
Speeding up parameter inference with compiled models
Philipp H Boersch-Supan, Sadie J Ryan, and Leah R Johnson

September 2016

Differential equation (DE) models in R are easy to implement and allow simple interactive development
using readable code and access to R’s many high-level functions. This was part of our motivation to develop
deBInfer as an R based inference package. However, numerically solving DE models specified as R functions
is also relatively slow. The deSolve package also allows the evaluation of DE models that are defined in
lower-level languages such as C and FORTRAN. These compiled models have the benefit of increased simulation
speed. As the DE model is evaluated many times during the MCMC procedure, even moderate speed-ups
from using compiled models can result in large absolute time savings.

We demonstrate the speed-up using an example from the deSolve documentation (Soetaert et al. 2010).
Full details on the model specification can be found in Soetaert et al. (2009) which can be displayed
with the command vignette("compiledCode"). Further details on the set up of the deBInfer inference
procedure are described in Boersch-Supan et al. (2016) and annotated examples are available in the vignettes
vignette("logistic_ode_example") and vignette("vignette_chytrid_dede_example").

1 Specifying the ODE model

Following Soetaert et al. (2009), we use the following simple ODE:

dy1

dt
= −k1 · y1 + k2 · y2 · y3

dy2

dt
= k1 · y1 − k2 · y2 · y3 − k3 · y2 · y2

dy3

dt
= k3 · y2 · y2

where y1, y2 and y3 are state variables, and k1, k2 and k3 are parameters.

2 ODE model implementation in R

We implement this model as an R function:

modelR <- function(t, Y, parameters) {

with (as.list(parameters),{

dy1 = -k1*Y[1] + k2*Y[2]*Y[3]

dy3 = k3*Y[2]*Y[2]

dy2 = -dy1 - dy3

list(c(dy1, dy2, dy3))

})

}

1

And also specify the Jacobian (∂y′

∂y
) for it:

jacR <- function (t, Y, parameters) {

with (as.list(parameters),{

PD[1,1] <- -k1

PD[1,2] <- k2*Y[3]

PD[1,3] <- k2*Y[2]

PD[2,1] <- k1

PD[2,3] <- -PD[1,3]

PD[3,2] <- k3*Y[2]

PD[2,2] <- -PD[1,2] - PD[3,2]

return(PD)

})

}

2.1 Solving R models

This model can be solved numerically in R using the deSolve package as follows.

library(deSolve)

parms <- c(k1 = 0.04, k2 = 1e4, k3=3e7)

Y <- c(1.0, 0.0, 0.0)

times <- seq(0, 0.1*10^4, length.out = 1000)

PD <- matrix(nrow = 3, ncol = 3, data = 0)

outR <- ode(Y, times, modelR, parms = parms, jacfunc = jacR)

plot(outR)

2

3 ODE model implementation in C

To create compiled models (dynamic-link libraries (.dll) on Windows or shared objects (.so) on other systems)
a recent version of the GNU compiler suite is required. GNU compilers are included by default in most
Linux distributions. Windows users can install the required toolchain by following the instructions on
[https://cran.r-project.org/bin/windows/Rtools/]. OSX users need to download and install an appropriate
version of Xcode from the Apple developer website [https://developer.apple.com/] or the OSX App Store.

The call to the derivative and Jacobian function is more complex for compiled code compared to R-code,
because it has to comply with the interface needed by the integrator. The requirements for this are detailed
in Soetaert et al. (2009). A C implementation of the example model is found below.

/* file mymod.c */

#include <R.h>

static double parms[3];

#define k1 parms[0]

#define k2 parms[1]

#define k3 parms[2]

/* initializer */

void initmod(void (* odeparms)(int *, double *))

{

int N=3;

odeparms(&N, parms);

}

3

https://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/

/* Derivatives and 1 output variable */

void derivs (int *neq, double *t, double *y, double *ydot,

double *yout, int *ip)

{

if (ip[0] <1) error("nout should be at least 1");

ydot[0] = -k1*y[0] + k2*y[1]*y[2];

ydot[2] = k3 * y[1]*y[1];

ydot[1] = -ydot[0]-ydot[2];

yout[0] = y[0]+y[1]+y[2];

}

/* The Jacobian matrix */

void jac(int *neq, double *t, double *y, int *ml, int *mu,

double *pd, int *nrowpd, double *yout, int *ip)

{

pd[0] = -k1;

pd[1] = k1;

pd[2] = 0.0;

pd[(*nrowpd)] = k2*y[2];

pd[(*nrowpd) + 1] = -k2*y[2] - 2*k3*y[1];

pd[(*nrowpd) + 2] = 2*k3*y[1];

pd[(*nrowpd)*2] = k2*y[1];

pd[2*(*nrowpd) + 1] = -k2 * y[1];

pd[2*(*nrowpd) + 2] = 0.0;

}

/* END file mymod.c */

3.1 Compiling and solving ODE models implemented in C

To run the C implementation of the model it must first be compiled. This can be done using the R system

statement

system("R CMD SHLIB mymod.c")

which will create the file mymod.dll on Windows, or mymod.so on other platforms.

