
Package ‘dae’
September 16, 2016

Version 2.7-20

Date 2016-09-16

Title Functions Useful in the Design and ANOVA of Experiments

Author Chris Brien <Chris.Brien@unisa.edu.au>.

Maintainer Chris Brien <Chris.Brien@unisa.edu.au>

Depends R (>= 2.10.0), ggplot2

Imports graphics, methods, stats

Description The content falls into the following groupings: (i) Data, (ii)
Factor manipulation functions, (iii) Design functions, (iv) ANOVA functions, (v)
Matrix functions, (vi) Projector and canonical efficiency functions, and (vii)
Miscellaneous functions. A document 'daeDesignRandomization.pdf', available
in the doc subdirectory of the installation directory for 'dae', describes the
use of the package for generating randomized layouts for experiments. The ANOVA
functions facilitate the extraction of information when the 'Error' function has
been used in the call to 'aov'.

License GPL (>=2)

URL http://chris.brien.name

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:
dae-package . 3
ABC.Interact.dat . 6
Ameasures . 7
as.numfac . 8
blockboundary.plot . 9
blockboundaryPlot . 10
correct.degfree . 12
dae-deprecated . 13
decomp.relate . 13
degfree . 15
design.plot . 16
designLatinSqrSys . 18
designPlot . 19
detect.diff . 21

1

http://chris.brien.name

2 R topics documented:

efficiencies.p2canon . 22
efficiencies.pcanon . 23
efficiency.criteria . 24
elements . 25
extab . 26
fac.ar1mat . 27
fac.combine . 28
fac.divide . 29
fac.gen . 30
fac.layout . 31
fac.match . 33
fac.meanop . 34
fac.nested . 35
fac.recode . 36
fac.sumop . 37
fac.vcmat . 38
Fac4Proc.dat . 39
fitted.aovlist . 40
fitted.errors . 41
get.daeTolerance . 42
harmonic.mean . 42
interaction.ABC.plot . 43
is.allzero . 45
is.projector . 45
mat.ar1 . 46
mat.ar2 . 47
mat.ar3 . 48
mat.arma . 49
mat.banded . 50
mat.dirprod . 50
mat.dirsum . 51
mat.exp . 52
mat.I . 52
mat.J . 53
mat.ma1 . 53
mat.ma2 . 54
mat.sar2 . 55
mat.Vpred . 56
meanop . 57
mpone . 57
no.reps . 58
power.exp . 59
print.projector . 60
print.summary.p2canon . 61
print.summary.pcanon . 62
proj2.combine . 63
proj2.efficiency . 64
proj2.eigen . 65
projector . 67
projector-class . 68
projs.2canon . 69
projs.canon . 71

dae-package 3

projs.combine.p2canon . 73
projs.structure . 74
qqyeffects . 76
resid.errors . 77
residuals.aovlist . 78
rmvnorm . 79
Sensory3Phase.dat . 80
set.daeTolerance . 81
show-methods . 82
SPLGrass.dat . 82
strength . 83
summary.p2canon . 84
summary.pcanon . 85
tukey.1df . 86
yates.effects . 87

Index 89

dae-package Functions Useful in the Design and ANOVA of Experiments

Description

The content falls into the following groupings: (i) Data, (ii) Factor manipulation functions, (iii) De-
sign functions, (iv) ANOVA functions, (v) Matrix functions, (vi) Projector and canonical efficiency
functions, and (vii) Miscellaneous functions. A document ’daeDesignRandomization.pdf’, avail-
able in the doc subdirectory of the installation directory for ’dae’, describes the use of the package
for generating randomized layouts for experiments. The ANOVA functions facilitate the extraction
of information when the ’Error’ function has been used in the call to ’aov’.

Version: 2.7-20

Date: 2016-09-16

Index

(i) Data

ABC.Interact.dat Randomly generated set of values indexed by
three factors

Fac4Proc.dat Data for a 2^4 factorial experiment
Sensory3Phase.dat Data for the three-pahse sensory evaluation

experiment in Brien, C.J. and Payne, R.W. (1999)
SPLGrass.dat Data for an experiment to investigate the

effects of grazing patterns on pasture
composition

(ii) Factor manipulation functions

as.numfac Convert a factor to a numeric vector
fac.combine Combines several factors into one
fac.divide Divides a factor into several individual factors
fac.gen Generate all combinations of several factors

4 dae-package

fac.match Match, for each combination of a set of columns
in ’x’, the row that has the same combination
in ’table’

fac.nested Creates a factor whose values are generated
within those of the factor nesting.fac

fac.recode Recodes factor ’levels’ using possibly nonunique
values in a vector.

mpone Converts the first two levels of a factor into
the numeric values -1 and +1

(iii) Design functions

blockboundaryPlot This function plots a block boundary on a plot
produced by ’designPlot’. It supersedes
blockboundary.plot.

designLatinSqrSys Generate a systematic plan for a Latin Square design.
designPlot This function plots treatments within a matrix.

It superseded design.plot.
fac.layout Generate a randomized layout for an experiment
no.reps Computes the number of replicates for an experiment
detect.diff Computes the detectable difference for an experiment
power.exp Computes the power for an experiment

(iv) ANOVA functions

fitted.aovlist Extract the fitted values for a fitted model
from an aovlist object

fitted.errors Extract the fitted values for a fitted model
interaction.ABC.plot Plots an interaction plot for three factors
qqyeffects Half or full normal plot of Yates effects
resid.errors Extract the residuals for a fitted model
residuals.aovlist Extract the residuals from an aovlist object
strength Generate paper strength values
tukey.1df Performs Tukey’s

one-degree-of-freedom-test-for-nonadditivity
yates.effects Extract Yates effects

(v) Matrix functions

elements Extract the elements of an array specified by
the subscripts

fac.ar1mat Forms the ar1 correlation matrix for a
(generalized) factor

fac.sumop Computes the summation matrix that produces
sums corresponding to a (generalized) factor

fac.vcmat Forms the variance matrix for the variance
component of a (generalized) factor

mat.I Forms a unit matrix
mat.J Forms a square matrix of ones
mat.ar1 Forms an ar1 correlation matrix
mat.ar2 Forms an ar2 correlation matrix
mat.ar3 Forms an ar3 correlation matrix

dae-package 5

mat.sar2 Forms an sar2 correlation matrix
mat.exp Forms an exponential correlation matrix
mat.banded Forms a banded matrix
mat.dirprod Forms the direct product of two matrices
mat.dirsum Forms the direct sum of a list of matrices
mat.Vpred Forms the variance matrix of predictions

(vi) Projector and canonical efficiency functions

Projector class:

projector Create projectors
projector-class Class projector
is.projector Tests whether an object is a valid object of

class projector
print.projector Print projectors
correct.degfree Check the degrees of freedom in an object of

class projector
degfree Degrees of freedom extraction and replacement

Accepts two or more formulae:

projs.canon A canonical analysis of the relationships between
two or more sets of projectors

summary.pcanon A summary of the results of an analysis of
the relationships between two or more sets of
projectors

print.summary.pcanon Prints the values in an ’summary.pcanon’ object
efficiencies.pcanon Extracts the canonical efficiency factors from a

list of class ’pcanon’

Accepts exactly two formulae:

projs.2canon A canonical analysis of the relationships between
two sets of projectors

projs.combine.p2canon Extract, from a p2canon object, the projectors
summary.p2canon A summary of the results of an analysis of

the relationships between two sets of projectors
print.summary.p2canon Prints the values in an ’summary.p2canon’ object

that give the combined decomposition
efficiencies.p2canon Extracts the canonical efficiency factors from

a list of class ’p2canon’

Others:

Ameasures Calculates the A-optimality measures from the
variance matrix for predictions

decomp.relate Examines the relationship between the
eigenvectors for two decompositions

efficiency.criteria Computes efficiency criteria from a set of
efficiency factors

6 ABC.Interact.dat

fac.meanop Computes the projection matrix that produces means
proj2.eigen Canonical efficiency factors and eigenvectors

in joint decomposition of two projectors
proj2.efficiency Computes the canonical efficiency factors for

the joint decomposition of two projectors
proj2.combine Compute the projection and Residual operators

for two, possibly nonorthogonal, projectors
projs.structure Orthogonalised projectors for the terms in a formula
show-methods Methods for Function ’show’ in Package dae

(vii) Miscellaneous functions

extab Expands the values in table to a vector
get.daeTolerance Gets the value of daeTolerance for the package dae
harmonic.mean Calcuates the harmonic mean.
is.allzero Tests whether all elements are approximately zero
rmvnorm Generates a vector of random values from a

multivariate normal distribution
set.daeTolerance Sets the value of daeTolerance for the package dae

Author(s)

Chris Brien <Chris.Brien@unisa.edu.au>.

Maintainer: Chris Brien <Chris.Brien@unisa.edu.au>

ABC.Interact.dat Randomly generated set of values indexed by three factors

Description

This data set has randomly generated values of the response variable MOE (Measure Of Effective-
ness) which is indexed by the two-level factors A, B and C.

Usage

data(ABC.Interact.dat)

Format

A data.frame containing 8 observations of 4 variables.

Source

Generated by Chris Brien

Ameasures 7

Ameasures Calculates the A-optimality measures from the variance matrix for
predictions

Description

Calculates the A-optimality measures, possibly for different subgroups of the predictions, from
the variance matrix for the predictions. If groups are specified then the A-optimality measures
are calculated for the differences between predictions within each group and for those between
predictions from different groups. If groupsizes are specified, but groups are not, the predictions
will be sequentially broken into groups of the size specified by the elements of groupsizes. The
groups can be named.

Usage

Ameasures(Vpred, groupsizes = NULL, groups = NULL)

Arguments

Vpred The variance matrix of the predictions.

groupsizes A numeric containing group sizes. The sum of the elements of groupsizes
must be less than or equal to the order of Vpred. If groupsizes is a named
vector, the names are used to label the groups. If NULL, either groups is used
or the average for all pairwise differences is obtained.

groups A list, each element of which specifies a subroup of the predictions over whose
pairwise differences the variances are to be averaged. If there is more than one
group, the variances of all between and within group pairwise differences are
averaged. If the elements of groups are named , the names are used to label
the groups. If groups is NULL, either groupsizes is used or the average for all
pairwise differences is obtained.

Value

A matrix containing the within and between group A-optimality measures.

References

Smith, A. B., D. G. Butler, C. R. Cavanagh and B. R. Cullis (2015). Multi-phase variety trials
using both composite and individual replicate samples: a model-based design approach. Journal of
Agricultural Science, 153, 1017-1029.

See Also

mat.Vpred, projs.canon.

Examples

Reduced example from Smith et al. (2015)
Generate two-phase design
mill.fac <- fac.gen(list(Mrep = 2, Mday = 2, Mord = 3))
field.lay <- fac.gen(list(Frep = 2, Fplot = 4))
field.lay$Variety <- factor(c("D","E","Y","W","G","D","E","M"),

8 as.numfac

levels = c("Y","W","G","M","D","E"))
start.design <- cbind(mill.fac, field.lay[c(3,4,5,8,1,7,3,4,5,8,6,2),])
rownames(start.design) <- NULL

Set up matrices
W <- model.matrix(~ -1+ Variety, start.design)
ng <- ncol(W)
Gg<- diag(1, ng)
Vu <- with(start.design, fac.vcmat(Mrep, 0.3) +

fac.vcmat(fac.combine(list(Mrep, Mday)), 0.2) +
fac.vcmat(Frep, 0.1) +
fac.vcmat(fac.combine(list(Frep, Fplot)), 0.2))

R <- diag(1, nrow(start.design))

Caluclate information matrix
Vp <- mat.Vpred(W = W, Gg = Gg, Vu = Vu, R = R)

Calculate A-optimality measure
Ameasures(Vp)
Ameasures(Vp, groups=list(fldUndup = c(1:4), fldDup = c(5,6)))
grpsizes <- c(4,2)
names(grpsizes) <- c("fldUndup", "fldDup")
Ameasures(Vp, groupsizes = grpsizes)
Ameasures(Vp, groupsizes = c(4))
Ameasures(Vp, groups=list(c(1,4),c(5,6)))

as.numfac Convert a factor to a numeric vector

Description

Converts a factor to a numeric vector with approximately the numeric values of its levels.
Hence, the levels of the factor must be numeric values, stored as characters. It uses the method
described in factor. Use as.numeric to convert a factor to a numeric vector with integers 1, 2,
... corresponding to the positions in the list of levels. You can also use fac.recode to recode the
levels to numeric values. If a numeric is supplied, it is left unchanged.

Usage

as.numfac(factor)

Arguments

factor The factor to be converted.

Value

A numeric vector. An NA will be stored for any value of the factor whose level is not a number.

Author(s)

Chris Brien

blockboundary.plot 9

See Also

as.numeric, fac.recode in package dae, factor.

Examples

set up a factor and convert it to a numeric vector
a <- factor(rep(1:3, 4))
x <- as.numfac(a)

blockboundary.plot This function plots a block boundary on a plot produced by
design.plot. It is being superseded by blockboundaryPlot.

Description

This function plots a block boundary on a plot produced by design.plot. It allows control of
the starting unit, through rstart and cstart, and the number of rows (nr) and columns (nc) from
the starting unit that the blocks to be plotted are to cover. However, it is being supersed by
blockboundaryPlot, which has more descriptive argument names.

Usage

blockboundary.plot(bdef = NULL, bseq = FALSE, rstart= 0, cstart = 0,
nr, nc, bcol = 1, bwd = 2)

Arguments

bdef A matrix of block sizes:
• if there is only one row, then the first element is interpreted as the no. rows

in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

bseq A logical thatt determines whether block numbers are repetitions or sequences
of block numbers.

rstart A numeric speccifying the row after which the plotting of block boundaries is
to start.

cstart A numeric speccifying the column after which the plotting of block boundaries
is to start.

nr A numeric the number of rows (nr), from the starting unit, that the blocks to be
plotted are to cover.

nc A numeric the number of columns (nc), from the starting unit, that the blocks
to be plotted are to cover.

bcol A character string specifying the colour of the block boundary.
See Colour specification under the par function.

bwd A numeric giving the width of the block boundary to be plotted.

10 blockboundaryPlot

Value

no values are returned, but modifications are made to the currently active plot.

See Also

design.plot, par, DiGGer

Examples

Not run:
SPL.Lines.mat <- matrix(as.numfac(Lines), ncol=16, byrow=T)
colnames(SPL.Lines.mat) <- 1:16
rownames(SPL.Lines.mat) <- 1:10
SPL.Lines.mat <- SPL.Lines.mat[10:1, 1:16]
windows()
design.plot(SPL.Lines.mat,trts=1:10,new=TRUE,

rstr="Rows",cstr="Columns", chtdiv=3, rprop = 1,cprop=1,
plotbndry = TRUE)

#Plot Mainplot boundaries
blockboundary.plot(bdef = cbind(4,16), rstart = 1, bwd = 3, bcol = "green",

nr = 9, nc = 16)
blockboundary.plot(bdef = cbind(1,4), bwd = 3, bcol = "green", nr = 1, nc = 16)
blockboundary.plot(bdef = cbind(1,4), rstart= 9, bwd = 3, bcol = "green",

nr = 10, nc = 16)
#Plot all 4 block boundaries
blockboundary.plot(bdef = cbind(8,5,5,4), bseq=T, cstart = 1, rstart= 1,

bwd = 3,bcol = "blue", nr = 9, nc = 15)
blockboundary.plot(bdef = cbind(10,16), bwd=3,bcol="blue", nr=10, nc=16)
#Plot border and internal block boundaries only
blockboundary.plot(bdef = cbind(8,14), cstart = 1, rstart= 1,

bwd = 3, bcol = "blue", nr = 9, nc = 15)
blockboundary.plot(bdef = cbind(10,16), bwd = 3, bcol = "blue",

nr = 10, nc = 16)
End(Not run)

blockboundaryPlot This function plots a block boundary on a plot produced by
designPlot.

Description

This function plots a block boundary on a plot produced by designPlot. It allows control of the
starting unit, through rstart and cstart, and the number of rows (nrows) and columns (ncolumns)
from the starting unit that the blocks to be plotted are to cover.

Usage

blockboundaryPlot(blockdefinition = NULL, blocksequence = FALSE,
rstart= 0, cstart = 0, nrows, ncolumns,
blocklinecolour = 1, blocklinewidth = 2)

blockboundaryPlot 11

Arguments

blockdefinition

A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

blocksequence A logical thatt determines whether block numbers are repetitions or sequences
of block numbers.

rstart A numeric speccifying the row after which the plotting of block boundaries is
to start.

cstart A numeric speccifying the column after which the plotting of block boundaries
is to start.

nrows A numeric the number of rows (nrows), from the starting unit, that the blocks
to be plotted are to cover.

ncolumns A numeric the number of columns (ncolumns), from the starting unit, that the
blocks to be plotted are to cover.

blocklinecolour

A character string specifying the colour of the block boundary.
See Colour specification under the par function.

blocklinewidth A numeric giving the width of the block boundary to be plotted.

