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Abstract

In this vignette we cover some of the basic time series tools in dplR
(and in R to a much lesser extent). These include spectral analysis
using redfit and wavelets. We also discuss fitting AR and ARMA.
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1 Introduction

1.1 What Is Covered

The Dendrochronology Program Library in R (dplR) is a package for den-
drochronologists to handle data processing and analysis. This document
gives an introduction of some of the functions dealing with time series in
dplR. This vignette does not purport to be any sort of authority on time
series analysis at all! There are many wonderful R-centric books on time
series analysis that can tell you about the theory and practice of working
with temporal data. For heaven’s sake, do not rely on this document!

1.2 Citing dplR and R

The creation of dplR is an act of love. We enjoy writing this software and
helping users. However, neither of us is among the idle rich. Alas. We
have jobs and occasionally have to answer to our betters. There is a nifty
citation function in R that gives you information on how to best cite R
and, in many cases, its packages. We ask that you please cite dplR and
R appropriately in your work. This way when our department chairs and
deans accuse us of being dilettantes we can point to the use of dplR as a
partial excuse.

> citation()

To cite R in publications use:

R Core Team (2016). R: A language and environment

for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.

A BibTeX entry for LaTeX users is

@Manual{,

title = {R: A Language and Environment for Statistical Computing},

author = {{R Core Team}},

organization = {R Foundation for Statistical Computing},

address = {Vienna, Austria},

year = {2016},

url = {https://www.R-project.org/},

}

We have invested a lot of time and effort in creating

R, please cite it when using it for data analysis. See

also 'citation("pkgname")' for citing R packages.
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> citation("dplR")

Bunn AG (2008). "A dendrochronology program library in

R (dplR)." _Dendrochronologia_, *26*(2), pp. 115-124.

ISSN 1125-7865, doi: 10.1016/j.dendro.2008.01.002

(URL: http://doi.org/10.1016/j.dendro.2008.01.002).

Bunn AG (2010). "Statistical and visual crossdating in

R using the dplR library." _Dendrochronologia_,

*28*(4), pp. 251-258. ISSN 1125-7865, doi:

10.1016/j.dendro.2009.12.001 (URL:

http://doi.org/10.1016/j.dendro.2009.12.001).

Andy Bunn, Mikko Korpela, Franco Biondi, Filipe

Campelo, Pierre Mérian, Fares Qeadan and Christian

Zang (2017). dplR: Dendrochronology Program Library

in R. R package version 1.6.5.

https://r-forge.r-project.org/projects/dplr/

2 Data Sets

Throughout this vignette we will use the onboard data set co021 which gives
the raw ring widths for Douglas fir Pseudotsuga menziesii at Mesa Verde in
Colorado, USA. There are 35 series spanning 788 years.

It is a beautifully sensitive series with long segment lengths, high stan-
dard deviation (relative to ring widths), large first-order autocorrelation,
and a high mean interseries correlation (r ≈ 0.84). The data are plotted in
Figure 1.

> library(dplR)

> data(co021)

> co021.sum <- summary(co021)

> mean(co021.sum$year)

[1] 564.9143

> mean(co021.sum$stdev)

[1] 0.3231714

> mean(co021.sum$median)

[1] 0.3211429

> mean(co021.sum$ar1)
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[1] 0.6038

> mean(interseries.cor(co021)[, 1])

[1] 0.8477981

> plot(co021, plot.type="spag")
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Figure 1: A spaghetti plot of the Mesa Verde ring widths.

By the way, if this is all new to you – you should proceed imme-
diately to a good primer on dendrochronology like Fritts (2001).
This vignette is not intended to teach you about how to do tree-
ring analysis. It is intended to teach you how to use the package.

Let us make a mean-value chronology of the co021 data after detrending
each series with a frequency response of 50% at a wavelength of 2/3 of each
series’s length. The chronology is plotted in Figure 2.
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> co021.rwi <- detrend(co021, method="Spline")

> co021.crn <- chron(co021.rwi, prefix="MES")

> plot(co021.crn, add.spline=TRUE, nyrs=64)
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Figure 2: The Mesa Verde chronology.

3 Characterizing the Data

Let’s start with a quick exploratory data analysis into the time-series process.
The co021.crn object has two columns, the first giving the chronology and
the second the sample depth during that year. We will start our analysis
on the chronology by looking at its autocorrelation structure using R’s acf
and pacf functions.

> dat <- co021.crn[, 1]

> op <- par(no.readonly = TRUE) # Save to reset on exit
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> par(mfcol=c(1, 2))

> acf(dat)

> pacf(dat)

> par(op)
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Figure 3: ACF and PACF plots of the Mesa Verde chronology.

