 doubling the maximum. With these settings the fit
should take only a few minutes (but will not be adequate for inference!). Those that wish to
try out the functions without waiting, can simply use the already existing ctstantestfit object
instead of creating the fit object (and adjust the code in following sections as needed!).

fit<-ctStanFit(datalong = ctstantestdat, ctstanmodel = model, iter=200,

chains=2, plot=FALSE, control=list(max_treedepth = 6))

In file included from C:/Users/driver/Documents/R/win-library/3.3/BH/include/boost/config.hpp:39:0,

from C:/Users/driver/Documents/R/win-library/3.3/BH/include/boost/math/tools/confi

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math.hpp

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/src/stan/mode

from file6ac4a746f09.cpp:8:

C:/Users/driver/Documents/R/win-library/3.3/BH/include/boost/config/compiler/gcc.hpp:186:0: warning

# define BOOST_NO_CXX11_RVALUE_REFERENCES

^

<command-line>:0:0: note: this is the location of the previous definition

The plot argument allows for plotting of sampling chains in real time, which is useful for
slow models to ensure that sampling is proceeding in a functional manner. Models with
many parameters (e.g., many subjects and all parameters varying over subject) may be too
taxing for the function to handle smoothly - we have had succcess with up to around 4000
parameters.

1.8. Summary

After fitting, the summary function may be used on the fit object, which returns details
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regarding the population mean parameters, population standard deviation parameters, pop-
ulation correlations, and the effect parameters of time independent predictors. Additionally,
summary outputs a range of matrices regarding correlations betweeen subject level param-
eters. hypercorr means reports the posterior mean of the correlation between raw (not yet
transformed from the standard normal scale) parameters. hypercorr sd reports the standard
deviation of these parameters. hypercovcor transformedmean reports the correlation between
transformed parameters on the lower triangle, the variance of these parameters on the diago-
nal, and the covariance on the upper triangle. To view the posterior median of the continuous
time parameter matrices, the ctStanContinuousPars function can be used.

summary(fit)

In the summary output, the population parameters are returned in the same form that they
are input to ctModel - that is, standard deviations and partial correlations, which can be
more difficult to interpret when more than two processes are modeled. To return the full set
of continuous time parameter matrices for a specified subject or collection of subjects, the
ctStanContinuousPars function can be used, with the calcfunc argument set appropriately
depending on whether one wants the median,mean, sd, or a specific quantile (which would
require changing the probs argument also).

1.9. Plotting

The plot function outputs a sequence of plots, all generated by specific functions. The name
of the specific function appears in a message in the R console, checking the help for each
specific function and running them separately will allow more customization. Some of the
plots, such as the trace, density, and interval, are generated by the relevant rstan function
and hopefully self explanatory. The plots specific to the heirarchical continuous time dynamic
model are as follows:
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The above plot shows the dynamic regression coefficients (between latent states at differ-
ent time points) that are implied by the model for particular time intervals, as well as the
uncertainty of these coefficients.

The relation between posteriors and priors for variables of interest can also be plotted as
follows:

ctStanPlotPost(ctstanfitobj = fit, rows=11)
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Shown are approximate density plots based on the post-warmup samples drawn. For each
parameter four plots are shown – the first displays the posterior distribution of subject level
parameters, the subject level prior (generated from repeated sampling of the hyper parame-
ters), and the prior for the population mean.

1.10. Stationarity

When it is reasonable to assume that the prior for long term expectation and variance of
the latent states is the same as (or very similar to) the prior for initial expectations and
variances, setting the argument stationary=TRUE to ctStanFit can reduce uncertainty and
aid in fitting. This argument ignores any T0VAR and T0MEANS matrices in the input,
instead replacing them with asymptotic expectations based on the DRIFT, DIFFUSION,
and CINT matrices. Alternatively, a prior can be placed on the stationarity of the dynamic
models, calculated as the difference between the T0MEANS and the long run asymptotes of
the expected value of the process, as well as the difference between the diagonals of the T0VAR
covariance matrix and the long run asymptotes of the covariance of the processes. Such a
prior encourages a minimisation of these differences, and can help to ensure that sensible, non-
explosive models are estimated, and also help the sampler get past difficult regions of relative
flatness in the parameter space due to colinearities between the within and between subject
parameters. However if such a prior is too strong it can also induce difficult dependencies in
model parameters, and there are a range of models where one may not wish to have such a
prior. To place such a prior, the model$stationarymeanprior and model$stationaryvarprior
slots can be changed from the default of NA to a numeric vector, representing the normal
standard deviation of the deviations from stationarity. The number of elements in the vector
correspond to the number of latent processes.
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1.11. Individual level analyses