Value

no values are returned, but modifications are made to the currently active plot.

See Also

designPlot, par, DiGGer

Examples

Not run:
SPL.Lines.mat <- matrix(as.numfac(Lines), ncol=16, byrow=T)
colnames(SPL.Lines.mat) <- 1:16
rownames(SPL.Lines.mat) <- 1:10
SPL.Lines.mat <- SPL.Lines.mat[10:1, 1:16]
designPlot(SPL.Lines.mat, labels=1:10, new=TRUE,

rtitle="Rows",ctitle="Columns",
chardivisor=3, rcellpropn = 1, ccellpropn=1,
plotcellboundary = TRUE)

#Plot Mainplot boundaries
blockboundaryPlot(blockdefinition = cbind(4,16), rstart = 1,

blocklinewidth = 3, blockcolour = "green",
nrows = 9, ncolumns = 16)

blockboundaryPlot(blockdefinition = cbind(1,4),

12 correct.degfree

blocklinewidth = 3, blockcolour = "green",
nrows = 1, ncolumns = 16)

blockboundaryPlot(blockdefinition = cbind(1,4), rstart= 9, nrows = 10, ncolumns = 16,
blocklinewidth = 3, blockcolour = "green")

#Plot all 4 block boundaries
blockboundaryPlot(blockdefinition = cbind(8,5,5,4), blocksequence=T,

cstart = 1, rstart= 1, nrows = 9, ncolumns = 15,
blocklinewidth = 3,blockcolour = "blue")

blockboundaryPlot(blockdefinition = cbind(10,16), blocklinewidth=3, blockcolour="blue",
nrows=10, ncolumns=16)

#Plot border and internal block boundaries only
blockboundaryPlot(blockdefinition = cbind(8,14), cstart = 1, rstart= 1,

nrows = 9, ncolumns = 15,
blocklinewidth = 3, blockcolour = "blue")

blockboundaryPlot(blockdefinition = cbind(10,16),
blocklinewidth = 3, blockcolour = "blue",
nrows = 10, ncolumns = 16)

End(Not run)

correct.degfree Check the degrees of freedom in an object of class projector

Description

Check the degrees of freedom in an object of class "projector".

Usage

correct.degfree(object)

Arguments

object An object of class "projector" whose degrees of freedom are to be checked.

Details

The degrees of freedom of the projector are obtained as its number of nonzero eigenvalues. An
eigenvalue is regarded as zero if it is less than daeTolerance, which is initially set to.Machine$double.eps
^ 0.5 (about 1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

Value

TRUE or FALSE depending on whether the correct degrees of freedom have been stored in the
object of class "projector".

Author(s)

Chris Brien

See Also

degfree, projector in package dae.

projector for further information about this class.

dae-deprecated 13

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create a projector based on the matrix m
proj.m <- new("projector", data=m)

add its degrees of freedom
degfree(proj.m) <- 1

check degrees of freedom are correct
correct.degfree(proj.m)

dae-deprecated Deprecated Functions in Package dae

Description

These functions have been renamed and deprecated in dae.

Usage

proj2.decomp(...)
proj2.ops(...)

Arguments

... absorbs arguments passed from the old functions of the style foo.bar().

Author(s)

Chris Brien

decomp.relate Examines the relationship between the eigenvectors for two decompo-
sitions

Description

Two decompositions produced by proj2.eigen are compared by computing all pairs of crossprod-
uct sums of eigenvectors from the two decompositions. It is most useful when the calls to proj2.eigen
have the same Q1.

Usage

decomp.relate(decomp1, decomp2)

14 decomp.relate

Arguments

decomp1 A list containing components efficiencies and eigenvectors such as is produced
by proj2.eigen.

decomp2 Another list containing components efficiencies and eigenvectors such as is
produced by proj2.eigen.

Details

Each element of the r1 x r2 matrix is the sum of crossproducts of a pair of eigenvectors, one from
each of the two decompositions. A sum is regarded as zero if it is less than daeTolerance, which
is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance can
be used to change daeTolerance.

Value

A matrix that is r1 x r2 where r1 and r2 are the numbers of efficiencies of decomp1 and decomp2,
respectively. The rownames and columnnames of the matrix are the values of the efficiency factors
from decomp1 and decomp2, respectively.

Author(s)

Chris Brien

See Also

proj2.eigen, proj2.combine in package dae, eigen.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain sets of projectors
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

obtain intra- and inter-block decompositions
decomp.inter <- proj2.eigen(Q.unit[["Block"]], Q.trt[["trt"]])
decomp.intra <- proj2.eigen(Q.unit[["Block:Unit"]], Q.trt[["trt"]])

check that intra- and inter-block decompositions are orthogonal
decomp.relate(decomp.intra, decomp.inter)

degfree 15

degfree Degrees of freedom extraction and replacement

Description

Extracts the degrees of freedom from or replaces them in an object of class "projector".

Usage

degfree(object)

degfree(object) <- value

Arguments

object An object of class "projector" whose degrees of freedom are to be extracted
or replaced.

value An integer to which the degrees of freedom are to be set or an object of class
"projector" or "matrix" from which the degrees of freedom are to be calulated.

Details

There is no checking of the correctness of the degrees of freedom, either already stored or as a
supplied integer value. This can be done using correct.degfree.

When the degrees of freedom of the projector are to be calculated, they are obtained as the number
of nonzero eigenvalues. An eigenvalue is regarded as zero if it is less than daeTolerance, which is
initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance
can be used to change daeTolerance.

Value

An object of class "projector" that consists of a square, summetric, idempotent matrix and degrees
of freedom (rank) of the matrix.

Author(s)

Chris Brien

See Also

correct.degfree, projector in package dae.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

coerce to a projector
proj.m <- projector(m)

extract its degrees of freedom

16 design.plot

degfree(proj.m)

create a projector based on the matrix m
proj.m <- new("projector", data=m)

add its degrees of freedom and print the projector
degfree(proj.m) <- proj.m
print(proj.m)

design.plot This function plots treatments within a matrix. It is being superseded
by design.plot.

Description

This function plots treatments within a matrix and may be used to build a graphical representation
of a matrix, highlighting the position of certain treatments and the blocking factors used in the
design. It is a modified version of the function supplied with DiGGer. It includes more control
over the labelling of the rows and columns of the design and allows for more flexible plotting of
designs with unequal block size. However, it is being supersed by design.plot, which has more
descriptive argument names.

Usage

design.plot(dsgn, trts = NULL, rprop = 1, cprop = 1, label = TRUE,
plotchar = NULL, plotbndry = TRUE,
chtdiv = 2, rchtdiv = 1, cchtdiv = 1,
bseq = FALSE, bdef = NULL, bcol = 1, bwd = 2,
rotate = FALSE, new = TRUE,
cstr = "Range",rstr = "Row", rlab = TRUE, clab = TRUE,
font = 1, rdecrease = FALSE, cdecrease = FALSE, ...)

Arguments

dsgn a matrix containing a set of integers or characters representing the treatments.

trts A integer or character vector giving specific treatment labels to be plotted.

rprop a value giving the proportion of the row boundary of cell to plot.

cprop a value giving the proportion of the column boundary of cell to plot.

label a logical to indicate whether treatment labels are to be plotted in the cells. If
TRUE, print a label for all treatments or specific treatments listed in trts. If
FALSE, no labels are not printed in the cells.

plotchar Either a character vector containing labels for the whole set of treatments or a
single integer specifying a symbol to be used in plotting treatments.

plotbndry A logical indicting whether a boundary is to plotted around a cell.

chtdiv A numeric specifying the amount by which plotting text and symbols in the
cells should be magnified/reduced relative to the default.

rchtdiv A numeric specifying the amount by which the labels of the rows of the design
should be magnified/reduced relative to the default.

design.plot 17

cchtdiv A numeric specifying the amount by which the labels of the columns of the
design should be magnified/reduced relative to the default.

bseq A logical that determines whether block numbers are repetitions or sequences
of block numbers.

bdef A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

bcol A character string specifying the colour of the block boundary.
See Colour specification under the par function.

bwd A numeric giving the width of the block boundary to be plotted.

rotate A logical which, if TRUE, results in the matrix being rotated 90 degrees for
plotting.

new A logical indicating if a new plot is to be produced or the current plot is added
to.

cstr A character string to use as a label for columns of the matrix.

rstr A character string to use as a label for rows of the matrix.

rlab A logical indicating each row of the design is labelled. If the rows of the
matrix are labelled, these are used; otherwise 1:nrow is used.

clab A logical indicating each column of the design is labelled. If the columns of
the matrix are labelled, these are used; otherwise 1:ncol is used.

font An integer specifying the font family to be used for row and column labelling.

rdecrease A logical indicating whether to reverse the row labels.

cdecrease A logical indicating whether to reverse the column labels.

... further arguments passed to polygon in plotting the cell.

Value

no values are returned, but a plot is produced.

References

Coombes, N. E. (2009). DiGGer design search tool in R. http://www.austatgen.org/files/
software/downloads/

See Also

blockboundary.plot, par, polygon, DiGGer

http://www.austatgen.org/files/software/downloads/
http://www.austatgen.org/files/software/downloads/

18 designLatinSqrSys

Examples

Not run:
design.plot(des.mat, trts=1:4, col="lightblue", new=TRUE,

rstr="Lanes", cstr="Positions", chtdiv=3, rprop = 1,cprop=1,
plotbndry = TRUE)

design.plot(des.mat, trts=5:87, label=T, col="grey", chtdiv=3, new=FALSE,
plotbndry = TRUE)

design.plot(des.mat, trts=88:434, label=T, col="lightgreen", chtdiv=3,
new=FALSE, plotbndry = TRUE,
bseq=TRUE, bdef=cbind(4,10,12), bwd=3, bcol="blue")

End(Not run)

designLatinSqrSys Generate a systematic plan for a Latin Square design

Description

Generates a systematic plan for a Latin Square design using the method of cycling the integers 1 to
the number of treatments. The start of the cycle for each row, or the first column, can be specified
as a vector of integers.

Usage

designLatinSqrSys(order, start = NULL)

Arguments

order The number of treatments.

start A numeric containing order unique values between one and order. These are
interpreted as the value for the fist column for each row. If NULL, 1:order is
used.

Value

A numeric containing order x order integers between 1 and order such that, when the numeric
is considered as a square matrix of size order, each integer occurs once and only once in each row
and column of the matrix.

Examples

matrix(designLatinSqrSys(5, start = c(seq(1, 5, 2), seq(2, 5, 2))), nrow=5)
designLatinSqrSys(3)

designPlot 19

designPlot This function is used to give a graphical representation of an experi-
mental design using labels stored in a matrix.

Description

This function uses labels, usually derived from treatment and blocking factors from an experimental
design and stored in a matrix, to build a graphical representation of the matrix, highlighting the
position of certain labels . It is a modified version of the function supplied with DiGGer. It includes
more control over the labelling of the rows and columns of the design and allows for more flexible
plotting of designs with unequal block size.

Usage

designPlot(designMatrix, labels = NULL, altlabels = NULL, plotlabels = TRUE,
rtitle = NULL, ctitle = NULL,
rlabelsreverse = FALSE, clabelsreverse = FALSE,
font = 1, chardivisor = 2, rchardivisor = 1, cchardivisor = 1,
cellfillcolour = NA, plotcellboundary = TRUE,
rcellpropn = 1, ccellpropn = 1,
blocksequence = FALSE, blockdefinition = NULL,
blocklinecolour = 1, blocklinewidth = 2,
rotate = FALSE, new = TRUE, ...)

Arguments

designMatrix A matrix containing a set of numerics or characters representing the labels.

labels A numeric or character vector giving the labels in the matrix for which cells
are to be plotted. If plotlabels is TRUE and altlabels is NULL then these
labels are plotted in the cells. See text for more information on specifying the
labels.

altlabels Either a character vector of the same length as labels containing an alter-
native set of labels for the labels currently being plotted or a single integer
specifying an alternative symbol to be used in plotting cells when plotlabels
is TRUE. If altlabels is NULL, the labels specified in labels is plotted when
plotlabels is TRUE. See text for more information on specifying the labels.

plotlabels A logical to indicate whether labels are to be plotted in the cells. If TRUE,
print all labels or the specific labels listed in labels. If FALSE, no labels are
printed in the cells.

rtitle A character string to use as a title for rows of the plot. If rtitle is NULL then
no title is plotted.

ctitle A character string to use as a title for columns of the plot. If ctitle is NULL
then no title is plotted.

rlabelsreverse A logical indicating whether to reverse the row labels.

clabelsreverse A logical indicating whether to reverse the column labels.

font An integer specifying the font to be used for row and column labelling. See
par for further details.

chardivisor A numeric that changes the size of text and symbols in the cells by dividing the
default size by it.

20 designPlot

rchardivisor A numeric that changes the size of the labels of the rows of the design by divid-
ing the default size by it.

cchardivisor A numeric that changes the size of the labels of the columns of the design by
dividing the default size by it.

cellfillcolour A character string specifying the colour of the fill for the cells to be plotted in
this call. If there is only one colour then all cells being plotted with that colour.
If there is more than one colour then the number of colours must at least equal
the number of labels and then the fill colours will be matched, one for one from
the first colour, with the labels. The default, NA, is to leave ther cells unfilled.
See also Colour specification under the par function.

plotcellboundary

A logical indicting whether a boundary is to plotted around a cell.

rcellpropn a value between 0 and 1 giving the proportion of the standard row size of a cell
size to be plotted as a cell.

ccellpropn a value between 0 and 1 giving the proportion of the standard column size of a
cell size to be plotted as a cell.

blocksequence A logical that determines whether block numbers are repetitions or sequences
of block numbers.

blockdefinition

A matrix of block sizes:

• if there is only one row, then the first element is interpreted as the no. rows
in each block and blocks with this number of rows are to be repeated across
the rows of the design.

• if there is more than one row, then each row of the matrix specifies a block,
with the sequence of rows in the matrix specifying a corresponding se-
quence of blocks down the rows of the design.

Similarly, a single value for a column specifies a repetition of blocks of that
size across the columns of the design, while several column values specifies a
sequence of blocks across the columns of the size specified.

blocklinecolour

A character string specifying the colour of the block boundary.
See also Colour specification under the par function.

blocklinewidth A numeric giving the width of the block boundary to be plotted.

rotate A logical which, if TRUE, results in the matrix being rotated 90 degrees for
plotting.

new A logical indicating if a new plot is to be produced or the current plot is added
to.

... further arguments passed to polygon in plotting the cell.

Value

no values are returned, but a plot is produced.

References

Coombes, N. E. (2009). DiGGer design search tool in R. http://www.austatgen.org/files/
software/downloads/

http://www.austatgen.org/files/software/downloads/
http://www.austatgen.org/files/software/downloads/

detect.diff 21

See Also

blockboundaryPlot, par, polygon, DiGGer

Examples

Not run:
designPlot(des.mat, labels=1:4, col="lightblue", new=TRUE, plotcellboundary = TRUE,

rtitle="Lanes", ctitle="Positions", chardivisor=3,
rcellpropn = 1, ccellpropn=1)

designPlot(des.mat, labels=5:87, plotlabels=TRUE, col="grey", chardivisor=3, new=FALSE,
plotcellboundary = TRUE)

designPlot(des.mat, labels=88:434, plotlabels=TRUE, col="lightgreen", chardivisor=3,
new=FALSE, plotcellboundary = TRUE,
blocksequence=TRUE, blockdefinition=cbind(4,10,12),
blocklinewidth=3, blockcolour="blue")

End(Not run)

detect.diff Computes the detectable difference for an experiment

Description

Computes the delta that is detectable for specified replication, power, alpha.

Usage

detect.diff(rm=5, df.num=1, df.denom=10, sigma=1, alpha=0.05, power=0.8,
tol = 0.001, print=FALSE)

Arguments

rm The number of observations used in computing a mean.

df.num The degrees of freedom of the numerator of the F for testing the term involving
the means.

df.denom The degrees of freedom of the denominator of the F for testing the term involv-
ing the means.

sigma The population standard deviation.

alpha The significance level to be used.

power The minimum power to be achieved.

tol The maximum difference tolerated between the power required and the power
computed in determining the detectable difference.

print TRUE or FALSE to have or not have a table of power calculation details printed
out.