We can then load the compiled model with

dyn.load(paste("mymod", .Platform$dynlib.ext, sep = ""))

The compiled model can be solved numerically from R using the deSolve package as follows.

parms <- c(k1 = 0.04, k2 = 1e4, k3=3e7)

Y <- c(y1 = 1.0, y2 = 0.0, y3 = 0.0)

times <- seq(0, 0.1*10^4, length.out = 1000)

out <- ode(Y, times, func = "derivs", parms = parms,

jacfunc = "jac", dllname = "mymod",

initfunc = "initmod", nout = 1, outnames = "Sum")

plot(out, which = 1:3)

4

4 Comparing solver speed

We can determine the speed improvement as a function of desired output time points using the microbenchmark

package

#Set up a vector of the number of solver time points

timepoints <- c(10,100, 500, 1000,2000, 5000, 10000)

#solve both model version on the desired time points

solve_time <- lapply(timepoints, function(x){

times <- seq(0, 0.1*10^4, length.out = x)

comp <- microbenchmark::microbenchmark(

#solve the C model

C = ode(Y, times, func = "derivs", parms = parms,

jacfunc = "jac", dllname = "mymod",

initfunc = "initmod", nout = 1, outnames = "Sum"),

#solve the R model

R = ode(Y, times, modelR, parms = parms, jacfunc = jacR), times=10

)

return(comp)

}

)

#save simulation if desired

#saveRDS(solve_time, "examples/Soetaert-r-vs-c-solve_time.RDS")

5

#calculate summaries from the simulations

solve_speedup <- sapply(solve_time,

function(x)mean(x$time[x$expr=="R"]/x$time[x$expr=="C"]))

solve_R <- sapply(solve_time, function(x)mean(x$time[x$expr=="R"]/1e9))

solve_C <- sapply(solve_time, function(x)mean(x$time[x$expr=="C"]/1e9))

#plot the results

par(mfrow=c(1,2))

plot(timepoints, solve_R, type="p", ylab = "Execution time (s)", xlab = "Time points")

points(timepoints, solve_C, col="red", type="p", pch=c(16))

legend("topleft", legend = c("R ODE", "C ODE"), pch = c(1,16), col= c("black", "red"))

plot(rep(timepoints, each=1), solve_speedup, type="p", ylab = "Relative execution time"

, xlab = "Time points", ylim = c(0,max(solve_speedup)))

which shows us that the C version of the models is solved 19-57 times faster than the R version.

5 Conducting inference with compiled models

We can now simulate a dataset to demonstrate the inference procedure:

set.seed(143)

#sample from integration output. Force include the first 100 time-points

#to aid parameter identifiability

obs <- as.data.frame(outR[c(1:100,runif(100, 0, nrow(outR))),])

#order the observations

obs <- obs[order(obs$time),]

#plot the observations

par(mfrow=c(1,3))

plot(obs$time, obs[,2], type='p', ylab="y1", xlab="Time")

6

plot(obs$time, obs[,3], type='p', ylab="y2", xlab="Time")

plot(obs$time, obs[,4], type='p', ylab="y3", xlab="Time")

5.1 Defining an observation model and parameters for inference

For simplicity we assume a normal log-likelihood for these data

ℓ(Y|θ) =
∑

i

∑

t

ln

(

1

σobs

√
2π

exp

(

− (ỹt,i − (yt,i)
2

2σ2
obs

))

(1)

where ỹt,i are the observations, and yt,i are the predictions of the DE model given the current MCMC sample
of the parameters θ.

the observation model

obs_model <- function(data, sim.data, samp){

llik.y1 <- sum(dnorm(obs[,2], mean = sim.data[,2], sd = samp[['sd.y1']], log = TRUE))

llik.y2 <- sum(dnorm(obs[,3], mean = sim.data[,3], sd = samp[['sd.y2']], log = TRUE))

llik.y3 <- sum(dnorm(obs[,4], mean = sim.data[,4], sd = samp[['sd.y3']], log = TRUE))

return(llik.y1 + llik.y2 + llik.y3)

}

We declare the DE model parameters and their associated priors and MCMC parameters. Note that
we are using the asymmetric uniform proposal distribution U(a

b
θ(k), b

a
θ(k)) for the variance parameters

(samp.type="rw-unif"), as this ensures strictly positive proposals.

