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Abstract: A novel distribution based on elliptic curves is developed to
capture major leptokurtic features in the return distribution of financial
assets. This distribution is based on the Weierstrass equation and depressed
cubic polynomial; therefore, it is intuitive, mathematically elegant, analyt-
ically tractable, and easy to calculate. It fits well to the historical daily
log-return distributions of currencies, commodities, Treasury yields, VIX,
and, most difficult of all, DJIA whose kurtosis is above 20. Various asymp-
totic behaviors are studied that encompasses a wide range of kurtosis from
2.3 to 35. The formal expansion near O of elliptic curves also suggests a
possible different perspective on the tail behavior of the financial data. The
numerical methods are built into an R package. A comprehensive sqlite
database stores pre-calculated statistical attributes that cover a large pa-
rameter space. This allows practitioners to quickly examine any time series
of interest. The distribution serves as a viable alternative to other fat-tailed
distributions used in financial and risk modeling.
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1. Introduction

One of the primary interests of the author has been to find a satisfactory proba-
bility distribution that can describe the heavily leptokurtic distributions of daily
return data in the financial markets[11, 12]. For instance, many daily time series
of equity indices and commodities have kurtosis of more than 10. One can eas-
ily collect 80 years of DJIA daily closing prices, whose log-returns have kurtosis
of more than 201. In the past, the pursues have been based on the method of

1In this paper, a normal distribution has kurtosis of 3. DJIA historical prices since 1928
are widely available. The ecd package comes with sample data of DJIA.
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mixing Gaussian distributions of varying variances to produce a leptokurtic dis-
tribution, which has been known since 1970’s [14]. However, these subordinated
distributions either failed to capture the leptokurtic tails, or too complicated
for practitioners to handle, especially when skew is involved. One candidate to
describe such fat-tail data is the Levy alpha stable distribution (SaS). But the
computation of its probability distribution density (PDF) is non-trivial; and,
due to the infinite moments and very fat tails, the tails of SaS have to be trun-
cated, which adds significant complexity (For instance, see Chapter 7 of Rachev,
Fabozzi, and Menn, 2005[15]). The second popular choice is the Generalized Hy-
perbolic (GHYP) family of distributions by Barndorff-Nielsen [1]. As Fergusson
and Platen [6] have shown, the maximum likelihood estimates on the log-return
distribution of the world stock indices appear to cluster in the neighborhood of
those of the Student’s t-distribution, which is a special case of GHYP. Only the
Student’s t-distribution qualifies to fit world stock indices after 99% significance
level applied. The best fits require the degrees of freedom to be near or less than
4.0, where the kurtosis ceases to exist.

I’ve also studied two subordinated distributions before - one based on log-
normal cascade [11], and the other based on Poisson distribution [12]. The later
in fact achieved high quality fits to the real-world data, but not without sig-
nificant tweaks on the structure of the subordinator. As the saying goes, if you
add enough parameters, you can fit pretty much everything. The mathematical
elegance faded, and it became difficult to obtain insights. More importantly,
if the distribution itself is too complicated (and/or hard to calculate), the op-
tion pricing model adds even more complexity to it, and the end result will be
hopelessly difficult to understand.

Based on these experiences and observations, the proposed distribution must
be simple and elegant, ideally a two-parameter family, with several single-
parameter sub-families, in order to pass the smoke test, so to speak. In this
paper, I propose a novel probability distribution based on elliptic curves. This
distribution is constructed from a very simple starting point - the Weierstrass
equation in the depressed cubic polynomial form2 ,

y2 = x3 +Ax+B. (1.1)

Its elegant origin makes it analytically tractable, intuitive and easy to calculate.
It can generate many interesting shapes with a wide ranging kurtosis from 2.3
to as high as 35. It is asymptotic to the normal distribution and the Laplace
distribution with the standard cusp distribution in the center. Its flexibility is
not less than GHYP. It fits well to the historical daily log-return distributions of
currencies, commodities, Treasury yields, VIX, and DJIA. The new concept of
elliptic tail, PDF ∼ exp

(

−x2/3
)

, that captures the outward-bending tails nicely
(See Panel (2) of Figure 2.1), sets it apart from the tail behavior of GHYP.
Hopefully with these nice features, it can become a useful tool for the financial
professionals to describe the kind of data they encounter everyday.