Value

A single numeric value containing the computed detectable difference.

Author(s)

Chris Brien

22 efficiencies.p2canon

See Also

power.exp, no.reps in package dae.

Examples

Compute the detectable difference for a randomized complete block design
with four treatments given power is 0.8 and alpha is 0.05.
rm <- 5
detect.diff(rm = rm, df.num = 3, df.denom = 3 * (rm - 1),sigma = sqrt(20))

efficiencies.p2canon Extracts the canonical efficiency factors from a list of class p2canon.

Description

Produces a list containing the canonical efficiency factors for the joint decomposition of two sets
of projectors (Brien and Bailey, 2009) obtained using projs.2canon.

Usage

efficiencies.p2canon(object, which = "adjusted")

Arguments

object A list of class p2canon produced by projs.2canon.

which A character string, either adjusted or pairwise. For adjusted, the canoni-
cal efficiency factor are adjusted for other projectors from Q2. For pairwise,
they are the unadjusted canonical efficiency factors between pairs of projectors
consisting of one projector from each of two sets.

Value

A list with a component for each element of the Q1 argument from projs.2canon. Each compo-
nent is list, each its components corresponding to an element of the Q2 argument from projs.2canon

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

projs.2canon, summary.p2canon, proj2.efficiency, proj2.combine, proj2.eigen,
projs.structure in package dae, eigen.

projector for further information about this class.

efficiencies.pcanon 23

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain projectors using projs.structure
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(Q.unit, Q.trt)
efficiencies.p2canon(unit.trt.p2canon)

efficiencies.pcanon Extracts the canonical efficiency factors from a list of class pcanon.

Description

Produces a list containing the canonical efficiency factors for the joint decomposition of two or
more sets of projectors (Brien and Bailey, 2009) obtained using projs.canon.

Usage

efficiencies.pcanon(object, which = "adjusted")

Arguments

object A list of class pcanon produced by projs.canon.

which A character string, either adjusted or pairwise. For adjusted, the canonical
efficiency factor are adjusted for other projectors from from the same set. For
pairwise, they are the unadjusted canonical efficiency factors between pairs of
projectors consisting of one projector from each of two sets.

Value

A list with a component for each component of object, except for the last component – projs.canon
for more information about the components of a pcanon object.

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

24 efficiency.criteria

See Also

projs.canon, summary.pcanon, proj2.efficiency, proj2.combine, proj2.eigen,
projs.structure in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain combined decomposition and summarize
unit.trt.canon <- projs.canon(list(unit=~ Block/Unit, trt=~ trt), data = PBIBD2.lay)
efficiencies.pcanon(unit.trt.canon)

efficiency.criteria Computes efficiency criteria from a set of efficiency factors

Description

Computes efficiency criteria from a set of efficiency factors.

Usage

efficiency.criteria(efficiencies)

Arguments

efficiencies A numeric containing a set of efficiency factors.

Details

The aefficiency criterion is the harmonic mean of the nonzero efficiency factors. The mefficiency
criterion is the mean of the nonzero efficiency factors. The eefficiency criterion is the minimum
of the nonzero efficiency factors. The sefficiency criterion is the variance of the nonzero effi-
ciency factors. The xefficiency is the maximum of the efficiency factors. The order is the order
of balance and is the number of unique nonzero efficiency factors. The dforthog is the number of
efficiency factors that are equal to one.

Value

A list whose components are aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog.

Author(s)

Chris Brien

elements 25

See Also

proj2.efficiency, proj2.eigen, proj2.combine in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

obtain sets of projectors
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

save intrablock efficiencies
eff.inter <- proj2.efficiency(Q.unit[["Block:Unit"]], Q.trt[["trt"]])

calculate efficiency criteria
efficiency.criteria(eff.inter)

elements Extract the elements of an array specified by the subscripts

Description

Elements of the array x corresponding to the rows of the two dimensional object subscripts are
extracted. The number of columns of subscripts corresponds to the number of dimensions of x.
The effect of supplying less columns in subscripts than the number of dimensions in x is the same
as for "[".

Usage

elements(x, subscripts)

Arguments

x An array with at least two dimensions whose elements are to be extracted.

subscripts A two dimensional object interpreted as elements by dimensions.

Value

A vector containing the extracted elements and whose length equals the number of rows in the
subscripts object.

See Also

Extract

26 extab

Examples

Form a table of the means for all combinations of Row and Line.
Then obtain the values corresponding to the combinations in the data frame x,
excluding Row 3.
x <- fac.gen(list(Row = 2, Line = 4), each =2)
x$y <- rnorm(16)
RowLine.tab <- tapply(x$y, list(x$Row, x$Line), mean)
xs <- elements(RowLine.tab, subscripts=x[x$"Line" != 3, c("Row", "Line")])

extab Expands the values in table to a vector

Description

Expands the values in table to a vector according to the index.factors that are considered
to index the table, either in standard or Yates order. The order of the values in the vector is
determined by the order of the values of the index.factors.

Usage

extab(table, index.factors, order="standard")

Arguments

table A numeric vector containing the values to be expanded. Its length must equal
the product of the number of used levels for the factors in index.factors and
the values in it correspond to all levels combinations of these factors. That is,
the values of the index.factors are irrelevant to table.

index.factors A list of factors that index the table. All the factors must be the same
length.

order The order in which the levels combinations of the index.factors are to be
considered as numbered in indexing table; standard numbers them as if they
are arranged in standard order, that is with the first factor moving slowest and
the last factor moving fastest; yates numbers them as if they are arranged in
Yates order, that is with the first factor moving fastest and last factor moving
slowest.

Value

A vector of length equal to the factors in index.factor whose values are taken from table.

Author(s)

Chris Brien

fac.ar1mat 27

Examples

generate a small completely randomized design with the two-level
factors A and B
n <- 12
CRD.unit <- list(Unit = n)
CRD.treat <- fac.gen(list(A = 2, B = 2), each = 3)
CRD.lay <- fac.layout(unrandomized=CRD.unit, randomized=CRD.treat,

seed=956)

set up a 2 x 2 table of A x B effects
AB.tab <- c(12, -12, -12, 12)

add a unit-length vector of expanded effects to CRD.lay
attach(CRD.lay)
CRD.lay$AB.effects <- extab(table=AB.tab, index.factors=list(A, B))

fac.ar1mat forms the ar1 correlation matrix for a (generalized) factor

Description

Form the correlation matrix for a (generalized) factor where the correlation between the levels
follows an autocorrelation of order 1 (ar1) pattern.

Usage

fac.ar1mat(factor, rho)

Arguments

factor The (generalized) factor for which the correlation between its levels displays
an ar1 pattern.

rho The correlation parameter for the ar1 process.

Details

The method is: a) form an n x n matrix of all pairwise differences in the numeric values correspond-
ing to the observed levels of the factor by taking the difference between the following two n x n
matrices are equal: 1) each row contains the numeric values corresponding to the observed levels of
the factor, and 2) each column contains the numeric values corresponding to the observed levels of
the factor, b) replace each element of the pairwise difference matrix with rho raised to the absolute
value of the difference.

Value

An n x n matrix, where n is the length of the factor.

Author(s)

Chris Brien

28 fac.combine

See Also

fac.vcmat, fac.meanop, fac.sumop in package dae.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a 12 x 12 ar1 matrix corrresponding to B
ar1.B <- fac.ar1mat(B, 0.6)

fac.combine Combines several factors into one

Description

Combines several factors into one whose levels are the combinations of the used levels of the
individual factors.

Usage

fac.combine(factors, order="standard", combine.levels=FALSE, sep=",", ...)

Arguments

factors A list of factors all of the same length.

order Either standard or yates. The order in which the levels combinations of
the factors are to be considered as numbered when forming the levels of the
combined factor; standard numbers them as if they are arranged in standard
order, that is with the levels of the first factor moving slowest and those of the
last factor moving fastest; yates numbers them as if they are arranged in Yates
order, that is with the levels of the first factor moving fastest and those of the
last factor moving slowest.

combine.levels A logical specifying whether the levels labels of the new factor are to be
combined from those of the factors being combined. The default is to use the
integers from 1 to the product of the numbers of combinations of used levels
of the individual factors, numbering the levels according to order.

sep A character string to separate the levels when combine.levels = TRUE.

... Further arguments passed to the factor call creating the new factor.

Value

A factor whose levels are formed form the observed combinations of the levels of the individ-
ual factors.

Author(s)

Chris Brien

fac.divide 29

See Also

fac.divide in package dae.

Examples

set up two factors
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

obtain six-level factor corresponding to the combinations of A and B
AB <- fac.combine(list(A,B))

fac.divide Divides a factor into several individual factors

Description

Takes a factor and divides it into several individual factors as if the levels in the original
combined.factor are numbered from one to its number of levels and correspond to the numbering
of the levels combinations of the individual factors when these are arranged in standard or Yates
order.

Usage

fac.divide(combined.factor, factor.names, order="standard")

Arguments

combined.factor

A factor that is to be divided into the individual factors listed in factor.names.

factor.names A list of factors to be formed. The names in the list are the names of the
factors and the component of a name is either a) a single numeric value that
is the number of levels, b) a numeric vector that contains the levels of the
factor, or c) a character vector that contains the labels of the levels of the
factor.

order Either standard or yates. The order in which the levels combinations of
the factors in factor.names are to be considered as numbered; standard
numbers them as if they are arranged in standard order, that is with the first
factor moving slowest and the last factor moving fastest; yates numbers them
as if they are arranged in Yates order, that is with the first factor moving fastest
and last factor moving slowest.

Value

A data.frame whose columns consist of the factors listed in factor.names and whose values
have been computed from the combined factor. All the factors will be of the same length.

Note

A single factor name may be supplied in the list in which case a data.frame is produced that
contains the single factor computed from the numeric vector. This may be useful when calling
this function from others.

30 fac.gen

Author(s)

Chris Brien

See Also

fac.combine in package dae.

Examples

generate a small completely randomized design for 6 treatments
n <- 12
CRD.unit <- list(Unit = n)
treat <- factor(rep(1:4, each = 3))
CRD.lay <- fac.layout(unrandomized=CRD.unit, randomized=treat, seed=956)

divide the treatments into two two-level factor A nd B
CRD.facs <- fac.divide(CRD.lay$treat, factor.names = list(A = 2, B = 2))

fac.gen Generate all combinations of several factors

Description

Generate all combinations of several factors.

Usage

fac.gen(generate, each=1, times=1, order="standard")

Arguments

generate A list of named objects and numbers that specify the factors whose levels
are to be generated and the pattern in these levels.If a component of the list
is named, then the component should be either a) a single numeric value that
is the number of levels, b) a numeric vector that contains the levels of the
factor, or c) a character vector that contains the labels of the levels of the
factor.

each The number of times to replicate consecutively the elements of the levels gen-
erated according to pattern specified by the generate argument.

times The number of times to repeat the whole generated pattern of levels generated
according to pattern specified by the generate argument.

order Either standard or yates. The order in which the speed of cycling through
the levels is to move; combinations of the factors are to be considered as
numbered; standard cycles through the levels of the first factor slowest and
the last factor moving fastest; yates cycles through the levels of the first factor
fastest and last factor moving slowest.

fac.layout 31

Details

The levels of each factor are generated in a hierarchical pattern where the levels of one factor
are held constant while those of the adjacent factor are cycled through the complete set once. If a
number is supplied instead of a name, the pattern is generated as if a factor with that number of
levels had been supplied in the same position as the number. However, no levels are stored for
this unamed factor.

Value

A data.frame of generated levels with columns corresponding to the codefactors in the generate
list.

Warning

Avoid using factor names F and T as these might be confused with FALSE and TRUE.

Author(s)

Chris Brien

See Also

fac.combine in package dae

Examples

generate a 2^3 factorial experiment with levels - and +, and
in Yates order
mp <- c("-", "+")
fnames <- list(Catal = mp, Temp = mp, Press = mp, Conc = mp)
Fac4Proc.Treats <- fac.gen(generate = fnames, order="yates")

Generate the factors A, B and D. The basic pattern has 4 repetitions
of the levels of D for each A and B combination and 3 repetitions of
the pattern of the B and D combinations for each level of A. This basic
pattern has each combination repeated twice, and the whole of this
is repeated twice. It generates 864 A, B and D combinations.
gen <- list(A = 3, 3, B = c(0,100,200), 4, D = c("0","1"))
fac.gen(gen, times=2, each=2)

fac.layout Generate a randomized layout for an experiment

Description

Given a systematic design, generate a layout for an experiment consisting of randomized factors
that are randomized to the unrandomized factors, taking into account the nesting between the
unrandomized factors for the design.

Usage

fac.layout(unrandomized, nested.factors=NULL, except=NULL,
randomized, seed=NULL, unit.permutation=TRUE)

32 fac.layout

Arguments

unrandomized A data.frame or a list of factors, along with their levels. If a list, the
name of each component of the list is a factor name and the component is
either a single numeric value that is the number of levels, a numeric vector
that contains the levels of the factor or a character codevector that contains
the labels of the levels of the factor.

nested.factors A list of the unrandomized factors that are nested in other factors in unrandomized.
The name of each component is the name of a factor that is nested and the com-
ponent is a character vector containing the factors within which it is nested. It
is emphasized that the nesting is a property of the design that is being employed
(it is only partly based on the intrinsic nesting.

except A character vector containing the names unrandomized factors that are to
be excepted from the randomization.

randomized A factor or a data.frame containing the values of the factor(s) to be ran-
domized.

seed A single value, interpreted as an integer, that specifies the starting value of the
random number generator.

unit.permutation

A logical indicating whether to include the .Unit and .Permutation columns
in the data.frame.

Details

This functon uses the method of randomization described by Bailey (1981). That is, a permutation
of the units that respects the nesting for the design, but does not permute any of the factors in the
except vector, is obtained. This permutation is applied to the unrandomized factors and then
a data.frame containing both the permuted unrandomized and unpermuted randomized factors
is formed. To produce the randomized layout, the rows of the joint data.frame are reordered so
that its unrandomized factors are in either standard order or, if a data.frame was suppled to
unrandomized, data frame order.

The .Units and .Permutation vectors enable one to swap between this permutation and the
randomized layout. The ith value in .Permutation gives the unit to which unit i was assigned in
the randomization.

Value

A data.frame consisting of the values for .Units and .Permutation vectors, provided unit.permutation
is TRUE, along with the values for the unrandomized and randomized factors that specify the ran-
domized layout for the experiment.

Author(s)

Chris Brien

References

Bailey, R.A. (1981) A unified approach to design of experiments. Journal of the Royal Statistical
Society, Series A, 144, 214–223.

See Also

fac.gen in package dae.

fac.match 33

Examples

generate a randomized layout for a 4 x 4 Latin square
(the nested.factors agument is not needed here as none of the
factors are nested)
LS.unit <- data.frame(row = ordered(rep(c("I","II","III","IV"), times=4)),

col = factor(rep(c(0,2,4,6), each=4)))
LS.ran <- data.frame(treat = factor(c(1:4, 2,3,4,1, 3,4,1,2, 4,1,2,3)))
data.frame(LS.unit, LS.ran)
LS.lay <- fac.layout(unrandomized=LS.unit, randomized=LS.ran, seed=7197132)
LS.lay[LS.lay$.Permutation,]

generate a randomized layout for a replicated randomized complete
block design, with the block factors arranged in standard order for
rep then plot and then block
RCBD.unit <- list(rep = 2, plot=1:3, block = c("I","II"))
specify that plot is nested in block and rep and that block is nested
in rep
RCBD.nest <- list(plot = c("block","rep"), block="rep")
generate treatment factor in systematic order so that they correspond
to plot
tr <- factor(rep(1:3, each=2, times=2))
obtain randomized layout
RCBD.lay <- fac.layout(unrandomized=RCBD.unit,

nested.factors=RCBD.nest,
randomized=tr, seed=9719532)

#sort into the original standard order
RCBD.perm <- RCBD.lay[RCBD.lay$.Permutation,]
#resort into randomized order
RCBD.lay <- RCBD.perm[order(RCBD.perm$.Units),]

generate a layout for a split-unit experiment in which:
- the main-unit factor is A with 4 levels arranged in
a randomized complete block design with 2 blocks;
- the split-unit factor is B with 3 levels.
SPL.lay <- fac.layout(unrandomized=list(block = 2, main.unit = 4, split.unit = 3),

nested.factors=list(main.unit = "block",
split.unit = c("block", "main.unit")),

randomized=fac.gen(list(A = 4, B = 3), times = 2),
seed=155251978, unit.permutation=FALSE)

fac.match Match, for each combination of a set of columns in x, the row that has
the same combination in table

Description

Match, for each combination of a set of columns in x, the rows that has the same combination in
table. The argument multiples.allow controls what happens when there are multple matches in
table of a combination in x.