7

library(deBInfer)

k1 <- debinfer_par(name = "k1", var.type = "de", fixed = FALSE,

value = 0.05, prior = "lnorm", hypers = list(meanlog = 0, sdlog = 1),

prop.var = c(998,1000), samp.type = "rw-unif")

k2 <- debinfer_par(name = "k2", var.type = "de", fixed = FALSE,

value = 8000, prior = "norm", hypers = list(mean = 5000, sd = 1000),

prop.var = 500, samp.type="rw")

k3 <- debinfer_par(name = "k3", var.type = "de", fixed = FALSE,

value = 3e7, prior = "norm", hypers = list(mean = 1e7, sd = 5e6),

prop.var = 5e7, samp.type="rw")

sd.y1 <- debinfer_par(name = "sd.y1", var.type = "obs", fixed = FALSE,

value = 0.05, prior = "lnorm", hypers = list(meanlog = 0, sdlog = 1),

prop.var = c(3,4), samp.type = "rw-unif")

sd.y2 <- debinfer_par(name = "sd.y2", var.type = "obs", fixed = FALSE,

value = 0.05, prior = "lnorm", hypers = list(meanlog = 0, sdlog = 1),

prop.var = c(3,4), samp.type = "rw-unif")

sd.y3 <- debinfer_par(name = "sd.y3", var.type = "obs", fixed = FALSE,

value = 0.05, prior = "lnorm", hypers = list(meanlog = 0, sdlog = 1),

prop.var = c(3,4), samp.type = "rw-unif")

Lastly, we provide initial values for the DE:

y1 <- debinfer_par(name = "y1", var.type = "init", fixed = TRUE, value = 1)

y2 <- debinfer_par(name = "y2", var.type = "init", fixed = TRUE, value = 0)

y3 <- debinfer_par(name = "y3", var.type = "init", fixed = TRUE, value = 0)

The declared parameters are then collated using the setup_debinfer function. Note that for models with
more than one state variable, the initial values must be entered in the same order, as they are

specified in the DE model function, as the solver matches these values by position, rather than by name.
More details can be found in ?deSolve::ode. The remaining parameters can be entered in any order for the
R based inference, but are matched by position in the compiled model.

mcmc.pars <- setup_debinfer(k1, k2, k3, sd.y1, sd.y2, sd.y3, y1, y2, y3)

5.2 Conduct inference

Finally we use deBInfer to estimate the parameters of the original model using both the R and the C version
of the model.

do inference with deBInfer

MCMC iterations

iter <- 1000

For the R model, the inference call proceeds as outlined in Boersch-Supan et al. (2016), although we wrap it
in a system.time call to measure the execution time.

inference call

Rt <- system.time(

mcmc_samples <- de_mcmc(N = iter, data = obs, de.model = modelR,

8

obs.model = obs_model, all.params = mcmc.pars,

Tmax = max(obs$time), data.times = obs$time, cnt = 500,

plot = FALSE, solver = "ode", verbose.mcmc = FALSE)

)

Order of initial conditions is y1, y2, y3

initial posterior probability = 568.058099497889

print(Rt)

user system elapsed

35.212 0.182 35.696

For the C model we pass in the name of the C function that calculates the derivatives as the de.model

parameter, and furthermore provide the additional parameters initfunc, jacfunc, dllname, nout, and
outnames to the solver. Again we wrap the inference call in system.time to measure execution time.

Ct <- system.time(

mcmc_samplesC <- de_mcmc(N = iter, data = obs, de.model = "derivs",

jacfunc = "jac", dllname = "mymod",

initfunc = "initmod", nout = 1, outnames = "Sum",

obs.model = obs_model, all.params = mcmc.pars,

Tmax = max(obs$time), data.times = obs$time, cnt = 1250,

plot = FALSE, solver = "ode", verbose.mcmc = FALSE)

)

Order of initial conditions is y1, y2, y3

initial posterior probability = 568.058099497889

print(Ct)

user system elapsed

5.670 0.029 5.736

We can see that inference using the C model is approximately 6 times faster than inference using the R model.