2See Section III.1, p.45 of Silverman 2008[17]. Or see Tate 1974[16].
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The volatility smile (or skew/smirk) is a challenging area in quantitative
finance (See Gatheral 2006 [7] and Bergomi’s “Smile Dynamics” series[2]), an
aeea that I am interested in solving with elliptic distribution. Many believes the
smile is caused by fat-tailed distribution (and/or jump process), yet up to date,
there is no suitable fat-tailed distribution that can explain the observed data.
The dynamics of the volatility surface continues to be an intensive research topic
in quantitative finance. My belief is that the prices of an option chain must be
related to the distribution of its underlying asset. If the elliptic distribution is
believed to be the “correct” distribution for the underlying, it must be capable
of explaining the volatility structure of the options built on top of it. In the
subsequent papers that follow this, I’d also like to address this topic.

The past two decades have witnessed tremendous progress in the study of
elliptic curves. It is related to an impressive number of ideas and problems
in other parts of mathematics, such as number theory, group theory, modular
form, and cryptography. The famous Last Theorem of Fermat, for example, was
proven by Wiles [19] as corollary to a deep, but beautiful theorem about elliptic
curves. Many techniques, methods, and results from the study of elliptic curves
have been used to other areas of mathematics, sometimes with astonishing con-
sequences. In recent years, Elliptic Curve Cryptography (ECC) is found to be
more secure compared to the traditional RSA cryptography of the same key
sizes. Is it possible that the fat-tail nature of financial markets is also deeply
rooted in elliptic curves? If the answer is positive, then our understanding of
economics and finance will be profoundly impacted.

I use the acronym ECD for the elliptic distribution in this paper. Almost
every formula developed in this paper has been validated rigorously by GNU

Maxima, and tested in R with hundreds of test cases. Calculations and charts
are generated by the ecd package in CRAN. Feedback and collaboration are
welcomed.

2. The Development of ECD

2.1. Basic Notations

The basic notations are defined in this section. Additional investigations about
the distribution will be elaborated in subsequent sections. Our elliptic curves
take the following form:

(x− µ)
2

σ2
= −y3 −

(

γ + β

(

x− µ

σ

))

y + α. (2.1)

It has been rearranged, compared to Eq. (1.1), in order to make it suitable in
the context of a probability distribution. First, x and y are swapped. Second,
y is inverted to −y. Third, the skew term, βxy, is added. Fourth, x is enriched
via x 7→ x−µ

σ , where the location parameter µ and the volatility parameter

σ are added to manage the location and scale. The structure of x−µ
σ makes

the distribution qualified as a location-scale distribution family. The location
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parameter µ is a proxy of the mean log-return. In the option pricing model, it
is fixed by the “risk-neutral” condition3.

In most cases of theoretical study, it is simpler to set µ = 0, σ = 1. Alter-
natively, by setting x̂ = x−µ

σ , we arrive at the so-called “unit distribution”, in
which the curve becomes

x̂2 = −y3 − (γ + β x̂) y + α. (2.2)

The β term is the skewness parameter. It is a new element to our elliptic curves.
It is the coefficient of the x̂y term. When β=0, the distribution is symmetric;
otherwise, it is asymmetric. Since most financial time series have some degrees
of skewness, we need β to fit the real-world data. In Section 3.6, I will show
that β enters the elliptic distribution elegantly (it is not a hack). However, for
theoretical study of variance and kurtosis, it is often more convenient to study
the symmetric distribution.

There are places where y has multiple roots4. In ECD, this issue is addressed
by requiring that the elliptic curve y(x) is constructed from the smallest real
root of Eq. (2.1) for each x ∈ [−∞,+∞]. This leads to the definition of the
probability density functon (PDF) of an elliptic distribution,

P (x) =
1

C
ey(x), where C =

ˆ ∞

−∞
ey(x)dx (2.3)

and y(x) is parametrized by y(x;α, γ, σ, β, µ). C is the normalization constant
to maintain the unity of the density function,

´∞
−∞ P (x) dx = 1. The CDF is

obviously Φ(x) = E
[

1{X≤x}
]

=
´ x

−∞ P (x)dx; while at times it may be more
suitable to study the tail behavior with the complementary CDF (CCDF), 1−
Φ(x) =

´∞
x
P (x)dx. As mentioned before, for theoretical study, it is convenient

to set µ = 0, σ = 1 and β=0, which reduces the parametrization to the simple
form of y(x;α, γ). In such cases, we can use the elegant notation ECD(α, γ) to
represent the distribution.

The slope of log PDF carries important information about the distribution,
which is (assuming µ = 0, σ = 1)

d

dx
logP (x) =

dy

dx
= − 2x+ βy

3y2 + γ + βx
. (2.4)

Since y(x) = logP (x) + C, Eq. (2.4) is basically the ODE form of P (x), albeit
a very complicated one, by which P (x) can be solved, analytically or numeri-
cally, with boundary conditions of a known C, and/or a known P (x = µ), and
P (±∞) → −∞.