Usage

fac.match(x, table, col.names, nomatch = NA_integer_, multiples.allow = FALSE)

34 fac.meanop

Arguments

x an R object, normally a data.frame, possibly a matrix.

table an R object, normally a data.frame, possibly a matrix.

col.names A character vector giving the columns in x and table that are to be matched.

nomatch The value to be returned in the case when no match is found. Note that it is
coerced to integer.

multiples.allow

A logical indicating whether multiple matches of a combination in x to those
in table is allowed. If multiples.allow is FALSE, an error is generated. If
multiples.allow is TRUE, the first occuence in table is matched. This func-
tion can be viewed as a generalization to multiple vectors of the match function
that applies to single vectors.

Value

A vector of length equal to x that gives the rows in table that match the combinations of col.names
in x. The order of the rows is the same as the order of the combintions in x. The value returned if a
combination is unmatched is specified in the nomatch argument.

Author(s)

Chris Brien

See Also

match

Examples

Not run:
#A single unmatched combination
kdata <- data.frame(Expt="D197-5",

Row=8,
Column=20, stringsAsFactors=FALSE)

index <- fac.match(kdata, D197.dat, c("Expt", "Row", "Column"))

A matched and an unmatched combination
kdata <- data.frame(Expt=c("D197-5", "D197-4"),

Row=c(8, 10),
Column=c(20, 8), stringsAsFactors=FALSE)

index <- fac.match(kdata, D197.dat, c("Expt", "Row", "Column"))

End(Not run)

fac.meanop computes the projection matrix that produces means

Description

Computes the symmetric projection matrix that produces the means corresponding to a (general-
ized) factor.

fac.nested 35

Usage

fac.meanop(factor)

Arguments

factor The (generalized) factor whose means the projection matrix computes from an
observation-length vector.

Details

The design matrix X for a (generalized) factor is formed with a column for each level of the
(generalized) factor, this column being its indicator variable. The projection matrix is formed as
X %*% (1/diag(r) %*% t(X), where r is the vector of levels replications.

A generalized factor is a factor formed from the combinations of the levels of several original
factors. Generalized factors can be formed using fac.combine.

Value

A projector containing the symmetric, projection matrix and its degrees of freedom.

Author(s)

Chris Brien

See Also

fac.combine, projector, degfree, correct.degfree, fac.sumop in package dae.

projector for further information about this class.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a generalized factor whose levels are the combinations of A and B
AB <- fac.combine(list(A,B))

obtain the operator that computes the AB means from a vector of length 12
M.AB <- fac.meanop(AB)

fac.nested creates a factor whose values are generated within those of the factor
nesting.fac

Description

Creates a factor whose levels are generated within those of the factor nesting.fac. All elements
of nesting.fac having the same level are numbered from 1 to the number of different elements
having that level.

36 fac.recode

Usage

fac.nested(nesting.fac, levels=NA, labels=NA, ...)

Arguments

nesting.fac The factor within each of whose levels the created factor is to be generated.

levels Optional vector of levels for the factor. Any data value that does not match
a value in levels will be NA in the factor. The default value of levels is
the the list of numbers from 1 to the maximum replication of the levels of
nesting.fac, represented as characters.

labels Optional vector of values to use as labels for the levels of the factor. The
default is as.character(levels).

... Further arguments passed to the factor call dreating the new factor.

Value

A factor that is a character vector with class attribute "factor" and a levels attribute which
determines what character strings may be included in the vector.

Note

The levels of nesting.fac do not have to be equally replicated.

Author(s)

Chris Brien

See Also

fac.gen in package dae, factor.

Examples

set up factor A
A <- factor(c(1, 1, 1, 2, 2))

create nested factor
B <- fac.nested(A)

fac.recode Recodes factor levels using values in a vector. The values in the
vector do not have to be unique.

Description

Recodes the levels and values of a factor using each value in the newlevels vector to replace the
corresponding value in the vector of levels of the factor.

Usage

fac.recode(factor, newlevels, ...)

fac.sumop 37

Arguments

factor The factor to be recoded.

newlevels A vector of length levels(factor) containing values to use in the recoding.

... Further arguments passed to the factor call creating the new factor.

Value

A factor.

Author(s)

Chris Brien

See Also

as.numfac and mpone in package dae, factor, relevel.

Examples

set up a factor with labels
a <- factor(rep(1:4, 4), labels=c("A","B","C","D"))

recode "A" and "D" to 1 and "B" and "C" to 2
b <- fac.recode(a, c(1,2,2,1), labels = c("a","b"))

fac.sumop computes the summation matrix that produces sums corresponding to
a (generalized) factor

Description

Computes the matrix that produces the sums corresponding to a (generalized) factor.

Usage

fac.sumop(factor)

Arguments

factor The (generalized) factor whose sums the summation matrix computes from an
observation-length vector.

Details

The design matrix X for a (generalized) factor is formed with a column for each level of the
(generalized) factor, this column being its indicator variable. The summation matrix is formed as
X %*% t(X).

A generalized factor is a factor formed from the combinations of the levels of several original
factors. Generalized factors can be formed using fac.combine.

38 fac.vcmat

Value

A symmetric matrix.

Author(s)

Chris Brien

See Also

fac.combine, fac.meanop in package dae.

Examples

set up a two-level factoir and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a generlaized factor whose levels are the combinations of A and B
AB <- fac.combine(list(A,B))

obtain the operator that computes the AB means from a vector of length 12
S.AB <- fac.sumop(AB)

fac.vcmat forms the variance matrix for the variance component of a (general-
ized) factor

Description

Form the variance matrix for a (generalized) factor whose effects for its different levels are indepen-
dently and identically distributed, with their variance given by the variance component; elements of
the matrix will equal either zero or sigma2 and displays compound symmetry.

Usage

fac.vcmat(factor, sigma2)

Arguments

factor The (generalized) factor for which the variance matrix is required.

sigma2 The variance component, being the of the random effects for the factor.

Details

The method is: a) form the n x n summation or relationship matrix whose elements are equal to zero
except for those elements whose corresponding elements in the following two n x n matrices are
equal: 1) each row contains the numeric values corresponding to the observed levels of the factor,
and 2) each column contains the numeric values corresponding to the observed levels of the factor,
b) multiply the summation matrix by sigma2.

Value

An n x n matrix, where n is the length of the factor.

Fac4Proc.dat 39

Author(s)

Chris Brien

See Also

fac.ar1mat, fac.meanop, fac.sumop in package dae.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

create a 12 x 12 ar1 matrix corrresponding to B
vc.B <- fac.vcmat(B, 2)

Fac4Proc.dat Data for a 2^4 factorial experiment

Description

The data set come from an unreplicated 24 factorial experiment to investigate a chemical process.
The response variable is the Conversion percentage (Conv) and this is indexed by the 4 two-level
factors Catal, Temp, Press and Conc, with levels “-” and “+”. The data is aranged in Yates order.
Also included is the 16-level factor Runs which gives the order in which the combinations of the
two-level factors were run.

Usage

data(Fac4Proc.dat)

Format

A data.frame containing 16 observations of 6 variables.

Source

Table 10.6 of Box, Hunter and Hunter (1978) Statistics for Experimenters. New York, Wiley.

40 fitted.aovlist

fitted.aovlist Extract the fitted values for a fitted model from an aovlist object

Description

Extracts the fitted values as the sum of the effects for all the fitted terms in the model, stopping at
error.term if this is specified. It is a method for the generic function fitted.

Usage

S3 method for class 'aovlist'
fitted(object, error.term=NULL, ...)

Arguments

object An aovlist object created from a call to aov.

error.term The term from the Error function down to which effects are extracted for adding
to the fitted values. The order of terms is as given in the ANOVA table. If
error.term is NULL effects are extracted from all Error terms.

... Further arguments passed to or from other methods.

Value

A numeric vector of fitted values.

Note

Fitted values will be the sum of effects for terms from the model, but only for terms external to any
Error function. If you want effects for terms in the Error function to be included, put them both
inside and outside the Error function so they are occur twice.

Author(s)

Chris Brien

See Also

fitted.errors, resid.errors, tukey.1df in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

fitted.errors 41

two equivalent ways of extracting the fitted values
fit <- fitted.aovlist(RCBDPen.aov)
fit <- fitted(RCBDPen.aov, error.term = "Blend:Flask")

fitted.errors Extract the fitted values for a fitted model

Description

An alias for the generic function fitted. When it is available, the method fitted.aovlist extracts
the fitted values, which is provided in the dae package to cover aovlist objects.

Usage

S3 method for class 'errors'
fitted(object, error.term=NULL, ...)

Arguments

object An aovlist object created from a call to aov.

error.term The term from the Error function down to which effects are extracted for adding
to the fitted values. The order of terms is as given in the ANOVA table. If
error.term is NULL effects are extracted from all Error terms.

... Further arguments passed to or from other methods.

Value

A numeric vector of fitted values.

Warning

See fitted.aovlist for specific information about fitted values when an Error function is used
in the call to the aov function.

Author(s)

Chris Brien

See Also

fitted.aovlist, resid.errors, tukey.1df in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

42 harmonic.mean

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

three equivalent ways of extracting the fitted values
fit <- fitted.aovlist(RCBDPen.aov)
fit <- fitted(RCBDPen.aov, error.term = "Blend:Flask")
fit <- fitted.errors(RCBDPen.aov, error.term = "Blend:Flask")

get.daeTolerance Gets the value of daeTolerance for the package dae

Description

A function that gets the vector of values such that, in dae functions, values less than it are consid-
ered to be zero.

Usage

get.daeTolerance()

Value

The vector of two values for daeTolerance, one named element.tol that is used for elements of
matrices and a second named element.eigen that is used for eigenvalues and quantities based on
them, such as efficiency factors.

Author(s)

Chris Brien

See Also

set.daeTolerance.

Examples

get daeTolerance.
get.daeTolerance()

harmonic.mean Calcuates the harmonic mean.

Description

A function to calcuate the harmonic mean of a set of nonzero numbers.

Usage

harmonic.mean(x)

interaction.ABC.plot 43

Arguments

x An object from whose elements the harmonic mean is to be computed.

Details

All the elements of x are tested as being less than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5
(about 1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

Value

A numeric. Returns Inf if x contains a value close to zero

Examples

y <- c(seq(0.1,1,0.2))
harmonic.mean(y)

interaction.ABC.plot Plots an interaction plot for three factors

Description

Plots a function (the mean by default) of the response for the combinations of the three factors
specified as the x.factor (plotted on the x axis of each plot), the groups.factor (plotted as sepa-
rate lines in each plot) and the trace.factor (its levels are plotted in different plots). Interaction
plots for more than three factors can be produced by using fac.combine to combine all but two
of them into a single factor that is specified as the trace.factor.

Usage

interaction.ABC.plot(response, x.factor, groups.factor,
trace.factor,data, fun="mean", title="A:B:C Interaction Plot",
xlab, ylab, key.title, lwd=4, columns=2, ggplotFuncs = NULL, ...)

Arguments

response A numeric vector containing the response variable from which a function (the
mean by default) is computed for plotting on the y-axis.

x.factor The factor to be plotted on the x-axis of each plot.

groups.factor The factor plotted as separate lines in each plot.

trace.factor The factor for whose levels there are separate plots.

data A data.frame containing the three factors and the response.

fun The function to be computed from the response for each combination of the
three factors x.factor, groups.factor and trace.factor. By default, the
mean is computed for each combination.

title Title for plot window. By default it is "A:B:C Interaction Plot".

xlab Label for the x-axis. By default it is the name of the x.factor.

ylab Label for the y-axis. By default it is the name of the response.

44 interaction.ABC.plot

key.title Label for the key (legend) to the lines in each plot. By default it is the name of
the groups.factor.

lwd The width of the lines. By default it is 4.

columns The number of columns for arranging the several plots for the levels of the
groups.factor. By default it is 2.

ggplotFuncs A list, each element of which contains the results of evaluating a ggplot func-
tion. It is created by calling the list function with a ggplot function call for
each element.

... Other arguments that are passed down to ggplot methods.

Value

An object of class "ggplot", which can be plotted using print.

Author(s)

Chris Brien

See Also

fac.combine in package dae, interaction.plot.

Examples

Not run:
plot for Example 14.1 from Mead, R. (1990). The Design of Experiments:
Statistical Principles for Practical Application. Cambridge,
Cambridge University Press.
use ?SPLGrass.dat for details
data(SPLGrass.dat)
interaction.ABC.plot(Main.Grass, x.factor=Period,

groups.factor=Spring, trace.factor=Summer,
data=SPLGrass.dat,
title="Effect of Period, Spring and Summer on Main Grass")

plot for generated data
use ?ABC.Interact.dat for data set details
data(ABC.Interact.dat)
Add standard errors for plotting
- here data contains a single value for each combintion of A, B and C
- need to supply name for data twice
ABC.Interact.dat$se <- rep(c(0.5,1), each=4)
interaction.ABC.plot(MOE, A, B, C, data=ABC.Interact.dat,

ggplotFunc=list(geom_errorbar(data=ABC.Interact.dat,
aes(ymax=MOE+se, ymin=MOE-se),
width=0.2)))

End(Not run)

is.allzero 45

is.allzero Tests whether all elements are approximately zero

Description

A single-line function that tests whether all elements are zero (approximately).

Usage

is.allzero(x)

Arguments

x An object whose elements are to be tested.

Details

The mean of the absolute values of the elements of x is tested to determine if it is less than
daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The func-
tion set.daeTolerance can be used to change daeTolerance.

Value

A logical.

Author(s)

Chris Brien

Examples

create a vector of 9 zeroes and a one
y <- c(rep(0,9), 1)

check that vector is only zeroes is FALSE
is.allzero(y)

is.projector Tests whether an object is a valid object of class projector

Description

Tests whether an object is a valid object of class "projector".

Usage

is.projector(object)

Arguments

object The matrix to be made into a projector.

46 mat.ar1

Details

The function is.projector tests whether the object consists of a matrix that is square, symmetric
and idempotent. In checking symmetry and idempotency, the equality of the matrix with either its
transpose or square is tested. In this, a difference in elements is considered to be zero if it is less
than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The
function set.daeTolerance can be used to change daeTolerance.

Value

TRUE or FALSE depending on whether the object is a valid object of class "projector".

Warning

The degrees of freedom are not checked. correct.degfree can be used to check them.

Author(s)

Chris Brien

See Also

projector, correct.degfree in package dae.

projector for further information about this class.

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

check that it is a valid projector
is.projector(proj.m)

mat.ar1 Forms an ar1 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ar1 pattern. The matrix
is banded and has diagonal elements equal to one and the off-diagonal element in the ith row and
jth column equal to ρk where k = |i− j|.

Usage

mat.ar1(rho, order)

Arguments

rho The correlation on the first off-diagonal.

order The order of the matrix to be formed.

mat.ar2 47

Value

A banded correlation matrix whose elements follow an ar1 pattern.

See Also

mat.I, mat.J, mat.exp, mat.banded, mat.ar2, mat.ar3, mat.sar2, mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.ar1(rho=0.4, order=4)

mat.ar2 Forms an ar2 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ar2 pattern. The resulting
matrix is banded.

Usage

mat.ar2(ARparameters, order)

Arguments

ARparameters A numeric containing the three autoregressive parameter values of the process,
being the weights given to the lag 1 and lag 2 response values.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the autoregressive param-
eters, ARparameters. The values in

• the diagonal (k = 1) of corr are one;

• the first subdiagonal band (k = 2) of corr are equal to
ARparameters[1]/(1-ARparameters[2]);

• in subsequent disgonal bands, (k = 3:order), of corr are
ARparameters[1]*corr[k-1] + ARparameters[2]*corr[k-2].

Value

A banded correlation matrix whose elements follow an ar2 pattern.

See Also

mat.I, mat.J, mat.exp, mat.banded, mat.ar1, mat.ar3, mat.sar2, mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.ar2(ARparameters = c(0.4, 0.2), order = 4)

48 mat.ar3

mat.ar3 Forms an ar3 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ar3 pattern. The resulting
matrix is banded.