6 Speed up of the inference procedure

We can see that inference and posterior simulations using the compiled model are substantially faster. This
speed up is consistent across a range of MCMC iterations:

iter_reps <- rep(c(100,1000,2000,5000,10000),3)

timings <- matrix(nrow=length(iter_reps),ncol=2)

for (i in seq_along(iter_reps)){

9

timings[i,1] <- system.time(mcmc_samples <- de_mcmc(N = iter_reps[i], data = obs,

de.model = modelR,

obs.model = obs_model, all.params = mcmc.pars,

Tmax = max(obs$time), data.times = obs$time, cnt = 500,

plot = FALSE, solver = "ode", verbose.mcmc = FALSE))[3]

timings[i,2] <- system.time(mcmc_samplesC <- de_mcmc(N = iter_reps[i], data = obs,

de.model = "derivs",

jacfunc = "jac", dllname = "mymod",

initfunc = "initmod", nout = 1, outnames = "Sum",

obs.model = obs_model, all.params = mcmc.pars,

Tmax = max(obs$time), data.times = obs$time, cnt = 1250,

plot = FALSE, solver = "ode", verbose.mcmc = FALSE))[3]

}

#saveRDS(timings, "examples/Soetaert-r-vs-c-timings.RDS")

iter_reps <- rep(c(100,1000,2000,5000,10000),3)

if(!exists("timings")) timings <- readRDS("Soetaert-r-vs-c-timings.RDS")

#pdf("examples/c-vs-r-iters.pdf")

par(mfrow=c(1,2))

plot(iter_reps, timings[,1], ylim=c(0, max(timings[,1])), type="p",

ylab = "Execution time (s)", xlab = "MCMC iterations")

points(iter_reps, timings[,2], col="red", type="p", pch=c(1,16))

legend("topleft", legend = c("R ODE", "C ODE"), pch = c(1,16), col= c("black", "red"))

plot(iter_reps, timings[,1]/timings[,2], ylim=c(0, max(timings[,1]/timings[,2])), type="p",

ylab = "Relative execution time", xlab = "MCMC iterations")

#dev.off()

10

7 Speed up of posterior simulations

The use of compiled models also speeds up the simulation of the posterior trajectories. The call to post_sim

for the compiled model requires the same additional arguments as outlined above for de_mcmc.

#Simulate using the R model and the samples from the inference on it

Rs <- system.time(

post_traj <- post_sim(mcmc_samples, n=100, times=0:1000, burnin=100,

output = 'all', prob = 0.95)

)

print(Rs)

user system elapsed

4.034 0.031 4.094

#Simulate using the C model and the samples from the inference on it

Cs <- system.time(

post_trajC <- post_sim(mcmc_samplesC, n=100, times=0:1000, burnin=100,

output = 'all', prob = 0.95, jacfunc = "jac",

dllname = "mymod",initfunc = "initmod", nout = 1,

outnames = "Sum")

)

print(Cs)

user system elapsed

0.426 0.017 0.449

We can see that simulations using the C model are approximately 9 times faster than simulations using the R
model.

Finally we can plot the posterior median trajectories for both inference runs to visually confirm that both
the C and R model are estimated correctly.

#Plot simulations and observations

par(mfrow=c(1,3))

plot(post_traj$time, post_traj$median$y1, type='l',lwd=1, ylab = "y1", xlab = "Time")

lines(post_trajC$time, post_trajC$median$y1, col="red", lty=3, lwd=1)

points(obs$time, obs[,2])

legend("topright", legend = c("Posterior R", "Posterior C", "Observations"),

lty=c(1,3,NA), pch=c(NA,NA,1), col=c("black","red","black"))

plot(post_traj$time, post_traj$median$y2, type='l', ylab = "y1", xlab = "Time")

lines(post_trajC$time, post_trajC$median$y2, col="red", lty=3, lwd=1)

points(obs$time, obs[,3])

plot(post_traj$time, post_traj$median$y3, type='l', ylab = "y1", xlab = "Time")

lines(post_trajC$time, post_trajC$median$y3, col="red", lty=3, lwd=1)

points(obs$time, obs[,4])

11

References

Boersch-Supan, P.H., Ryan, S.J. & Johnson, L.R. (2016). deBinfer: Bayesian inference for dynamical models
of biological systems. arXiv, 1605.00021.

Soetaert, K., Petzoldt, T. & Setzer, R.W. (2009). R package desolve, writing code in compiled languages.

Soetaert, K., Petzoldt, T. & Setzer, R.W. (2010). Solving differential equations in R: Package deSolve.
Journal of Statistical Software, 33, 1–25.

12

	Specifying the ODE model
	ODE model implementation in R
	Solving R models

	ODE model implementation in C
	Compiling and solving ODE models implemented in C

	Comparing solver speed
	Conducting inference with compiled models
	Defining an observation model and parameters for inference
	Conduct inference

	Speed up of the inference procedure
	Speed up of posterior simulations
	References