The ACF function indicates significant autocorrelation out to a lag of about
10 years (which is not uncommon in tree-ring data) while the PACF plot
suggests that the persistence after lag 4 is due to the propagation of the
autocorrelation at earlier lags (Figure 3). And one could very well argue
that the best model here is an AR(2) model given the marginal significance
of the PACF value at lags 3 and 4. After all, you can get three opinions by
asking one statistician to look a time series. But we digress.

We now have the first bit of solid information about the time-series
properties of these data, it looks like they fit an AR(4) model. But, R being
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R, there are many other ways to check this. The easiest way is to use the ar
function which fits an autoregressive model and selects the order by AIC.

> dat.ar <- ar(dat)

> dat.ar

Call:

ar(x = dat)

Coefficients:

1 2 3 4

0.1997 0.1484 0.0462 0.0748

Order selected 4 sigma^2 estimated as 0.1884

Indeed, ar produces an AR(4) model. We can do the same sort of analysis
by automatically fitting an ARMA model using the auto.arima function in
the package "forecast".

> if (require("forecast", character.only = TRUE)) {

+ dat.arima <- auto.arima(dat, ic="bic")

+ summary(dat.arima)

+ head(residuals(dat.arima))

+ coef(dat.arima)

+ acf(residuals(dat.arima),plot=FALSE)

+ }

Series: dat

ARIMA(1,0,1) with non-zero mean

Coefficients:

ar1 ma1 intercept

0.8272 -0.6339 0.9740

s.e. 0.0495 0.0684 0.0325

sigma^2 estimated as 0.1875: log likelihood=-457.13

AIC=922.25 AICc=922.3 BIC=940.93

Training set error measures:

ME RMSE MAE MPE

Training set 7.679478e-05 0.4321663 0.3426744 -457.9301

MAPE MASE ACF1

Training set 481.3235 0.7941686 -0.0004114487

Autocorrelations of series 'residuals(dat.arima)', by lag
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0 1 2 3 4 5 6 7

1.000 0.000 0.021 -0.037 0.005 -0.010 0.023 0.019

8 9 10 11 12 13 14 15

-0.011 0.006 0.044 -0.037 0.032 0.000 -0.068 0.019

16 17 18 19 20 21 22 23

-0.015 0.021 -0.094 0.028 -0.018 -0.024 0.058 0.036

24 25 26 27 28

0.013 0.013 -0.011 -0.030 0.010

Instead of an AR(4) model, auto.arima went for an ARMA(1,1) model –
or an ARIMA(1,0,1). The parsimony principle certainly likes a nice simple
ARMA(1,1) model! Note that we could look at the residuals (just the first
few), model coefficients, etc. quite easily. And indeed the residuals are quite
clean as we would expect.

4 Frequency Domain

There is, at times, and almost manic desire to better characterize the spectral
aspects of a tree-ring series. In dplR, we’ve implemented two of the most
common ways that dendrochronologists go about this and there are a host
of other approaches in R that we won’t get to in this vignette.

The redfit function in dplR is a port of Schulz’s REDFIT (version 3.8e)
program and estimates the red-noise spectra of a time series.

> redf.dat <- redfit(dat, nsim = 1000)

> par(tcl = 0.5, mar = rep(2.2, 4), mgp = c(1.1, 0.1, 0))

> plot(redf.dat[["freq"]], redf.dat[["gxxc"]],

+ ylim = range(redf.dat[["ci99"]], redf.dat[["gxxc"]]),

+ type = "n", ylab = "Spectrum (dB)", xlab = "Frequency (1/yr)",

+ axes = FALSE)

> grid()

> lines(redf.dat[["freq"]], redf.dat[["gxxc"]], col = "#1B9E77")

> lines(redf.dat[["freq"]], redf.dat[["ci99"]], col = "#D95F02")

> lines(redf.dat[["freq"]], redf.dat[["ci95"]], col = "#7570B3")

> lines(redf.dat[["freq"]], redf.dat[["ci90"]], col = "#E7298A")

> freqs <- pretty(redf.dat[["freq"]])

> pers <- round(1 / freqs, 2)

> axis(1, at = freqs, labels = TRUE)

> axis(3, at = freqs, labels = pers)

> mtext(text = "Period (yr)", side = 3, line = 1.1)

> axis(2); axis(4)

> legend("topright", c("dat", "CI99", "CI95", "CI90"), lwd = 2,

+ col = c("#1B9E77", "#D95F02", "#7570B3", "#E7298A"),
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+ bg = "white")

> box()

> par(op)
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Figure 4: Spectra of Mesa Verde chronology using redfit

Using the Mesa Verde chronology we see that there are frequencies in
that time series that are significantly different from a red-noise assumption
in the interannual (<3 years) and at low frequencies (multidecadal). These
are plotted in Figure 4.