Usage

mat.ar3(ARparameters, order)

Arguments

ARparameters A numeric containing the three autoregressive parameter values of the process,
being the weights given to the lag 1, lag 2 and lag 3 response values.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the autoregressive param-
eters, ARparameters.
Let omega = 1 - ARparameters[2] - ARparameters[3] * (ARparameters[1] + ARparameters[3]).
Then the values in

• the diagonal of corr (k = 1) are one;

• the first subdiagonal band (k = 2) of corr are equal to
(ARparameters[1] + ARparameters[2]*ARparameters[3]) / omega;

• the second subdiagonal band (k = 3) of corr are equal to
(ARparameters[1] * (ARparameters[1] + ARparameters[3]) +
ARparameters[2] * (1 - ARparameters[2])) / omega;

• the subsequent subdiagonal bands, (k = 4:order), of corr are equal to
ARparameters[1]*corrs[k-1] + ARparameters[2]*corrs[k-2] + ARparameters[3]*corrs[k-3].

Value

A banded correlation matrix whose elements follow an ar3 pattern.

See Also

mat.I, mat.J, mat.banded, mat.exp, mat.ar1, mat.ar2, mat.sar2, mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.ar3(ARparameters = c(0.4, 0.2, 0.1), order = 4)

mat.arma 49

mat.arma Forms an arma correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the arma pattern. The re-
sulting matrix is banded.

Usage

mat.arma(ARparameter, MAparameter, order)

Arguments

ARparameter A numeric value for the autoregressive parameter of the process, being the
weight given to the lag 1 response values.

MAparameter A numeric value for the moving average parameter of the process, being the
weight given to the lag 1 random variable.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the correlation parameters,
ARparameters. The values in

• the diagonal (k = 1) of corr are one;

• the first subdiagonal band (k = 2) of corr are equal to
ARparameters[1]/(1-ARparameters[2]);

• in subsequent disgonal bands, (k = 3:order), of corr are
ARparameters[1]*corr[k-1] + ARparameters[2]*corr[k-2].

Value

A banded correlation matrix whose elements follow an arma pattern.

See Also

mat.I, mat.J, mat.exp, mat.banded, mat.ar1, mat.ar3, mat.sar2, mat.ma1, mat.ma2

Examples

corr <- mat.arma(ARparameter = 0.4, MAparameter = -0.2, order = 4)

50 mat.dirprod

mat.banded Form a banded matrix from a vector of values

Description

Takes the first value in x and places it down the diagonal of the matrix. Takes the second value
in x and places it down the first subdiagonal, both below and above the diagonal of the matrix.
The third value is placed in the second subdiagonal and so on, until the bands for which there are
elements in x have been filled. All other elements in the matrix will be zero.

Usage

mat.banded(x, nrow, ncol)

Arguments

x A numeric containing the values for each band from 1 to the length of x.

nrow The number of rows in the banded matrix being formed.

ncol The number of columns in the banded matrix being formed.

Value

An nrow × ncol matrix.

See Also

matmult, mat.ar1, mat.ar2, mat.ar3, mat.sar2, mat.exp, mat.ma1, mat.ma2, mat.arma mat.I,
mat.J

Examples

m <- mat.banded(c(1,0.6,0.5), 5,5)
m <- mat.banded(c(1,0.6,0.5), 3,4)
m <- mat.banded(c(1,0.6,0.5), 4,3)

mat.dirprod Forms the direct product of two matrices

Description

Form the direct product of them×n matrix A and the p×q matrix B. It is also called the Kroneker
product and the right direct product. It is defined to be the result of replacing each element of A,
aij , with aijB. The result matrix is mp× nq.

The method employed uses the rep function to form twomp×nq matrices: (i) the direct product of
A and J, and (ii) the direct product of J and B, where each J is a matrix of ones whose dimensions
are those required to produce an mp × nq matrix. Then the elementwise product of these two
matrices is taken to yield the result.

mat.dirsum 51

Usage

mat.dirprod(A, B)

Arguments

A The left-hand matrix in the product.
B The right-hand matrix in the product.

Value

An mp× nq matrix.

See Also

matmult, mat.dirprod

Examples

col.I <- mat.I(order=4)
row.I <- mat.I(order=28)
V <- mat.dirprod(col.I, row.I)

mat.dirsum Forms the direct sum of a list of matrices

Description

The direct sum is the partitioned matrices whose diagonal submatrices are the matrices from which
the direct sum is to be formed and whose off-diagonal submatrices are conformable matrices of ze-
roes. The resulting matrix ism×n, wherem is the sum of the numbers of rows of the contributing
matrices and n is the sum of their numbers of columns.

Usage

mat.dirsum(matrices)

Arguments

matrices A list, each of whose component is a matrix.

Value

An m× n matrix.

See Also

mat.dirprod, matmult

Examples

m1 <- matrix(1:4, nrow=2)
m2 <- matrix(11:16, nrow=3)
m3 <- diag(1, nrow=2, ncol=2)
dsum <- mat.dirsum(list(m1, m2, m3))

52 mat.I

mat.exp Forms an exponential correlation matrix

Description

Form the correlation matrix of order equal to the length of coordinates. The matrix has diagonal
elements equal to one and the off-diagonal element in the ith row and jth column equal to ρk where
k = |coordinate[i]− coordinate[j]|.

Usage

mat.exp(rho, coordinates)

Arguments

rho The correlation for points a distance of one apart.

coordinates The coordinates of points whose correlation matrix is to be formed.

Value

A correlation matrix whose elements depend on the power of the absolute distance apart.

See Also

mat.I, mat.J, mat.banded, mat.ar1, mat.ar2, mat.ar3, mat.sar2, mat.ma1, mat.ma2, mat.arma

Examples

corr <- mat.exp(coordinates=c(3:6, 9:12, 15:18), rho=0.1)

mat.I Forms a unit matrix

Description

Form the unit or identity matrix of order order.

Usage

mat.I(order)

Arguments

order The order of the matrix to be formed.

Value

A square matrix whose diagonal elements are one and its off-diagonal are zero.

mat.J 53

See Also

mat.J, mat.ar1

Examples

col.I <- mat.I(order=4)

mat.J Forms a square matrix of ones

Description

Form the square matrix of ones of order order.

Usage

mat.J(order)

Arguments

order The order of the matrix to be formed.

Value

A square matrix all of whose elements are one.

See Also

mat.I, mat.ar1

Examples

col.J <- mat.J(order=4)

mat.ma1 Forms an ma1 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ma1 pattern. The matrix
is banded and has diagonal elements equal to one and subdiagonal element equal to
-MAparameter / (1 + MAparameter*MAparameter).

Usage

mat.ma1(MAparameter, order)

54 mat.ma2

Arguments

MAparameter The moving average parameter, being the weight applied to the lag 1 random
pertubation.

order The order of the matrix to be formed.

Value

A banded correlation matrix whose elements follow an ma1 pattern.

See Also

mat.I, mat.J, mat.exp, mat.banded, mat.ar2, mat.ar3, mat.sar2, mat.ma2, mat.arma

Examples

corr <- mat.ma1(MAparameter=0.4, order=4)

mat.ma2 Forms an ma2 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the ma2 pattern. The result-
ing matrix is banded.

Usage

mat.ma2(MAparameters, order)

Arguments

MAparameters A numeric containing the two moving average parameter values of the process,
being the weights given to the lag 1 and lag 2 random pertubations.

order The order of the matrix to be formed.

Details

The correlations in the correlation matrix, corr say, are calculated from the moving average param-
eters, MAparameters. The values in

• the diagonal (k = 1) of corr are one;

• the first subdiagonal band (k = 2) of corr are equal to
-MAparameters[1]*(1 - MAparameters[2]) / div;

• the second subdiagonal bande (k = 3) of corr are equal to -MAparameters[2] / div;

• in subsequent disgonal bands, (k = 4:order), of corr are zero,

where div = 1 + MMAparameters[1]*MAparameter[1] + MAparameters[2]*MAparameters[2].

Value

A banded correlation matrix whose elements follow an ma2 pattern.

mat.sar2 55

See Also

mat.I, mat.J, mat.exp, mat.banded, mat.ar1, mat.ar3, mat.sar2, mat.ma1, mat.arma

Examples

corr <- mat.ma2(MAparameters = c(0.4, -0.2), order = 4)

mat.sar2 Forms an sar2 correlation matrix

Description

Form the correlation matrix of order order whose correlations follow the sar2 pattern, a pattern
used in crop competition models. The resulting matrix is banded and is a constrained AR3 matrix.

Usage

mat.sar2(gamma, order, print = NULL)

Arguments

gamma A numeric containing the two values of gamma, being parameters linked with
spatial dependence and competition.

order The order of the matrix to be formed.

print A character giving the object to be printed. Currently, only the claculated
values of the ar3parameters can be printed. If NULL, nothing is printed.

Details

The values of the AR3 parameters, phi, are calculated from the gammas as follows:
phi[1] = gamma[1] + 2 * gamma[2]; phi[2] = -gamma[2] * (2*gamma[2] + gamma[1]);
phi[3] = gamma[1] * gamma[2] * gamma[2].

Then the correlations in the correlation matrix, corr say, are calculated from the correlation pa-
rameters, phi. Let omega = 1 - phi[2] - phi[3] * (phi[1] + phi[3]). Then the values
in

• the diagonal of corr (k = 1) are one;

• the first subdiagonal band (k = 2) of corr are equal to (phi[1] + phi[2]*phi[3]) / omega;

• the second subdiagonal band (k = 3) of corr are equal to
(phi[1] * (phi[1] + phi[3]) + phi[2] * (1 - phi[2])) / omega;

• the subsequent subdiagonal bands, (k = 4:order), of corr are equal to
phi[1]*corrs[k-1] + phi[2]*corrs[k-2] + phi[3]*corrs[k-3].

Value

A banded correlation matrix whose elements follow an sar2 pattern.

See Also

mat.I, mat.J, mat.banded, mat.exp, mat.ar1, mat.ar2, mat.ar3, mat.ma1, mat.ma2, mat.arma

56 mat.Vpred

Examples

corr <- mat.sar2(gamma = c(-0.4, 0.2), order = 4)
corr <- mat.sar2(gamma = c(-0.4, 0.2), order = 4, print = "ar3")

mat.Vpred Calculates the variances of a set of predicted effects from a mixed
model

Description

Calculates the variances of a set of predicted effects, given the incidence matrix for the effects to be
predicted and, optionally, a variance matrix of the effects, a incidence matrix for the nuisance fixed
factors and covariates, the variance matrix of the nuisance random effects in the mixed model and
the residual variance matrix.

Usage

mat.Vpred(W, Gg = 0, X = matrix(1, nrow = nrow(W), ncol = 1), Vu = 0, R)

Arguments

W The incidence matrix for the effects to be predicted.

Gg The variance matrix of the effects to be predicted. If the effects to be predicted
are fixed, set to 0.

X The incidence matrix for the nuisance fixed factors and covariates. The default
is a column vector of ones.

Vu The variance matrix of the nuisance random effects. If there are none, set to
zero.

R The residual variance matrix.

Details

The matrix is calculated as
Vpred = t(W) %*% Vinv %*% W + solve(Gg) - A%*%solve(t(X)%*%Vinv%*%X)%*%t(A),
where Vinv = solve(Vu + R) and A = t(W) %*% Vinv %*% X.

Value

A matrix containing the varainces and covariances of the predictions.

Author(s)

Chris Brien

References

Smith, A. B., D. G. Butler, C. R. Cavanagh and B. R. Cullis (2015). Multi-phase variety trials
using both composite and individual replicate samples: a model-based design approach. Journal of
Agricultural Science, 153, 1017-1029.

meanop 57

See Also

Ameasures.

Examples

Reduced example from Smith et al. (2015)
Generate two-phase design
mill.fac <- fac.gen(list(Mrep = 2, Mday = 2, Mord = 3))
field.lay <- fac.gen(list(Frep = 2, Fplot = 4))
field.lay$Variety <- factor(c("D","E","Y","W","G","D","E","M"),

levels = c("Y","W","G","M","D","E"))
start.design <- cbind(mill.fac, field.lay[c(3,4,5,8,1,7,3,4,5,8,6,2),])
rownames(start.design) <- NULL

Set up matrices
W <- model.matrix(~ -1+ Variety, start.design)
ng <- ncol(W)
Gg<- diag(1, ng)
Vu <- with(start.design, fac.vcmat(Mrep, 0.3) +

fac.vcmat(fac.combine(list(Mrep, Mday)), 0.2) +
fac.vcmat(Frep, 0.1) +
fac.vcmat(fac.combine(list(Frep, Fplot)), 0.2))

R <- diag(1, nrow(start.design))

Caluclate information matrix
Vp <- mat.Vpred(W = W, Gg = Gg, Vu = Vu, R = R)

meanop computes the projection matrix that produces means

Description

Replaced by fac.meanop.

mpone Converts the first two levels of a factor into the numeric values -1 and
+1

Description

Converts the first two levels of a factor into the numeric values -1 and +1.

Usage

mpone(factor)

Arguments

factor The factor to be converted.

58 no.reps

Value

A numeric vector.

Warning

If the factor has more than two levels they will be coerced to numeric values.

Author(s)

Chris Brien

See Also

mpone in package dae, factor, relevel.

Examples

generate all combinations of two two-level factors
mp <- c("-", "+")
Frf3.trt <- fac.gen(list(A = mp, B = mp))

add factor C, whose levels are the products of the levles of A and B
Frf3.trt$C <- factor(mpone(Frf3.trt$A)*mpone(Frf3.trt$B), labels = mp)

no.reps Computes the number of replicates for an experiment

Description

Computes the number of pure replicates required in an experiment to achieve a specified power.

Usage

no.reps(multiple=1., df.num=1.,
df.denom=expression((df.num + 1.) * (r - 1.)), delta=1.,
sigma=1., alpha=0.05, power=0.8, tol=0.1, print=FALSE)

Arguments

multiple The multiplier, m, which when multiplied by the number of pure replicates of a
treatment, r, gives the number of observations rm used in computing means for
some, not necessarily proper, subset of the treatment factors; m is the replica-
tion arising from other treatment factors. However, for single treatment factor
experiments the subset can only be the treatment factor and m = 1.

df.num The degrees of freedom of the numerator of the F for testing the term involving
the treatment factor subset.

df.denom The degrees of freedom of the denominator of the F for testing the term involv-
ing the treatment factor subset.

delta The true difference between a pair of means for some, not necessarily proper,
subset of the treatment factors.

sigma The population standard deviation.

power.exp 59

alpha The significance level to be used.
power The minimum power to be achieved.
tol The maximum difference tolerated between the power required and the power

computed in determining the number of replicates.
print TRUE or FALSE to have or not have a table of power calculation details printed

out.

Value

A list containing nreps, a single numeric value containing the computed number of pure repli-
cates, and power, a single numeric value containing the power for the computed number of pure
replicates.

Author(s)

Chris Brien

See Also

power.exp, detect.diff in package dae.

Examples

Compute the number of replicates (blocks) required for a randomized
complete block design with four treatments.
no.reps(multiple = 1, df.num = 3,

df.denom = expression(df.num * (r - 1)), delta = 5,
sigma = sqrt(20), print = TRUE)

power.exp Computes the power for an experiment

Description

Computes the power for an experiment.

Usage

power.exp(rm=5., df.num=1., df.denom=10., delta=1., sigma=1.,
alpha=0.05, print=FALSE)

Arguments

rm The number of observations used in computing a mean.
df.num The degrees of freedom of the numerator of the F for testing the term involving

the means.
df.denom The degrees of freedom of the denominator of the F for testing the term involv-

ing the means.
delta The true difference between a pair of means.
sigma The population standard deviation.
alpha The significance level to be used.
print TRUE or FALSE to have or not have a table of power calculation details printed

out.

60 print.projector

Value

A single numeric value containing the computed power.

Author(s)

Chris Brien

See Also

no.reps, detect.diff in package dae.

Examples

Compute power for a randomized complete block design with four treatments
and five blocks.
rm <- 5
power.exp(rm = rm, df.num = 3, df.denom = 3 * (rm - 1), delta = 5,

sigma = sqrt(20),print = TRUE)

print.projector Print projectors

Description

Print an object of class "projector", displaying the matrix and its degrees of freedom (rank).

Usage

S3 method for class 'projector'
print(x, ...)

Arguments

x The object of class "projector" to be printed.

... Further arguments passed to or from other methods.

Author(s)

Chris Brien

See Also

print, print.default, show.

projector for further information about this class.

print.summary.p2canon 61

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

print the object either using the Method function, the generic function or show
print.projector(proj.m)
print(proj.m)
proj.m

print.summary.p2canon Prints the values in an summary.p2canon object

Description

Prints a summary.p2canon object, which is also a data.frame, in a pretty format.

Usage

S3 method for class 'summary.p2canon'
print(x, ...)

Arguments

x A summary.p2canon object.

... further arguments passed to print.

Value

No value is returned.