Individual level results can also be considered, as ctsem includes functionality to output prior
(based on all prior observations), updated (based on all prior and current observations), and
smoothed (based on all observations) expectations and covariances from the Kalman filter,
based on specific subjects models. For ease of comparison, expected manifest indicator scores
conditional on prior, updated and smoothed states are also included. This approach allows
for: predictions regarding individuals states at any point in time, given any values on the
time dependent predictors (external inputs such as interventions or events); residual analysis
to check for unmodeled dependencies in the data; or simply as a means of visualization,
for comprehension and model sanity checking purposes. An example of such is depicted
below, where we see observed and estimated scores for a selected subject from our sample.
If we wanted to predict unobserved states in the future, we would need only to specify the
appropriate timerange (Prediction into earlier times is possible but makes little sense unless
the model is restricted to stationarity).

ctStanKalman(fit, subjects=2, timerange=c(0,60), timestep=.1, plot=TRUE)
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1.12. Accessing Stan model code

For diagnosing problems or modifying the model in ways not achievable via the ctsem model
specification, one can use ctsem to generate the Stan code and then work directly with that,
simply by specifying the argument fit=FALSE to the ctStanFit function. Any altered code can
be passed back into ctStanFit by using the stanmodeltext argument, which can be convenient
for setting up the data in particular.
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1.13. Using Rstan functions

The standard rstan output functions such as summary and extract are also available, and the
shinystan package provides an excellent browser based interface. The stan fit object is stored
under the $stanfit subobject from the ctStanFit output. The parameters which are likely
to be of most interest in the output are prefixed by ”hmean ” for hyper (population) mean,
”hsd ” for hyper standard deviation, and ”tipred ” for time independent predictor. Any hmean
parameters are returned in the form used for input - so correlations and standard deviations
for any of the covariance related parameters. Subject specific parameters are denoted by the
matrix they are from, then the first index represents the subject id, followed by standard
matrix notation. For example, the 2nd row and 1st column of the DRIFT matrix for subject
8 is ”DRIFT [8, 2, 1]”. Parameters in such matrices are returned in the form used for internal
calculations – that is, variance covariance matrices are returned as such, rather than the lower-
triangular standard deviation and correlation matrices required for input. The exception to
this are the time independent predictor effects, prefixed with ”tipred ”, for which a linear
effect of a change of 1 on the predictor is approximated. So although ”tipred TI1” is only
truly linear with respect to internal parameterisations, we approximate the linear effect by
averaging the effect of a score of +1 or -1 on the predictor, on the population mean. For
any subject that substantially differs from the mean, or simply when precise absolute values
of the effects are required (as opposed to general directions), they will need to be calculated
manually.

1.14. Oscillating, single subject example - sunspots data

In the following example we fit the sunspots data available within R, which has previously
been fit by various authors including Tómasson (2013). We have used the same CARMA(2,1)
model and obtained similar estimates – some differences are due to the contrast between Bayes
and maximum likelihood, though if desired one could adjust the code to fit using maximum
likelihood, as here we have only one subject. There are usually some divergent transitions
(indicating a difficulty in the sampling chain and a potential threat to inference) generated
in this fit – alternate parameterisations or an increase in the adapt delta control argument to
Stan (which defaults to 0.9 in ctsem, with a maximum of 1, though 1 is not recommended...)
may help.