Furthermore, the curvature of log PDF is the derivative of the slope: d2y/dx2.
The typical shape of an elliptic distribution is shown in Figure 2.1. From Eq.
(2.4), we can define the “elliptic points”, xe, as where y(x) changes from concave

3The detail will be described in the subsequent paper.
4See the chart on catelog of elliptic curves at https://en.wikipedia.org/wiki/Elliptic curve
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Fig 2.1. The shape of a typical elliptic distribution. The PDF, log PDF, slope, and curvature
of ECD(1, 2). In Panel (2), notice the curve is bending outward in the tails of the log PDF. In
Panel (3), the ellipticity, xe = 1.24, is marked by two black vertical lines; and the convergence
of tail exponent E(x) to 2/3 is drawn in red dash lines.
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to convex. This occurs at the inflection points when the curvature crosses zero,

d2y

dx2
(xe) = 0. (2.5)

There are always a positive solution x+e and a negative solution x−e for xe.
The region between them, x ∈ [x−e , x

+
e ], looks like a normal distribution which

is concave; while the regions outside are convex and eventually approach the
“elliptic tails” y(x) ∼ −x2/3 asymptotically as x → ±∞. (See Section 2.3 for
more detail.) From the analyses of several financial time series in Section 8, we
will see that the region x ∈ [x−e , x

+
e ] is very similar to the standard deviation.

Therefore, we can define a new quantity called “ellipticity” that describes the
proximity where elliptic influence begins to dominate,

ellipticity =
x+e − x−e

2
. (2.6)

Since the PDF is the exponential of y(x), the convex nature of the elliptic tails
is also called “logarithmically convex”5. Logarithmical convexity and elliptic
tails are the main differentiators between the elliptic distribution and the normal
distribution since the later is always concave and never turns convex in y(x) ∼
−x2 for any x. For a hyperbolic tail, y(x) ∼ −x, there is also no convexity since
d2y/dx2 → 0 as |x| → ∞. We can define the tail exponent as

E(x) =
d log(−y)
d log(x)

=
x

y

dy

dx
, where |x| ≥ xe. (2.7)

This is a measurement of how fast the curve is converging to the expected tail
exponent. When y(x) is approaching the elliptic tail -x2/3, E(x) is approaching
2
3 . This is illustrated in Panel (3) of Figure 2.1. For a normal distribution, E(x)
is 2. For a hyperbolic tail, E(x) is 1.

The standard measures of elliptic curves, the discriminant ∆ and the j-
invariant (See p. 45 of Silverman 2008[17]) can be defined in the symmetric
case (σ = 1 and β=0),

∆(α, γ) = −16(4γ3 + 27α2), (2.8)

j(α, γ) = −1728
(4γ)3

∆(α, γ)
. (2.9)

There are several special situations related to them, as shown in Figure 2.2.
First, the zero discriminant condition defines a line in the 4th quadrant of (α, γ)
plane, where the elliptic curves are singular (at x = µ). This line is called “the
critical line”, which is defined as

γc(α) = −
(

27

4
α2

)
1
3

, where α ≥ 0. (2.10)

5See wikipedia at http://en.wikipedia.org/wiki/Logarithmically_convex_function.
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The distributions on this line form a special single-parameter sub-family called
“the cusp distribution”, which starts with the standard cusp distribution at
α = γ = 0, and approaches the asymptotic limit of Laplace distribution at
α → ∞. Depending on the application, the singular points may or may not
cause you problems. You should take a note of it.

Second, the zero j-invariant condition defines a horizontal line on the (α, γ)
plane, that is, Lj0 = {γ = 0, α ∈ [−∞,+∞]}. The positive side of the j = 0
line lies the important high-kurtosis distribution family. Third, the j = 1728
condition defines a vertical line on the (α, γ) plane, that is, Lj1728 = {α =
0, γ ∈ [−∞,+∞]}. The positive side of the j = 1728 line lies the most smooth
asymptotic path to the normal distribution, while the negative side produces
the distribution family closely resembling the hyperbolic distribution. Fourth,
the region below the j = 0 line and above the critical line, γ > γc, should be
excluded from the distribution family because those curves have jumps. These
are very important lines. They separate the (α, γ) parameter space into different
regions. Figure 2.2 illustrates these regions.