See Also

summary.p2canon

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain projectors using projs.structure
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and print summary

62 print.summary.pcanon

unit.trt.p2canon <- projs.2canon(Q.unit, Q.trt)
summ <- summary(unit.trt.p2canon)
print(summ)

print.summary.pcanon Prints the values in an summary.pcanon object

Description

Prints a summary.pcanon object, which is also a data.frame, in a pretty format.

Usage

S3 method for class 'summary.pcanon'
print(x, ...)

Arguments

x A summary.pcanon object.

... further arguments passed to print.

Value

No value is returned.

See Also

summary.pcanon

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain combined decomposition and summarize
unit.trt.canon <- projs.canon(list(unit=~ Block/Unit, trt=~ trt), data = PBIBD2.lay)
summ <- summary(unit.trt.canon, which = c("aeff","eeff","order"))
print(summ)

proj2.combine 63

proj2.combine Compute the projection and Residual operators for two, possibly
nonorthogonal, projectors

Description

The canonical relationship between a pair of projectors is established by decomposing the range
of Q1 into a part that pertains to Q2 and a part that is orthogonal to Q2. It also produces the
nonzero canonical efficiency factors for the joint decomposition of Q1 and Q and the corresponding
eigenvectors of Q1 (James and Wilkinson, 1971). Q1 and Q2 may be nonorthogonal.

Usage

proj2.combine(Q1, Q2)

Arguments

Q1 A symmetric projector whose range is to be decomposed.

Q2 A symmetric projector whose range in Q1 is required.

Details

The nonzero canonical efficiency factors are the nonzero eigenvalues of Q1 %*% Q2 %*% Q1 (James
and Wilkinson, 1971). An eigenvalue is regarded as zero if it is less than daeTolerance, which is
initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance
can be used to change daeTolerance.

The eigenvectors are the eigenvectors of Q1 corresponding to the nonzero canonical efficiency
factors. The eigenvectors for Q2 can be obtained by premultiplying those for Q1 by Q2.

Qres is computed using equation 4.10 from James and Wilkinson (1971), if the number of distinct
canonical efficiency factors is less than 10. If this fails to produce a projector or the number of
distinct canonical efficiency factors is 10 or more, equation 5.3 of Payne and Tobias (1992) is used
to obtain Qres. In this latter case, Qres = Q1 - Q1 %*% ginv(Q2 %*% Q1 %*% Q2) %*% Q1.
Qconf is obtained by subtracting Qres from Q1.

Value

A list with the following components:

1. efficiencies: a vector containing the nonzero canonical efficiency factors;

2. eigenvectors: an n x r matrix, where n is the order of the projectors and r is the number of
nonzero canonical efficiency factors; it contains the eigenvectors of Q1 corresponding to the
nonzero canonical efficiency factors.

3. Qconf: a projector onto the part of the range of Q1 with which Q2 is confounded;

4. Qres: a projector onto the part of the range of Q1 that is orthogonal to the range of Q2.

Author(s)

Chris Brien

64 proj2.efficiency

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279–294.

Payne, R. W. and R. D. Tobias (1992). General balance, combination of information and the analysis
of covariance. Scandinavian Journal of Statistics, 19, 3–23.

See Also

proj2.eigen, proj2.efficiency, decomp.relate in package dae.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

obtain sets of projectors
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

obtain the projection operators for the interblock analysis
PBIBD2.Bops <- proj2.combine(Q.unit[["Block:Unit"]], Q.trt[["trt"]])
Q.B.T <- PBIBD2.Bops$Qconf
Q.B.res <- PBIBD2.Bops$Qres

demonstrate their orthogonality
is.allzero(Q.B.T %*% Q.B.res)

proj2.efficiency Computes the canonical efficiency factors for the joint decomposition
of two projectors

Description

Computes the canonical efficiency factors for the joint decomposition of two projectors (James and
Wilkinson, 1971).

Usage

proj2.efficiency(Q1, Q2)

Arguments

Q1 An object of class "projector".

Q2 An object of class "projector".

proj2.eigen 65

Details

The nonzero canonical efficiency factors are the nonzero eigenvalues of Q1 %*% Q2 %*% Q1
(James and Wilkinson, 1971). An eigenvalue is regarded as zero if it is less than daeTolerance,
which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance
can be used to change daeTolerance.

Value

A vector containing the nonzero canonical efficiency factors.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

efficiency.criteria, proj2.eigen, proj2.combine in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

obtain sets of projectors
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

save intrablock efficiencies
eff.intra <- proj2.efficiency(Q.unit[["Block"]], Q.trt[["trt"]])

proj2.eigen Canonical efficiency factors and eigenvectors in joint decomposition
of two projectors

Description

Computes the canonical efficiency factors for the joint decomposition of two projectors and the
eigenvectors corresponding to the first projector (James and Wilkinson, 1971).

66 proj2.eigen

Usage

proj2.eigen(Q1, Q2)

Arguments

Q1 An object of class "projector".

Q2 An object of class "projector".

Details

The component efficiencies is a vector containing the nonzero canonical efficiency factors for the
joint decomposition of the two projectors. The nonzero canonical efficiency factors are the nonzero
eigenvalues of Q1 %*% Q2 %*% Q1 (James and Wilkinson, 1971). An eigenvalue is regarded as
zero if it is less than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about
1.5E-08). The function set.daeTolerance can be used to change daeTolerance.

The component eigenvectors is an n x r matrix, where n is the order of the projectors and r is the
number of nonzero canonical efficiency factors; it contains the eigenvectors of Q1 corresponding to
the nonzero canonical efficiency factors. The eigenvectors for Q2 can be obtained by premultiplying
those for Q1 by Q2.

Value

A list with components efficiencies and eigenvectors.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

proj2.efficiency, proj2.combine in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

obtain sets of projectors
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

obtain intra- and inter-block decompositions

projector 67

decomp.inter <- proj2.eigen(Q.unit[["Block"]], Q.trt[["trt"]])
decomp.intra <- proj2.eigen(Q.unit[["Block:Unit"]], Q.trt[["trt"]])

#extract intrablock efficiencies
decomp.intra$efficiencies

projector Create projectors

Description

The class "projector" is the subclass of the class "matrix" in which matrices are square, symmet-
ric and idempotent.

The function projector tests whether a matrix satisfies these criteria and if it does creates a
"projector" object, computing the projector’s degrees of freedom and adding them to the object.

Usage

projector(Q)

Arguments

Q The matrix to be made into a projector.

Details

In checking that the matrix is square, symmetric and idempotent, the equality of the matrix with
either its transpose or square is tested. In this, a difference in elements is considered to be zero if it
is less than daeTolerance, which is initially set to .Machine$double.eps ^ 0.5 (about 1.5E-08).
The function set.daeTolerance can be used to change daeTolerance.

Value

An object of Class "projector" that consists of a square, summetric, idempotent matrix and de-
grees of freedom (rank) of the matrix.

Author(s)

Chris Brien

See Also

degfree, correct.degfree in package dae.

projector for further information about this class.

68 projector-class

Examples

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

check that it is a valid projector
is.projector(proj.m)

projector-class Class projector

Description

The class "projector" is the subclass of matrices that are square, symmetric and idempotent.

is.projector is the membership function for this class.

degfree is the extractor function for the degrees of freedom and degfree<- is the replacement
function.

correct.degfree checks whether the stored degrees of freedom are correct.

Objects from the Class

An object of class "projector" consists of a square, symmetric, idempotent matrix along with its
degrees of freedom (rank).

Objects can be created by calls of the form new("projector", data, nrow, ncol, byrow, dimnames, ...).
However, this does not add the degrees of freedom to the object. These can be added using the re-
placement function degfree<-. Alternatively, the function projector creates the new object from
a matrix, adding its degrees of freedom at the same time.

Slots

.Data: Object of class "matrix"

degfree: Object of class "integer"

Extends

Class "matrix", from data part. Class "array", by class "matrix", distance 2. Class "structure",
by class "matrix", distance 3. Class "vector", by class "matrix", distance 4, with explicit coerce.

Methods

coerce signature(from = "projector", to = "matrix")

print signature(x = "projector")

show signature(object = "projector")

Author(s)

Chris Brien

projs.2canon 69

See Also

projector, degfree, correct.degfree in package dae.

Examples

showClass("projector")

set up a 2 x 2 mean operator that takes the mean of a vector of 2 values
m <- matrix(rep(0.5,4), nrow=2)

create an object of class projector
proj.m <- projector(m)

check that it is a valid projector
is.projector(proj.m)

create a projector based on the matrix m
proj.m <- new("projector", data=m)

add its degrees of freedom and print the projector
degfree(proj.m) <- proj.m

projs.2canon A canonical analysis of the relationships between two sets of projec-
tors

Description

Computes the canonical efficiency factors for the joint decomposition of two structures or sets of
mutually orthogonally projectors (Brien and Bailey, 2009), orthogonalizing projectors in the Q2
list to those earlier in the list of projectors with which they are partially aliased. The results can
be summarized in the form of a skeleton ANOVA table.

Usage

projs.2canon(Q1, Q2)

Arguments

Q1 A list whose components are objects of class "projector".

Q2 A list whose components are objectsof class "projector".

Details

Two loops, one nested within the other. are performed. The first cycles over the components
of Q1 and the nested loop cycles over the components of Q2. The joint decomposition of the
two projectors in each cycle, one from Q1 (say Q1[[i]]) and the other from Q2 (say Q2[[j]])
is obtained using proj2.combine. In particular, the nonzero canonical efficiency factors for the
joint decomposition of the two projectors is obtained. The nonzero canonical efficiency factors
are the nonzero eigenvalues of Q1[[i]] %*% Q2[[j]] %*% Q1[[i]] (James and Wilkinson,
1971). An eigenvalue is regarded as zero if it is less than daeTolerance, which is initially set to

70 projs.2canon

.Machine$double.eps ^ 0.5 (about 1.5E-08). The function set.daeTolerance can be used to
change daeTolerance.

However, a warning occurs if any pair of Q2 projectors (say Q2[[j]] and Q2[[k]]) do not have
adjusted orthgonality with respect to any Q1 projector (say Q1[[i]]), because they are partially
aliased. That is, if Q2[[j]] %*% Q1[[i]] %*% Q2[[k]] is nonzero for any pair of
different Q2 projectors and any Q1 projector. When it is nonzero, the projector for the later term in
the list of projectors is orthogonalized to the projector that is earlier in the list.

Value

A list of class p2canon. It has a component for each component of Q1. Each of the components
for Q1 is a list; its components are one for each component of Q2 and a component Pres. Each
of the Q2 components is a list of three components: pairwise, adjusted and Qproj. These
components are based on an eigenalysis of the relationship between the projectors for the parent
Q1 and Q2 components. Each pairwise component is based on the nonzero canonical efficiency
factors for the joint decomposition of the two parent projectors (see proj2.eigen). An adjusted
component is based on the nonzero canonical efficiency factors for the joint decomposition of the
Q1 component and the Q2 component, the latter adjusted for all Q2 projectors that have occured
previously in the list. The Qproj component is the adjusted projector for the parent Q2 compo-
nent. The pairwise and adjusted components have the following components: efficiencies,
aefficiency, mefficiency, sefficiency, eefficiency, xefficiency, order and dforthog –
for details see efficiency.criteria.

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

summary.p2canon, efficiencies.p2canon, projs.combine.p2canon, projs.structure ,
proj2.efficiency, proj2.combine, proj2.eigen, efficiency.criteria in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain projectors using projs.structure
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

projs.canon 71

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(Q.unit, Q.trt)
summary(unit.trt.p2canon)

projs.canon A canonical analysis of the relationships between sets of projectors

Description

Computes the canonical efficiency factors for the joint decomposition of two or more structures or
sets of mutually orthogonally projectors (Brien and Bailey, 2009; Brien, 2016a,b), orthogonalizing
projectors in a set to those earlier in the set of projectors with which they are partially aliased.
The results can be summarized in the form of a decomposition table which shows the confounding
between sources from different sets.

Usage

projs.canon(formulae, orthogonalize = "differencing", meanTerm = FALSE,
which.criteria = c("aefficiency","eefficiency","order"),
omit.projectors = c("p2canon", "combined"), data = NULL, ...)

Arguments

formulae An object of class list whose components are of class formula.

orthogonalize A string indicating the method for orthogonalizing a projector to those for terms
that occurred previously in the formula. Two options are available: differencing;
eigenmethods. If a single value is given, it is used for all formulae.

meanTerm A logical indicating whether the projector for the grand mean is to be included
for each structure.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary of aliasing between terms within a structure. It can be none, all or some
combination of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no sum-
mary is printed.

omit.projectors

A character vector of the types of projectors to omit from the returned
pcanon object. If pcanon is included in the vector then the projectors in these
objects will be replaced with a numeric containing their degrees of freedom. If
combined is included in the vector then the projectors for the combined decom-
position will be replaced with a numeric containing their degrees of freedom. If
none is included in the vector then no projectors will be omitted.

data A data frame contains the values of the factors and variables that occur in
formulae.

... further arguments passed to terms.

72 projs.canon

Details

For each formula supplied in formulae, the set of projectors is obtained using projs.structure;
there is one projector for each term in a formula. Then projs.2canon is used to perform an analysis
of the canonical relationships between two sets of projectors for the first two formulae. If there are
further formulae, the relationships between its projectors and the already established decomposition
is obtained using projs.2canon. The core of the analysis is the determination of eigenvalues of
the product of pairs of projectors using the results of James and Wilkinson (1971). However, if the
order of balance between two projection matrices is 10 or more or the James and Wilkinson (1971)
methods fails to produce an idempotent matrix, equation 5.3 of Payne and Tobias (1992) is used to
obtain the projection matrices for their joint decompostion.

Value

A list of class pcanon. It has as many components as there are formulae. The first component is
the joint decomposition of two structures derived from the first two formulae, being the p2canon
object produced by projs.2canon. Then there is a component for each further formulae that con-
tains the p2canon object obtained by applying projs.2canon to the structure for a formula and the
already established joint decomposition of the structures for the previous formulae in the formulae.
The last component contains the the list of the projectors that give the combined canonical de-
composition derived from the formulae.

Author(s)

Chris Brien

References

Brien, C. J. (2016a) Multiphase experiments in practice, with an emphasis on nonorthogonal de-
signs. I. A look back. submitted to the Australian & New Zealand Journal of Statistics.

Brien, C. J. (2016a) Multiphase experiments in practice, with an emphasis on nonorthogonal de-
signs. II. Developments. submitted to the Australian & New Zealand Journal of Statistics.

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

Payne, R. W. and R. D. Tobias (1992). General balance, combination of information and the analysis
of covariance. Scandinavian Journal of Statistics, 19, 3-23.

See Also

summary.pcanon, efficiencies.pcanon, projs.2canon, projs.structure ,
proj2.efficiency, proj2.combine, proj2.eigen, efficiency.criteria, in package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

projs.combine.p2canon 73

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain combined decomposition and summarize
unit.trt.canon <- projs.canon(list(unit=~ Block/Unit, trt=~ trt), data = PBIBD2.lay)
summary(unit.trt.canon, which = c("aeff","eeff","order"))

Three-phase sensory example from Brien and Payne (1999)
Not run: data(Sensory3Phase.dat)

Eval.Field.Treat.canon <- projs.canon(list(
eval=~ ((Occasions/Intervals/Sittings)*Judges)/Positions,

field=~ (Rows*(Squares/Columns))/Halfplots,
treats=~ Trellis*Method), data=Sensory3Phase.dat)

summary(Eval.Field.Treat.canon, which.criteria =c("aefficiency", "order"))

End(Not run)

projs.combine.p2canon Extract, from a p2canon object, the projectors that give the combined
canonical decomposition

Description

Extracts, from a p2canon object obtained using projs.2canon, the projectors that give the com-
bined canonical decomposition of two sets of projectors (Brien and Bailey, 2009).

Usage

projs.combine.p2canon(object)

Arguments

object A list of class p2canon produced by projs.2canon.

Value

A list, each of whose components is a projector in the decomposition.

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

projs.2canon, proj2.eigen, proj2.combine in package dae.

projector for further information about this class.

74 projs.structure

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

obtain sets of projectors
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition
unit.trt.p2canon <- projs.2canon(Q.unit, Q.trt)
UcombineT <- projs.combine.p2canon(unit.trt.p2canon)

projs.structure orthogonalized projectors for the terms in a formula

Description

Produces a set of mutually orthogonal projectors, one for each term in the formula. These are used to
specify a structure, or an orthogonal decomposition of the data space. Firstly, the primary projector
X(X′X)−X′, where X is the design matrix for the term, is calculated for each term. Then each
projector is made orthogonal to terms aliased with it, either by differencing or eigenmethods.
Differencing relies on comparing the factors involved in two terms to identify which of the terms
previous to a term in the expanded formula may be partially aliased with it; eigenmethods forces
the orthogonal projector for a term to be orthogonal to all terms previous to it in the expanded
formula.