#get data

sunspots<-sunspot.year

sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]

id <- 1

time <- 1749:1924

datalong <- cbind(id, time, sunspots)

#setup model

model <- ctModel(type=✬stanct✬, n.latent=2, n.manifest=1,

manifestNames=✬sunspots✬,

latentNames=c(✬ss_level✬, ✬ss_velocity✬),

LAMBDA=matrix(c( 1, ✬ma1✬ ), nrow=1, ncol=2),

DRIFT=matrix(c(0, 1, ✬a21✬, ✬a22✬), nrow=2, ncol=2, byrow=TRUE),

MANIFESTMEANS=matrix(c(✬m1✬), nrow=1, ncol=1),

# MANIFESTVAR=matrix(0, nrow=1, ncol=1),

CINT=matrix(c(0, 0), nrow=2, ncol=1),

DIFFUSION=matrix(c(
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0, 0,

0, "diffusion"), ncol=2, nrow=2, byrow=TRUE))

model$pars$indvarying<-FALSE #Because single subject

model$pars$transform[14]<- ✬(param)*5+44 ✬ #Because not mean centered

model$pars$transform[4]<-✬log(exp(-param*1.5)+1)✬ #To avoid multi modality

#fit

fit <- ctStanFit(datalong, model, iter=400, chains=2, control=list(adapt_delta=.9))

In file included from C:/Users/driver/Documents/R/win-library/3.3/BH/include/boost/config.hpp:39:0,

from C:/Users/driver/Documents/R/win-library/3.3/BH/include/boost/math/tools/confi

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math/rev

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/stan/math.hpp

from C:/Users/driver/Documents/R/win-library/3.3/StanHeaders/include/src/stan/mode

from file6ac58bd6766.cpp:8:

C:/Users/driver/Documents/R/win-library/3.3/BH/include/boost/config/compiler/gcc.hpp:186:0: warning

# define BOOST_NO_CXX11_RVALUE_REFERENCES

^

<command-line>:0:0: note: this is the location of the previous definition

#output

summary(fit)$popmeans

mean sd 2.5% 50% 97.5% n_eff Rhat

hmean_T0mean_ss_level 11.701 11.709 -12.344 11.452 31.968 151 0.997

hmean_T0mean_ss_velocity 7.272 9.628 -12.499 7.498 25.534 253 1.001

hmean_ma1 0.604 0.206 0.140 0.615 0.973 111 0.998

hmean_a21 -0.355 0.043 -0.441 -0.352 -0.275 236 0.998

hmean_a22 -0.330 0.083 -0.507 -0.322 -0.180 226 1.000

hmean_diffusion 15.933 2.512 11.380 15.747 21.061 171 1.000

hmean_manifestvar_sunspots_sunspots 1.408 1.534 0.021 0.722 5.186 107 1.001

hmean_m1 45.193 2.673 39.903 45.285 50.350 313 1.004

hmean_T0var_ss_level_ss_level 19.952 30.737 0.032 11.043 92.567 157 1.006

hmean_T0var_ss_velocity_ss_level 0.046 0.412 -0.685 0.060 0.792 321 0.998

hmean_T0var_ss_velocity_ss_velocity 9.268 19.416 0.018 1.520 61.715 207 0.997

1.15. Population standard deviations - understanding the transforms

Internally, we sample parameters that we will refer to here as the ‘raw’ parameters – these
parameters have no bounds and are drawn from normal distributions. Both population mean
(internally: hypermeans) and subject level (internally: indparamsbase) raw parameters are
drawn from a normal(0, 1) distribution. Depending on the specific parameter, various trans-
formations may be applied to set appropriate bounds and priors. The population standard
deviation (hypersd) for these raw parameters is sampled (by default) from a truncated nor-
mal(0, 1) distribution. This distribution can be scaled on a per parameter basis by the sdscale
multiplier in the model specification, which defaults to 1. The following script shows a didac-
tic sequence of sampling and transformation for a model with a single parameter, the auto
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effect of the drift matrix, and 50 subjects. Although we sample the priors here, this is merely
to reflect the prior and enable understanding and plotting.

#population mean and subject level deviations (pre-transformation)

hypermeans_prior <- rnorm(99999, 0, 1)

hypermeans_post <- -2 #hypothetical sample

indparamsbase_prior <- rnorm(99999, 0, 1)

indparamsbase_post <- rnorm(50, 0, 1) #hypothetical sample

#population standard deviation prior

hypersd_prior <- rnorm(99999, 0, 1)

hypersd_prior <- hypersd_prior[hypersd_prior > 0]

#population standard deviation posterior

hypersd_post <- .4 #hypothetical

#population cholesky correlation matrix

#lower triangle sampled from uniform(-1, 1),

#upper triangle fixed to 0,

#diagonal calculated according to hypersd.

hypercorrchol_post <- 1 #because only 1 parameter here...