Another popular way to visualize a tree-ring chronology in the frequency
domain is through a continuous wavelet transform. In dplR, there is are
functions for calculating the transform via wavelet and plotting the result
via wavelet.plot.

> yrs <- as.numeric(rownames(co021.crn))

> out.wave <- morlet(y1 = dat, x1 = yrs, p2 = 8, dj = 0.1,
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+ siglvl = 0.99)

> wavelet.plot(out.wave, useRaster=NA)
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Figure 5: Continuous wavelet of the Mesa Verde chronology

The wavelet plot (Figure 5) shows a similar story as the plot from redfit

in Figure 4 with significant variation at interannual to multidecadal scales.
A final common task we’ll mention in this vignette is extracting specific

frequency components from a time series to look at different aspects of say,
high vs low frequency growth. One approach to doing this is to use wavelets
again but here we will decompose a time series into its constituent voices
using the mra function in the package "waveslim".

> if (require("waveslim", character.only = TRUE)) {

+ nYrs <- length(yrs)

+ nPwrs2 <- trunc(log(nYrs)/log(2)) - 1
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+ dat.mra <- mra(dat, wf = "la8", J = nPwrs2, method = "modwt",

+ boundary = "periodic")

+ YrsLabels <- paste(2^(1:nPwrs2),"yrs",sep="")

+

+ par(mar=c(3,2,2,2),mgp=c(1.25,0.25,0),tcl=0.5,

+ xaxs="i",yaxs="i")

+ plot(yrs,rep(1,nYrs),type="n", axes=FALSE, ylab="",xlab="",

+ ylim=c(-3,38))

+ title(main="Multiresolution decomposition of dat",line=0.75)

+ axis(side=1)

+ mtext("Years",side=1,line = 1.25)

+ Offset <- 0

+ for(i in nPwrs2:1){

+ x <- scale(dat.mra[[i]]) + Offset

+ lines(yrs,x)

+ abline(h=Offset,lty="dashed")

+ mtext(names(dat.mra)[[i]],side=2,at=Offset,line = 0)

+ mtext(YrsLabels[i],side=4,at=Offset,line = 0)

+ Offset <- Offset+5

+ }

+ box()

+ par(op) #reset par

+ }

In Figure 6 the Mesa Verde chronology is shown via an additive decom-
position for each power of 2 from 21 to 28. Note that each voice is scaled
to itself by dividing by its standard deviation in order to present them on
the same y-axis. If the scale function were to be removed (and we leave
that as an exercise to the reader) the variations between voices would be
greatly reduced. Note the similarity in Figures 5 and 6 for the variation in
the 64-year band around the year 1600 and the lower frequency variation at
128 years around the year 1400.

The pioneering work of Ed Cook – e.g. Cook et al. (1990) – has left an
enduring mark on nearly every aspect of quantitative dendrochronology. One
such mark that we already alluded to above is the use of smoothing splines
to detrend and filter tree-ring data. So, we’ll close with an example of how
one can visualise an individual tree-ring series using splines (Figure 7).

> par(mar=rep(2.5,4),mgp=c(1.2,0.25,0),tcl=0.5,

+ xaxs="i",yaxs="i")

> plot(yrs,dat,type="n",xlab="Year",ylab="RWI",axes=FALSE)

> grid(col="black",lwd=0.5)

> abline(h=1)

> lines(yrs,dat,col="grey",lwd=1)
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Multiresolution decomposition of dat
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Figure 6: Multiresolution analysis of the Mesa Verde chronology

> my.cols <- c("#A6611A","#DFC27D","#80CDC1","#018571")

> lines(yrs,ffcsaps(dat,nyrs=256),col=my.cols[1],lwd=3)

> lines(yrs,ffcsaps(dat,nyrs=128),col=my.cols[2],lwd=2)

> lines(yrs,ffcsaps(dat,nyrs=64),col=my.cols[3],lwd=2)

> lines(yrs,ffcsaps(dat,nyrs=32),col=my.cols[4],lwd=2)

> legend("topright", c("dat", "256yrs", "128yrs", "64yrs", "32yrs"),

+ lwd = 2, col = c("grey",my.cols),bg = "white")

> axis(1);axis(2);axis(3);axis(4)

> box()

> par(op)
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Figure 7: The Mesa Verde chronology plotted with a variety of splines

5 Conclusion

There are dozens of packages in R that to do time series analysis. Here, we’ve
tried to give just a few examples of doing work with dplR while showing you
how you might harness the awesome power of R.
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