Usage

projs.structure(formula, orthogonalize = "differencing", meanTerm = FALSE,
which.criteria = c("aefficiency","eefficiency","order"),
data = NULL, ...)

Arguments

formula An object of class formula from which the terms will be obtained.

orthogonalize A string indicating the method for orthogonalizing a projector to those for terms
that occurred previously in the formula. Two options are available: differencing;
eigenmethods.

meanTerm A logical indicating whether the projector for the grand mean is to be included
in the set produced.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary of aliasing between terms. It can be none, all or some combination
of aefficiency, mefficiency, sefficiency, eefficiency, xefficiency,
order and dforthog – for details see efficiency.criteria. If none, no sum-
mary is printed.

projs.structure 75

data A data frame contains the values of the factors and variables that occur in
formula.

... further arguments passed to terms.

Details

In orthogonalizing a projector to others in the set, the differencing method subtracts from a
primary projector each orthogonalized projector for a term whose factors/variables are a subset of
its factors/variables. This relies on ensuring that all projectors whose factors/variables are a subset
of the current projector occur before it in the expanded formula. It is checked that the set of matrices
are mutually orthogonal. If they are not then a warning is given. It may happen that differencing
does not produce a projector, in which case eigenmethods must be used.

The eigenmethods uses equation 4.10 of James and Wilkinson (1971), which involves calculating
the canonical efficiency factors for pairs of primary projectors. The latter method forces each pro-
jector to be orthogonal to all terms previous to it in the expanded formula and produces a table of
efficiency criteria for partially aliased terms.

Value

A list with a component for each term in the formula, the component containing the orthogonal-
ized projector for the term.

Author(s)

Chris Brien

References

James, A. T. and Wilkinson, G. N. (1971) Factorization of the residual operator and canonical
decomposition of nonorthogonal factors in the analysis of variance. Biometrika, 58, 279-294.

See Also

proj2.efficiency, proj2.combine, proj2.eigen, projs.2canon in package dae,
eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

manually obtain projectors for units
Q.G <- projector(matrix(1, nrow=24, ncol=24)/24)
Q.B <- projector(fac.meanop(PBIBD2.lay$Block) - Q.G)
Q.BP <- projector(diag(1, nrow=24) - Q.B - Q.G)

manually obtain projector for trt

76 qqyeffects

Q.T <- projector(fac.meanop(PBIBD2.lay$trt) - Q.G)

##compute intrablock efficiency criteria
effic <- proj2.efficiency(Q.BP, Q.T)
effic
efficiency.criteria(effic)

##obtain projectors using projs.structure
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(Q.unit, Q.trt)
summary(unit.trt.p2canon, which = c("aeff","eeff","order"))

qqyeffects Half or full normal plot of Yates effects

Description

Produces a half or full normal plot of the Yates effects from a 2k factorial experiment.

Usage

qqyeffects(aov.obj, error.term="Within", data=NULL, pch=16,
full=FALSE, ...)

Arguments

aov.obj An aov object or aovlistobject created from a call to aov.

error.term The term from the Error function from which the Yates effects are estimated.
Only required when Error used in call to aov.

data A data.frame in which the variables specified in the aov.obj will be found. If
missing, the variables are searched for in the standard way.

pch The number of a plotting symbol to be drawn when plotting points (use help(points)
for details).

full whether a full or half normal plot is to be produced. The default is for a half-
normal plot; full=TRUE produces a full normal plot.

... Further graphical parameters may be specified (use help(par) for possibilities.

Details

A half or full normal plot of the Yates effects is produced. You will be able to interactively select
effects to be labelled (click reasonably close to the point and on the side where you want the label
placed). Right click on the graph and select Stop when you have finished labelling effects. A
regression line fitted to the unselected effects and constrained to go through the origin is plotted.
Also, a list of the labelled effects, if any, are printed to standard ouptut.

Value

Returns, invisibly, a list with components x and y, giving coordinates of the plotted points.

resid.errors 77

Author(s)

Chris Brien

See Also

yates.effects in package dae, qqnorm.

Examples

analysis of 2^4 factorial experiment from Table 10.6 of Box, Hunter and
Hunter (1978) Statistics for Experimenters. New York, Wiley.
use ?Fac4Proc.dat for data set details
data(Fac4Proc.dat)
Fac4Proc.aov <- aov(Conv ~ Catal * Temp * Press * Conc + Error(Runs),

Fac4Proc.dat)
qqyeffects(Fac4Proc.aov, error.term="Runs", data=Fac4Proc.dat)

resid.errors Extract the residuals for a fitted model

Description

An alias for the generic function residuals. When it is available, the method residuals.aovlist
extracts residuals, which is provided in the package dae to cover aovlist objects.

Usage

resid.errors(...)

Arguments

... Arguments passed to residuals.aovlist.

Value

A numeric vector containing the residuals.

Note

See residuals.aovlist for specific information about the residuals when an Error function is
used in the call to the aov function.

Author(s)

Chris Brien

See Also

fitted.errors, residuals.aovlist, tukey.1df in package dae.

78 residuals.aovlist

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

two equivalent ways of extracting the residuals
res <- residuals.aovlist(RCBDPen.aov)
res <- residuals(RCBDPen.aov, error.term = "Blend:Flask")
res <- resid.errors(RCBDPen.aov)

residuals.aovlist Extract the residuals from an aovlist object

Description

Extracts the residuals from error.term or, if error.term is not specified, the last error.term in
the analysis. It is a method for the generic function residuals.

Usage

S3 method for class 'aovlist'
residuals(object, error.term=NULL, ...)

Arguments

object An aovlist object created from a call to aov.

error.term The term from the Error function for which the residuals are to be extracted. If
error.term is NULL the residuals are extracted from the last Error term.

... Further arguments passed to or from other methods.

Value

A numeric vector containing the residuals.

Author(s)

Chris Brien

See Also

fitted.errors, resid.errors, tukey.1df in package dae.

rmvnorm 79

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

two equivalent ways of extracting the residuals
res <- residuals.aovlist(RCBDPen.aov)
res <- residuals(RCBDPen.aov, error.term = "Blend:Flask")

rmvnorm generates a vector of random values from a multivariate normal dis-
tribution

Description

Generates a vector of random values from an n-dimensional multivariate normal distribution whose
mean is given by the n-vector mean and variance by the n x n symmetric matrix V. It uses the method
described by Ripley (1987, p.98)

Usage

rmvnorm(mean, V, method = 'eigenanalysis')

Arguments

mean The mean vector of the multivariate normal distribution from which the random
values are to be generated.

V The variance matrix of the multivariate normal distribution from which the ran-
dom values are to be generated.

method The method used to decompose the variance matrix in producing a a matrix
to transform the iid standard normal values. The two methods available are
'eigenanalysis' and 'choleski', where only the first letter of each option is
obligatory. The default method is eigenanalysis, which is slower but is likely to
be more stable than Choleski decomposition.

Details

The method is: a) uses either the eigenvalue or Choleski decomposition of the variance matrix, V,
to form the matrix that transforms an iid vector of values to a vector with variance V; b) generate
a vector of length equal to mean of standard normal values; c) premultiply the vector of standard
normal values by the transpose of the upper triangular factor and, to the result, add mean.

Value

A vector of length n, equal to the length of mean.

80 Sensory3Phase.dat

Author(s)

Chris Brien

References

Ripley, B. D. (1987) Stochastic simulation. Wiley, New York.

See Also

fac.ar1mat, fac.vcmat, in package dae, rnorm, and chol.

Examples

set up a two-level factor and a three-level factor, both of length 12
A <- factor(rep(1:2, each=6))
B <- factor(rep(1:3, each=2, times=2))

generate random values from a multivariate normal for which
#the mean is 20 for all variables and
#the variance matrix has random effects for factor A, ar1 pattern for B and
#residual random variation
mean <- rep(20, 12)
V <- fac.vcmat(A, 5) + fac.ar1mat(B, 0.6) + 2*mat.I(12)
y <- rmvnorm(mean, V)

Sensory3Phase.dat Data for the three-pahse sensory evaluation experiment in Brien, C.J.
and Payne, R.W. (1999)

Description

The data is from an experiment involved two phases. In the field phase a viticultural experiment
was conducted to investigate the differences between 4 types of trellising and 2 methods of pruning.
The design was a split-plot design in which the trellis types were assigned to the main plots using
two adjacent Youden squares of 3 rows and 4 columns. Each main plot was split into two subplots
(or halfplots) and the methods of pruning assigned at random independently to the two halfplots in
each main plot. The produce of each halfplot was made into a wine so that there were 24 wines
altogether.

The second phase was an evaluation phase in which the produce from the halplots was evaluated by
6 judges all of whom took part in 24 sittings. In the first 12 sittings the judges evaluated the wines
made from the halfplots of one square; the final 12 sittings were to evaluate the wines from the other
square. At each sitting, each judge assessed two glasses of wine from each of the halplots of one of
the main plots. The main plots allocated to the judges at each sitting were determined as follows.
For the allocation of rows, each occasion was subdivided into 3 intervals of 4 consecutive sittings.
During each interval, each judge examined plots from one particular row, these being determined
using two 3x3 Latin squares for each occasion, one for judges 1-3 and the other for judges 4-6.
At each sitting judges 1-3 examined wines from one particular column and judges 4-6 examined
wines from another column. The columns were randomized to the 2 sets of judges x 3 intervals x 4
sittings using duplicates of a balanced incomplete block design for v=4 and k=2 that were latinized.
This balanced incomplete block design consists of three sets of 2 blocks, each set containing the 4
"treatments". For each interval, a different set of 2 blocks was taken and each block assigned to two

set.daeTolerance 81

sittings, but with the columns within the block placed in reverse order in one sitting compared to
the other sitting. Thus, in each interval, a judge would evaluate a wine from each of the 4 columns.

The data.frame contains the following factors, in the order give: Occasion, Judges, Interval, Sit-
tings, Position, Squares, Rows, Columns, Halfplot, Trellis, Method. They are followed by the
simulated response variable Score.

The scores are ordered so that the factors Occasion, Judges, Interval, Sittings and Position are in
standard order; the remaining factors are in randomized order.

Usage

data(Sensory3Phase.dat)

Format

A data.frame containing 576 observations of 12 variables.

References

Brien, C.J. and Payne, R.W. (1999) Tiers, structure formulae and the analysis of complicated exper-
iments. The Statistician, 48, 41-52.

set.daeTolerance Sets the values of daeTolerance for the package dae

Description

A function that sets the values such that, in dae functions, values less than it are considered to be
zero. The values are stored in a vector named daeTolerance in the daeEnv environment. The
vector is of length two and, initially, both values are set to .Machine$double.eps ^ 0.5 (about
1.5E-08). One value is named element.tol and is used for elements of matrices; the second is
named element.eigen and is used for eigenvalues and quantities based on them, such as efficiency
factors.

Usage

set.daeTolerance(element.tol=NULL, eigen.tol=NULL)

Arguments

element.tol The value to to which the first element of the daeTolerance vector is to be set.
If more than one value is supplied, only the first value is used.

eigen.tol The value to to which the second element of the daeTolerance vector is to be
set. If more than one value is supplied, only the first value is used.

Value

The vector daeTolerance is returned invisibly.

Author(s)

Chris Brien

82 SPLGrass.dat

See Also

get.daeTolerance.

Examples

set daeTolerance.
set.daeTolerance(1E-04, 1E-08)

show-methods Methods for Function show in Package dae

Description

Methods for function show in Package dae

Methods

signature(object = "projector") Prints the matrix and its degrees of freedom.

See Also

projector for further information about this class.

SPLGrass.dat Data for an experiment to investigate the effects of grazing patterns on
pasture composition

Description

The response variable is the percentage area covered by the principal grass (Main.Grass). The
design for the experiment is a split-unit design. The main units are arranged in 3 Rows x 3 Columns.
Each main unit is split into 2 SubRows x 2 SubColumns.

The factor Period, with levels 3, 9 and 18 days, is assigned to the main units using a 3 x 3 Latin
square. The two-level factors Spring and Summer are assigned to split-units using a criss-cross
design within each main unit. The levels of each of Spring and Summer are two different grazing
patterns in its season.

Usage

data(SPLGrass.dat)

Format

A data.frame containing 36 observations of 8 variables.

Source

Example 14.1 from Mead, R. (1990). The Design of Experiments: Statistical Principles for Practi-
cal Application. Cambridge, Cambridge University Press.

strength 83

strength Generate paper strength values

Description

Generates paper strength values for an experiment with different temperatures.

Usage

strength(nodays, noruns, temperature, ident)

Arguments

nodays The number of days over which the experiment is to be run.

noruns The number of runs to be performed on each day of the experiment.

temperature A factor that encapsulates the layout by giving the temperature to be investi-
gated for each run on each day. These must be ordered so that the temperatures
for the first day are given in the order in which they are to be investigated on that
day. These must be followed by the noruns temperatures for the second day and
so on. Consequently, the factor temperature will have nodays*noruns values.

ident The digits of your student identity number. That is, leave out any letters.

Value

A data.frame object containing the factors day, run and temperature and a vector of the gener-
ated strengths.

Author(s)

Chris Brien

Examples

Here temperature is a factor with 4*3 = 12 values whose
first 3 values specify the temperatures to be applied in
the 3 runs on the first day, values 4 to 6 specify the
temperatures for the 3 runs on day 2, and so on.
temperature <- factor(rep(c(80,85,90), 4))
exp.strength <- strength(nodays = 4, noruns = 3,

temperature = temperature, ident = 0123456)

In this second example, a completely randomized design is generated
for the same 3 temperatures replicated 4 times. The layout is stored
in the data.frame called Design.
Design <- fac.layout(unrandomized=list(runs = 12),

randomized = temperature,
seed = 5847123)

eradicate the unrandomized version of temperature
remove("temperature")

The 12 temperatures in Design are to be regarded as being assigned to
days and runs in the same manner as for the first example.

84 summary.p2canon

exp.strength <- strength(nodays = 4, noruns = 3,
temperature = Design$temperature, ident = 0123456)

summary.p2canon Summarize a canonical analysis of the relationships between two sets
of projectors

Description

Produces a summary of the efficiency criteria computed from the canonical efficiency factors for the
joint decomposition of two sets of projectors (Brien and Bailey, 2009) obtained using projs.2canon.
It takes the form of a decomposition or skeleton ANOVA table.

Usage

S3 method for class 'p2canon'
summary(object, which.criteria = c("aefficiency", "eefficiency", "order"), ...)

Arguments

object A list of class p2canon produced by projs.2canon.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary. It can be none, all or some combination of aefficiency, mefficiency,
sefficiency, eefficiency, xefficiency, order and dforthog – for details
see efficiency.criteria.

... further arguments affecting the summary produced.

Value

An object of classes summary.p2canon and data.frame, whose rows correspond to the pairs of
projectors, one from the Q1 argument and the other from the Q2 argument from projs.2canon;
only pairs with non-zero efficiency factors are included. In addition, a line is included for each
nonzero Residual Q1 projector.

Author(s)

Chris Brien

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

projs.2canon, proj2.efficiency, efficiency.criteria, proj2.combine, proj2.eigen, projs.structure,
print.summary.p2canonin package dae, eigen.

projector for further information about this class.

summary.pcanon 85

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain projectors using projs.structure
Q.unit <- projs.structure(~ Block/Unit, data = PBIBD2.lay)
Q.trt <- projs.structure(~ trt, data = PBIBD2.lay)

##obtain combined decomposition and summarize
unit.trt.p2canon <- projs.2canon(Q.unit, Q.trt)
summary(unit.trt.p2canon)

summary.pcanon Summarize a canonical analysis of the relationships between sets of
projectors

Description

Produces a summary of the efficiency criteria computed from the canonical efficiency factors for
the joint decomposition of two or more sets of projectors (Brien and Bailey, 2009) obtained using
projs.canon. It takes the form of a decomposition or skeleton ANOVA table.

Usage

S3 method for class 'pcanon'
summary(object, which.criteria = c("aefficiency", "eefficiency", "order"), ...)

Arguments

object A list of class pcanon produced by projs.canon.

which.criteria A character vector nominating the efficiency criteria to be included in the sum-
mary. It can be none, all or some combination of aefficiency, mefficiency,
sefficiency, eefficiency, xefficiency, order and dforthog – for details
see efficiency.criteria. If there is only one formula, this argument is ig-
nored.

... further arguments affecting the summary produced.