#population cholesky covariance matrix

#here based on mean of hypersd_post, for convenience...

#in reality would have multiple samples.

hypercovchol <- diag(hypercorrchol_post,1) %*%

diag(hypersd_post,1) %*% diag(hypercorrchol_post,1)

#subject level parameters

#first compute pre transformation parameters

#then transform appropriately (here according to drift auto effect)

indparams <- hypercovchol %*% indparamsbase_post + hypermeans_post

indparams <- -log(exp(-1.5 * indparams) + 1)

#post transformation population standard deviation

hsd_ourparameter <- abs( #via delta approximation

(-log(exp(-1.5 * (hypermeans_post + hypersd_post)) + 1) -

-log(exp(-1.5 * (hypermeans_post - hypersd_post)) + 1) ) / 2)

2. The model

There are three main elements to our hierarchical continuous time dynamic model. There is a
subject level latent dynamic model, a subject level measurement model, and a population level
model for the subject level parameters. Note that while various elements in the model depend
on time, the fundamental parameters of the model as described here are time-invariant. Note
also that we ignore subject specific subscripts when discussing the subject level model.
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2.1. Subject level latent dynamic model

The subject level dynamics are described by the following stochastic differential equation:

dη(t) =

(

Aη(t) + b +Mχ(t)

)

dt +GdW(t) (4)

Vector η(t) ∈ Rv represents the state of the latent processes at time t . The matrix A ∈ Rv×v

represents the so-called drift matrix, with auto effects on the diagonal and cross effects on
the off-diagonals characterizing the temporal dynamics of the processes.

The continuous time intercept vector b ∈ Rv , in combination with A, determines the long-term
level at which the processes fluctuate around.

Time dependent predictors χ(t) represent inputs to the system that vary over time and are
independent of fluctuations in the system. Equation 4 shows a generalized form for time
dependent predictors, that could be treated a variety of ways dependent on the assumed time
course (or shape) of time dependent predictors. We use a simple impulse form shown in
Equation 5, in which the predictors are treated as impacting the processes only at the instant
of an observation occasion u. When necessary, the evolution over time can be modeled by
extending the state matrices, for an example see Driver et al. (In Press).

χ(t) =
∑

u ∈U

xuδ(t − tu ) (5)

Here, time dependent predictors xu ∈ Rl are observed at measurement occasions u ∈ U, where
U is the set of measurement occasions from 1 to the number of measurement occasions, with
u = 1 treated as occurring at t = 0. The Dirac delta function δ(t − tu ) is a generalized function
that is ∞ at 0 and 0 elsewhere, yet has an integral of 1 (when 0 is in the range of integration).
It is useful to model an impulse to a system, and here is scaled by the vector of time dependent
predictors xu . The effect of these impulses on processes η(t) is then M ∈ Rv×l .

W(t) ∈ Rv represents independent Wiener processes, with a Wiener process being a random-
walk in continuous time. dW(t) is meaningful in the context of stochastic differential equa-
tions, and represents the stochastic error term, an infinitesimally small increment of the
Wiener process. Lower triangular matrix G ∈ Rv×v represents the effect of this noise on the
change in η(t). Q, where Q = GG⊤, represents the variance-covariance matrix of the diffusion
process in continuous time.

2.2. Subject level dynamic model — discrete time solution

The stochastic differential Equation 4 may be solved and translated to a discrete time repre-
sentation, for any observation u ∈ U:

η
u
= A∗

uηu−1 + b
∗
u +Mxu + ζ

∗
u ζ∗u ∼ N(0v ,Q

∗
u ) (6)

The ∗ notation is used to indicate a term that is the discrete time equivalent of the original.
A∗
u then contains the appropriate auto and cross regressions for the effect of latent processes

η at measurement occasion u − 1 on η at measurement occasion u. b∗u represents the discrete
time intercept for measurement occasion u. Since M is conceptualized as the effect of instan-
taneous impulses x, (which only occur at occasions U and are not continuously present as for
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the processes η), the discrete and continuous time forms are equivalent. ζu is the zero mean
random error term for the processes at occasion u. Q∗

u represents the multivariate normal
disturbance at occasion u. The recursive nature of the solution means that at the first mea-
surement occasion u = 1, the system must be initialized in some way, with A∗

uηu−1 replaced
by η1, and Q∗

u replaced by Q∗
1. These initial states and covariances are later referred to as

T0MEANS and T0VAR respectively.

Unlike in a purely discrete time model, where the various effect matrices described above
would be unchanging, in a continuous time model the discrete time matrices all depend on
some function of the continuous time parameters and the time interval between observations
u and u − 1, these functions look as follows:

A∗
u = eA(tu−tu−1) (7)

b∗u = A−1(A∗
u − I)b (8)

Q∗
u = Q∞ −A∗

uQ∞(A
∗
u )

⊤ (9)

Where A# = A ⊗ I + I ⊗ A, with ⊗ denoting the Kronecker-product, the asymptotic diffusion
Q∞ = irow

(

−A−1
# row(Q)

)

, row is an operation that takes elements of a matrix row wise and
puts them in a column vector, and irow is the inverse of the row operation. The covariance
update shown in Equation 9 has not been described in the psychological literature so far as
we are aware, but is a more computationally efficient form used in Tómasson (2013).

2.3. Subject level measurement model

The latent process vector η(t) has measurement model:

y(t) = Λη(t) + τ + ϵ(t) where ϵ(t) ∼ N(0c ,Θ) (10)

y(t) ∈ Rc is the vector of manifest variables, Λ ∈ Rc×v represents the factor loadings, and
τ ∈ Rc the manifest intercepts. The residual vector ϵ ∈ Rc has covariance matrix Φ ∈ Rc×c .

2.4. Subject level likelihood

The subject level likelihood, conditional on time dependent predictors x and subject level
parameters Φ, is as follows:

p(y|Φ, x) =
U
∏

p(yu |y
(

u−1, ...,u−(u−1)
)

, xu ,Φ) (11)

To avoid the large increase in parameters that comes with sampling or optimizing latent states,
we use a continuous-discrete (or hybrid) Kalman filter (?) to analytically compute subject
level likelihoods, conditional on subject parameters. For more on filtering see Jazwinski (2007)
and Särkkä (2013). The filter operates with a prediction step, in which the expectation η̂

u |u−1

and covariance P̂u |u−1 of the latent states are predicted by:

η̂
u |u−1 = A∗

u η̂u−1 |u−1 + b
∗
u +Mxu (12)
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P̂u |u−1 = A∗
u P̂u−1 |u−1(A

∗
u )

⊤
+Q∗

u (13)

For the first measurement occasion u = 1, the priors η̂
u |u−1 and P̂u |u−1 must be provided to

the filter. These parameters may in some cases be freely estimated, but in other cases need
to be fixed or constrained, either to specific values or by enforcing a dependency to other
parameters in the model, such as an assumption of stationarity.

Prediction steps are followed by an update step, wherein rows and columns of matrices are
filtered as necessary depending on missingness of the measurements y:

ŷu |u−1 = Λη̂
u |u−1 + τ (14)

V̂u = ΛP̂u |u−1Λ
⊤
+Θ (15)

K̂u = P̂u |u−1Λ
⊤V̂

−1

u (16)

η̂
u |u = η̂

u |u−1 + K̂u (yu − ŷu |u−1) (17)

P̂u |u = (I − K̂uΛ)P̂u |u−1 (18)

The log likelihood (ll) for each subject, conditional on subject level parameters, is typically1

then (Genz and Bretz 2009):

ll =

U
∑

(

− 1/2(n ln(2π) + ln
�

�Vu

�

�

+

(ŷ(u |u−1) − yu )V
−1
u (ŷu |u−1 − yu )

⊤)

)

(20)

Where n is the number of non-missing observations at measurement occasion u.