Value

An object of classes summary.pcanon and data.frame, whose rows correspond to subspaces in
the decomposition; it is of the nature of a skeleton analysis of variance table. It has an attribute
named ntiers that is equal to the number of tiers.

Author(s)

Chris Brien

86 tukey.1df

References

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for multitiered experiments. I. A chain
of randomizations. The Annals of Statistics, 36, 4184 - 4213.

See Also

projs.canon, proj2.efficiency, efficiency.criteria, proj2.combine, proj2.eigen, projs.structure,
print.summary.pcanonin package dae, eigen.

projector for further information about this class.

Examples

PBIBD(2) from p. 379 of Cochran and Cox (1957) Experimental Designs.
2nd edn Wiley, New York
PBIBD2.unit <- list(Block = 6, Unit = 4)
PBIBD2.nest <- list(Unit = "Block")
trt <- factor(c(1,4,2,5, 2,5,3,6, 3,6,1,4, 4,1,5,2, 5,2,6,3, 6,3,4,1))
PBIBD2.lay <- fac.layout(unrandomized = PBIBD2.unit,

nested.factors=PBIBD2.nest,
randomized = trt)

##obtain combined decomposition and summarize
unit.trt.canon <- projs.canon(list(unit=~ Block/Unit, trt=~ trt), data = PBIBD2.lay)
summary(unit.trt.canon, which = c("aeff","eeff","order"))

tukey.1df Performs Tukey’s one-degree-of-freedom-test-for-nonadditivity

Description

Performs Tukey’s one-degree-of-freedom-test-for-nonadditivity on a set of residuals from an anal-
ysis of variance.

Usage

tukey.1df(aov.obj, data, error.term="Within")

Arguments

aov.obj An aov object or aovlist object created from a call to aov.

error.term The term from the Error function whose residuals are to be tested for nonad-
ditivity. Only required when the Error function used in call to aov, so that an
aovlist object is created.

data A data.frame containing the original response variable and factors used in the
call to aov.

Value

A list containing Tukey.SS, Tukey.F, Tukey.p, Devn.SSq being the SSq for the 1df test, F value
for test and the p-value for the test.

yates.effects 87

Note

In computing the test quantities fitted values must be obtained. If error.term is specified, fitted
values will be the sum of effects extracted from terms from the Error function, but only down to
that specified by error.term.The order of terms is as given in the ANOVA table. If error.term is
unspecified, all effects for terms external to any Error terms are extracted and summed.

Extracted effects will only be for terms external to any Error function. If you want effects for terms
in the Error function to be included, put them both inside and outside the Error function so they
are occur twice.

Author(s)

Chris Brien

See Also

fitted.errors, resid.errors in package dae.

Examples

set up data frame for randomized complete block design in Table 4.4 from
Box, Hunter and Hunter (2005) Statistics for Experimenters. 2nd edn
New York, Wiley.
RCBDPen.dat <- fac.gen(list(Blend=5, Flask=4))
RCBDPen.dat$Treat <- factor(rep(c("A","B","C","D"), times=5))
RCBDPen.dat$Yield <- c(89,88,97,94,84,77,92,79,81,87,87,

85,87,92,89,84,79,81,80,88)

perform the analysis of variance
RCBDPen.aov <- aov(Yield ~ Blend + Treat + Error(Blend/Flask), RCBDPen.dat)
summary(RCBDPen.aov)

Obtain the quantities for Tukey's test
tukey.1df(RCBDPen.aov, RCBDPen.dat, error.term = "Blend:Flask")

yates.effects Extract Yates effects

Description

Extracts Yates effects from an aov object or aovlist object.

Usage

yates.effects(aov.obj, error.term="Within", data=NULL)

Arguments

aov.obj An aov object or aovlist object created from a call to aov.

error.term The term from the Error function from which the Yates effects are estimated.
Only required when Error used in call to aov.

data A data.frame in which the variables specified in the aov.obj will be found. If
missing, the variables are searched for in the standard way.

88 yates.effects

Details

Yates effects are specific to 2k experiments, where Yates effects are conventionally defined as the
difference between the upper and lower levels of a factor. We follow the convention used in Box,
Hunter and Hunter (1978) for scaling of higher order interactions: all the Yates effects are on the
same scale, and represent the average difference due to the interaction between two different levels.
Effects are estimated only from the error term supplied to the error.term argument.

Value

A vector of the Yates effects.

Author(s)

Chris Brien

See Also

qqyeffects in package dae, aov.

Examples

analysis of 2^4 factorial experiment from Table 10.6 of Box, Hunter and
Hunter (1978) Statistics for Experimenters. New York, Wiley.
use ?Fac4Proc.dat for data set details
data(Fac4Proc.dat)
Fac4Proc.aov <- aov(Conv ~ Catal * Temp * Press * Conc + Error(Runs),

Fac4Proc.dat)
round(yates.effects(Fac4Proc.aov, error.term="Runs", data=Fac4Proc.dat), 2)

Index

∗Topic aplot
interaction.ABC.plot, 43

∗Topic array
correct.degfree, 12
decomp.relate, 13
degfree, 15
designLatinSqrSys, 18
efficiencies.p2canon, 22
efficiencies.pcanon, 23
efficiency.criteria, 24
elements, 25
fac.ar1mat, 27
fac.meanop, 34
fac.sumop, 37
fac.vcmat, 38
is.projector, 45
mat.ar1, 46
mat.ar2, 47
mat.ar3, 48
mat.arma, 49
mat.banded, 50
mat.dirprod, 50
mat.dirsum, 51
mat.exp, 52
mat.I, 52
mat.J, 53
mat.ma1, 53
mat.ma2, 54
mat.sar2, 55
mat.Vpred, 56
print.projector, 60
proj2.combine, 63
proj2.efficiency, 64
proj2.eigen, 65
projector, 67
projector-class, 68
projs.2canon, 69
projs.canon, 71
projs.combine.p2canon, 73
projs.structure, 74
show-methods, 82
summary.p2canon, 84
summary.pcanon, 85

∗Topic classes
projector-class, 68

∗Topic datagen
fac.gen, 30
fac.layout, 31
rmvnorm, 79
strength, 83

∗Topic datasets
ABC.Interact.dat, 6
Fac4Proc.dat, 39
Sensory3Phase.dat, 80
SPLGrass.dat, 82

∗Topic design
Ameasures, 7
blockboundary.plot, 9
blockboundaryPlot, 10
decomp.relate, 13
design.plot, 16
designPlot, 19
detect.diff, 21
efficiencies.p2canon, 22
efficiencies.pcanon, 23
efficiency.criteria, 24
fac.gen, 30
fac.layout, 31
fac.match, 33
interaction.ABC.plot, 43
mat.Vpred, 56
no.reps, 58
power.exp, 59
print.summary.p2canon, 61
print.summary.pcanon, 62
proj2.combine, 63
proj2.efficiency, 64
proj2.eigen, 65
projs.2canon, 69
projs.canon, 71
projs.combine.p2canon, 73
projs.structure, 74
qqyeffects, 76
strength, 83
summary.p2canon, 84
summary.pcanon, 85

89

90 INDEX

yates.effects, 87
∗Topic factor

as.numfac, 8
fac.combine, 28
fac.divide, 29
fac.gen, 30
fac.layout, 31
fac.match, 33
fac.nested, 35
fac.recode, 36
mpone, 57

∗Topic hplot
interaction.ABC.plot, 43
qqyeffects, 76

∗Topic htest
fitted.aovlist, 40
fitted.errors, 41
qqyeffects, 76
resid.errors, 77
residuals.aovlist, 78
tukey.1df, 86
yates.effects, 87

∗Topic iplot
qqyeffects, 76

∗Topic manip
as.numfac, 8
elements, 25
extab, 26
fac.combine, 28
fac.divide, 29
fac.nested, 35
fac.recode, 36
get.daeTolerance, 42
harmonic.mean, 42
is.allzero, 45
mpone, 57
set.daeTolerance, 81

∗Topic methods
fitted.aovlist, 40
residuals.aovlist, 78
show-methods, 82

∗Topic models
fitted.aovlist, 40
fitted.errors, 41
resid.errors, 77
residuals.aovlist, 78
tukey.1df, 86

∗Topic package
dae-package, 3

∗Topic plot
blockboundary.plot, 9
blockboundaryPlot, 10

design.plot, 16
designPlot, 19

∗Topic projector
correct.degfree, 12
decomp.relate, 13
degfree, 15
efficiencies.p2canon, 22
efficiencies.pcanon, 23
efficiency.criteria, 24
fac.meanop, 34
fac.sumop, 37
get.daeTolerance, 42
is.projector, 45
print.projector, 60
print.summary.p2canon, 61
print.summary.pcanon, 62
proj2.combine, 63
proj2.efficiency, 64
proj2.eigen, 65
projector, 67
projector-class, 68
projs.2canon, 69
projs.canon, 71
projs.combine.p2canon, 73
projs.structure, 74
set.daeTolerance, 81
show-methods, 82
summary.p2canon, 84
summary.pcanon, 85

ABC.Interact.dat, 3, 6
Ameasures, 5, 7, 57
aov, 40, 41, 76–78, 86–88
array, 68
as.numeric, 8, 9
as.numfac, 3, 8, 37

blockboundary.plot, 9, 17
blockboundaryPlot, 4, 9, 10, 21

character, 11, 19, 20, 32, 55
chol, 80
coerce,projector,matrix-method

(projector-class), 68
coerce<-,projector,matrix-method

(projector-class), 68
correct.degfree, 5, 12, 15, 35, 46, 67–69

dae (dae-package), 3
dae-deprecated, 13
dae-package, 3
data.frame, 29, 31, 32, 43
decomp.relate, 5, 13, 64

INDEX 91

degfree, 5, 12, 15, 35, 67–69
degfree<- (degfree), 15
design.plot, 9, 10, 16, 16
designLatinSqrSys, 4, 18
designPlot, 4, 10, 11, 19
detect.diff, 4, 21, 59, 60

efficiencies.p2canon, 5, 22, 70
efficiencies.pcanon, 5, 23, 72
efficiency.criteria, 5, 24, 65, 70–72, 74,

84–86
eigen, 14, 22, 24, 25, 65, 66, 70, 72, 75, 84, 86
elements, 4, 25
extab, 6, 26

fac.ar1mat, 4, 27, 39, 80
fac.combine, 3, 28, 30, 31, 35, 37, 38, 43, 44
fac.divide, 3, 29, 29
fac.gen, 3, 30, 32, 36
fac.layout, 4, 31
fac.match, 4, 33
fac.meanop, 6, 28, 34, 38, 39, 57
fac.nested, 4, 35
fac.recode, 4, 8, 9, 36
fac.sumop, 4, 28, 35, 37, 39
fac.vcmat, 4, 28, 38, 80
Fac4Proc.dat, 3, 39
factor, 8, 9, 26–32, 34–38, 43, 57, 58, 83
fitted, 40, 41
fitted (fitted.aovlist), 40
fitted.aovlist, 4, 40, 41
fitted.errors, 4, 40, 41, 77, 78, 87

get.daeTolerance, 6, 42, 82
ggplot, 44

harmonic.mean, 6, 42

integer, 19
interaction.ABC.plot, 4, 43
interaction.plot, 44
is.allzero, 6, 45
is.projector, 5, 45, 68

list, 7, 14, 28–30, 32, 44
logical, 11, 19, 20

mat.ar1, 4, 46, 47–50, 52, 53, 55
mat.ar2, 4, 47, 47, 48, 50, 52, 54, 55
mat.ar3, 4, 47, 48, 49, 50, 52, 54, 55
mat.arma, 47, 48, 49, 50, 52, 54, 55
mat.banded, 5, 47–49, 50, 52, 54, 55
mat.dirprod, 5, 50, 51
mat.dirsum, 5, 51

mat.exp, 5, 47–50, 52, 54, 55
mat.I, 4, 47–50, 52, 52, 53–55
mat.J, 4, 47–50, 52, 53, 53, 54, 55
mat.ma1, 47–50, 52, 53, 55
mat.ma2, 47–50, 52, 54, 54, 55
mat.sar2, 5, 47–50, 52, 54, 55, 55
mat.Vpred, 5, 7, 56
match, 34
matrix, 7, 9, 11, 14, 16, 17, 19, 20, 27, 38,

45–56, 63, 66–68, 82
meanop, 57
mpone, 4, 37, 57, 58

no.reps, 4, 22, 58, 60
numeric, 7, 11, 18–20, 47–50, 54, 55

par, 9–11, 17, 19–21
polygon, 17, 20, 21
power.exp, 4, 22, 59, 59
print, 60
print,projector-method

(print.projector), 60
print.default, 60
print.projector, 5, 60
print.summary.p2canon, 5, 61, 84
print.summary.pcanon, 5, 62, 86
proj2.combine, 6, 14, 22, 24, 25, 63, 65, 66,

69, 70, 72, 73, 75, 84, 86
proj2.decomp (dae-deprecated), 13
proj2.efficiency, 6, 22, 24, 25, 64, 64, 66,

70, 72, 75, 84, 86
proj2.eigen, 6, 13, 14, 22, 24, 25, 64, 65, 65,

70, 72, 73, 75, 84, 86
proj2.ops (dae-deprecated), 13
projector, 5, 12, 15, 22, 24, 25, 35, 45, 46,

60, 64–67, 67, 68–70, 72, 73, 75, 82,
84, 86

projector-class, 5, 68
projs.2canon, 5, 22, 69, 72, 73, 75, 84
projs.canon, 5, 7, 23, 24, 71, 85, 86
projs.combine.p2canon, 5, 70, 73
projs.structure, 6, 22, 24, 70, 72, 74, 84, 86

qqnorm, 77
qqyeffects, 4, 76, 88

relevel, 37, 58
resid.errors, 4, 40, 41, 77, 78, 87
residuals, 77, 78
residuals (residuals.aovlist), 78
residuals.aovlist, 4, 77, 78
rmvnorm, 6, 79
rnorm, 80

92 INDEX

Sensory3Phase.dat, 3, 80
set.daeTolerance, 6, 12, 14, 15, 42, 43, 45,

46, 63, 65–67, 70, 81
show, 60
show,ANY-method (show-methods), 82
show,classRepresentation-method

(show-methods), 82
show,genericFunction-method

(show-methods), 82
show,MethodDefinition-method

(show-methods), 82
show,MethodSelectionReport-method

(show-methods), 82
show,MethodWithNext-method

(show-methods), 82
show,ObjectsWithPackage-method

(show-methods), 82
show,oldClass-method (show-methods), 82
show,projector-method (show-methods), 82
show,signature-method (show-methods), 82
show,traceable-method (show-methods), 82
show-methods, 6, 82
SPLGrass.dat, 3, 82
strength, 4, 83
structure, 68
summary,p2canon-method

(summary.p2canon), 84
summary,pcanon-method (summary.pcanon),

85
summary.p2canon, 5, 22, 61, 70, 84
summary.pcanon, 5, 24, 62, 72, 85

text, 19
tukey.1df, 4, 40, 41, 77, 78, 86

vector, 34, 68, 79

yates.effects, 4, 77, 87

	dae-package
	ABC.Interact.dat
	Ameasures
	as.numfac
	blockboundary.plot
	blockboundaryPlot
	correct.degfree
	dae-deprecated
	decomp.relate
	degfree
	design.plot
	designLatinSqrSys
	designPlot
	detect.diff
	efficiencies.p2canon
	efficiencies.pcanon
	efficiency.criteria
	elements
	extab
	fac.ar1mat
	fac.combine
	fac.divide
	fac.gen
	fac.layout
	fac.match
	fac.meanop
	fac.nested
	fac.recode
	fac.sumop
	fac.vcmat
	Fac4Proc.dat
	fitted.aovlist
	fitted.errors
	get.daeTolerance
	harmonic.mean
	interaction.ABC.plot
	is.allzero
	is.projector
	mat.ar1
	mat.ar2
	mat.ar3
	mat.arma
	mat.banded
	mat.dirprod
	mat.dirsum
	mat.exp
	mat.I
	mat.J
	mat.ma1
	mat.ma2
	mat.sar2
	mat.Vpred
	meanop
	mpone
	no.reps
	power.exp
	print.projector
	print.summary.p2canon
	print.summary.pcanon
	proj2.combine
	proj2.efficiency
	proj2.eigen
	projector
	projector-class
	projs.2canon
	projs.canon
	projs.combine.p2canon
	projs.structure
	qqyeffects
	resid.errors
	residuals.aovlist
	rmvnorm
	Sensory3Phase.dat
	set.daeTolerance
	show-methods
	SPLGrass.dat
	strength
	summary.p2canon
	summary.pcanon
	tukey.1df
	yates.effects
	Index