2.5. Population level model

Rather than assume complete independence or dependence across subjects, we assume sub-
ject level parameters are drawn from a population distribution, for which we also estimate

1For computational reasons we use an alternate but equivalent form of the log likelihood. We scale the
prediction errors across all variables to a standard normal distribution, drop constant terms, calculate the
log likelihood of the transformed prediction error vector, and appropriately update the log likelihood for the
change in scale, as follows:

ll =

U
∑

(

ln
(

tr (V
−1/2
u )

)

+

∑

1/2
(

V
−1/2
u (ŷ(u |u−1) − yu )

)

)

(19)

Where tr indicates the trace of a matrix, and V−1/2 is the inverse of the Cholesky decomposition of V. The
Stan software manual discusses such a change of variables (Team 2016).
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parameters and apply some prior. This results in a joint-posterior distribution of:

p(Φ, µ,R, β|Y,Z) =
p(Y |Φ)p(Φ|µ,R, β,Z)p(µ,R, β)

p(Y)
(21)

Where subject specific parameters Φi are determined in the following manner:

Φi = tform

(

µ + Rhi + βzi

)

(22)

hi ∼ N(0, 1) (23)

µ ∼ N(0, 1) (24)

β ∼ N(0, 1) (25)

Φi ∈ Rs represents all parameters for the dynamic and measurement models of subject i.
µ ∈ Rs parameterizes the population means of the distribution of subject level parameters.
R ∈ Rs×s is the Cholesky factor of the population covariance matrix, parameterizing the effect
of subject specific deviations hi ∈ Rs on Φi . β ∈ Rs×w is the effect of time independent
predictors zi ∈ R

w on Φi . Yi contains all the data for subject i used in the dynamic model
– y (process related measurements) and x (time dependent predictors). Zi contains time
independent predictors data for subject i. tform is an operator that applies a transform to
each value of the vector it is applied to. The specific transform depends on which subject level
parameter matrix the value belongs to, and the position in that matrix — these transforms
and rationale are described below, but are in general necessary because many parameters
require some bounded distribution, making a purely linear approach untenable.

Besides the tform operator, Equation 22 looks like a relatively standard hierarchical approach,
with subject parameters dependent on a population mean and covariance, and observed co-
variates. Subject specific parameters hi are in standardised deviation form to effect a non-
centered parameterization, which appears to improve sampling efficiency in this model. See
Bernardo, Bayarri, Berger, Dawid, Heckerman, Smith, and West (2003) and Betancourt and
Girolami (2013) for discussion of non-centered parameterizations.

2.6. Parameter transformations and priors

A range of considerations must be made when deciding how to parameterize the model. Such
considerations include: parameter bounds, distributional assumptions, fixed parameters and
ease of interpretation, and sampling efficiency. Boundaries apply to many subject level pa-
rameters, such as for instance standard deviations which must be greater than 0. These
boundaries also imply that the subject level parameters are unlikely to be normally, or sym-
metrically, distributed, particularly as population means approach the boundaries. There is
a need to be able to fix parameters to specific, understandable values, as for instance with
elements of the diffusion matrix Q, which for higher order models will generally require a
number of elements fixed to 0. This possibility can be lost under certain transformations.
Sampling efficiency is reduced when parameters are correlated (with respect to the sampling
procedure), because a random change in one parameter requires a corresponding non-random
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change in another to compensate, complicating efficient exploration of the parameter space.
While the use of modern sampling approaches like Hamiltonian Monte Carlo (Betancourt
and Girolami 2013) and the no U-turn sampler (Homan and Gelman 2014) mitigate these
issues to some extent, minimizing correlations between parameters through transformations
still substantially improves performance. A further efficiency consideration is the inclusion of
sufficient prior information to guide the sampler away from regions where the likelihood of
the data approaches zero.

To account for the stated considerations, while allowing for straightforward estimation of
the covariance between parameters, we first parameterize the population means according to
the standard normal distribution. Subject specific deviations from each mean are distributed
according to the R matrix. The R matrix accounts for parameter correlations such as would be
found when, for example, subjects that typically score highly on measurements of one process
are also likely to exhibit stronger auto-effects on another. The R matrix has a truncated
standard normal distribution for the prior of standard deviations (diagonals), and a prior
on the Cholesky factor covariance which is the result of multiplying a uniform prior on the
space of correlation matrices, with the standard deviations on the diagonal. Discussion of
this approach may be found in the Stan software manual (Team 2016), and full details in
Lewandowski, Kurowicka, and Joe (2009), but it in general has the virtue that the prior for
correlations is independent of the scale. At this point, all the subject level parameters have a
multivariate-normal prior, but we then transform these parameters according to the necessary
constraints and desired prior distribution. The precise forms and resulting prior densities are
specified in Appendix 3, but are intuitively described along with implications below:

Subject level standard deviation parameters are obtained by exponentiating a multiple of
the unconstrained parameter, which results in a prior similar to the Jeffreys or reference scale
prior (Bernardo 1979), but is lightly regularized away from the low or high extremes to ensure
a proper posterior. This form, wherein mass reduces to 0 at any boundaries, is used for all
parameters where boundaries exist, because typically at such boundaries other parameters of
the model become empirically non-identified.

Parameters for off-diagonals of covariance-related matrices are first transformed to a partial
correlation parameter (between -1 and 1), and then combined with the relevant standard
deviation parameters to determine the covariance parameter, as for the R matrix earlier.
This approach ensures that the off-diagonal parameters are independent of the diagonals, in
terms of both prior expectations and during sampling.

Because intercept and regression type parameters need not be bounded, for these we simply
scale the standard normal to the desired range (i.e., level of informativeness) by multiplication.
We could of course also add some value if we wanted a non-zero mean.

Diagonals of the drift matrix A – the temporal auto effects – are transformed to be negative,
with probability mass relatively uniformly distributed for discrete time autoregressive effects
between 0 and 1, given a time interval of 1, but declining to 0 at the extremes.

Off diagonals of the drift matrix A – the temporal cross effects – need to be specified in a prob-
lem dependent manner. For simple first order processes, they can all be left as multiplications
of the standard normal distribution, but for higher order processes, the cross effects between
a lower and higher order component will in general need to be parameterized similarly to the
auto effects, ensuring negative values. This is so that optimization or sampling does not get
stuck at a local minimum just above zero.
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3. Parameter transformations and resulting priors

Because all sampled parameters are drawn from a standard normal distribution, we need a
variety of transformations that can be applied depending on what the parameter represents.
The transformation serves to provide both the upper and lower bounds (if they exist) for the
parameter of interest, as well as the prior density. While for many model parameters a simple
multiplication of the standard normal is adequate, standard deviations and correlations re-
quire a bounded distribution, while we have opted to use a bounded distribution on the drift
auto effects for pragmatic reasons – values greater than 0 represent explosive, non-stationary
processes that are in most cases not theoretically plausible and occur only due to model mis-
specification. Further, positive values can result in additional local minima, causing problems
for optimization or sampling. While allowing for such values may point to misspecification
more readily, the constrained form results in what we believe is a computationally simpler
and sensible prior distribution for genuine effects. Estimated values close to 0 when using
this constrained form may point to the need to consider the model specification, perhaps by
including higher order terms. The transformations we use for the various parameter types are
as follows:

Standard deviation: e4x (26)

Drift auto effect (diagonal): − loд(e−1.5x + 1) (27)

Partial correlation: 2/(1 + e−x ) − 1 (28)

Covariance matrices are handled in a two step procedure, to ensure that priors on correlation
parameters are independent of scale parameters – a long recognised problem with various
common parameterizations of covariance matrices, see for instance Huang and Wand (2013)
and Gelman (2006). Off-diagonals are first transformed via the inverse logit function and
scaled to the range -1 to 1, and used in the lower triangle of a Cholesky decomposed correlation
matrix. The diagonal of the Cholesky correlation matrix is determined based on both the
standard deviations and correlations. Then, the covariance parameters are calculated by
pre-multiplying the Cholesky correlation matrix by the scale matrix, which is simply the
diagonal matrix containing the standard deviations. This approach ensures that the off-
diagonal parameters are independent of the diagonals, in terms of both prior expectations
and during sampling. Discussion of this general approach to handling covariance matrices
may be found in the Stan software manual (Team 2016), and full details in Lewandowski
et al. (2009).

Figure 1 plots the resulting densities when using the described transformations. Note that
of course the density for a variance is directly related to the standard deviation, and the
density plot for an autoregression assumes that the time interval is 1 with no cross effects
involved. For the sake of completeness we include a prior density for all other parameters,
such as the drift cross effects, intercepts, and regression type parameters. These use a simple
multiplication of the standard normal.
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Figure 1: Priors for population mean parameters.
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