In the rest of the paper, when we draw the contours on the (α, γ) plane, we
prefer to adjust γ by the discriminant so that the critical line is a straight 45◦

line. This allows us to transform the (α, γ) plane from the Cartesian coordinate
to the polar coordinate, which is mathematically more powerful in some respects.
Polar coordinate also gives better visual insight to the contours. Therefore, the
discriminant adjusted γ, denoted as γ∆, is defined here as

γ∆ = sgn(γ)

(

4

27
|γ|3
)

1
2

. (2.11)

2.2. Quantile Function

The quantile function, w(u) : inf{x ∈ R, u ≤ Φ(x)}, is the inverse of the CDF,
Φ(x). It is an essential function for QQ-plot. The ecd package implements the
quantile function by ways of numerical sampling and interpolation. Since Φ(x) is
a smooth function of x most of the time, and it is fairly fast to calculate Φ(x) by
integrating via quadpack, numerical sampling is performed on the CDF segment
by segment. These segments are units of stdev, up to 4 stdev. Special handling
is required around elliptic points (See Eq. (2.5)) because there are kinks when
kurtosis is high. A separate numerical sampling is employed for the tail regions,
typically defined as Φ(x) < 1% and Φ(x) > 99%. The procedure exploits the
asymptotic behavior of the elliptic tails so that it can be precise up to, say, 40
stdev. The tail behavior is studied in depth in Section 3.

On the other hand, Steinbrecher and Shaw has shown w(u) satisfies the fol-
lowing ODE [18],

d2w

du2
= −d y(w)

dw

(

dw

du

)2

, (2.12)

where d y(w)
dw is the slope from Eq. (2.4) expressed in terms of w (that is, x). This

representation opens up possibility of numerical solution techniques that are
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Fig 2.2. The (α, γ) parameter space. The critical line (∆ = 0) is drawn in red. The excluded
region is in grey. The horizontal j = 0 line is in blue, and the vertical j = 1728 line is in
purple.
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complementary to numerical interpolation methods based on the CDF. Further
work is needed to explore the optimal routes for solving such ODE, and to
establish whether a power series method is viable.

2.3. Asymptotic Behavior at x = ±∞

The origin O of the elliptic curves is at x = ±∞ and y → −∞, where the PDF
vanishes, P (x = ±∞) → 0. It is obvious from Eq. (2.1), the distribution has an
elegant asymptotic behavior,

logP (x)
∣

∣

x→±∞∼ −(
x

σ
)

2
3 . (2.13)

The 2
3 exponent is important. It is the marker of the elliptic tails. The tails with

2
3 exponent are fatter than that of the GHYP (and/or Laplace distributions).
The asymptotic behavior of the GHYP family is driven by that of the modified
Bessel function of the third kind (See Appendix B of [4]),

logPghyp(x) ∼ −(
x

σ
)− 1

2
log(

x

σ
). (2.14)

However, this doesn’t mean ECD is drastically different from GHYP. For most
levels of kurtosis below 15, ECD can produce similar log PDF as HGYP. See
Section 7 for more detail.

Also notice that Eq. (2.13) has the same form as Eq. (3.2) and none of α, γ, β
shows up in Eq. (2.13). It indicates all elliptic distributions converge to the
same tail behavior as the standard cusp distribution, which will be examined in
Section 3.

2.4. Symmetric When β = 0

When β = 0, the distribution is symmetric. All the odd moments are zero.
Figure 2.3 demonstrates the various shapes of symmetric distribution and how
the shape of log PDF changes with different α and γ . They are chosen to
reflect the range of kurtosis observed in typical financial applications. ECD can
generate distributions from zero excess kurtosis to very high kurtosis, (as high
as 35). More numeric results will be presented later when kurtosis is studied in
greater details.

2.5. Asymmetric When β 6= 0

When β is not zero, the distribution is skewed. All the odd moments are non-
zero. The skewness is positive when β > 0 and negative when β < 0. The mean
is also shifted accordingly. The skewness can be quite large as demonstrated in
Figure 2.4.
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Fig 2.4. Demo of log PDF(x) of various asymmetric shapes. Notice that the shape can become
lopsided, largely due to the flexibility of the βxy term.
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2.6. Analytic Form of y(x;α, γ)

From the solutions of a depressed cubic polynomial, the analytic form of y(x;α, γ)
can be derived as following,

f1 = 1
2 (x

2 − α)
f2C = 27x4 − 54αx2 + 4γ3 + 27α2

f2 = 1
2
√
27

√
f2C

sgn = −1 if f2C ≥ 0 and |f1| < f2 ; else 1
f3 = (sgn×(f1 − f2))

1/3

y(x;α, γ) = sgn×(−f3 + γ
3f3

).

(2.15)

This formula works nearly everywhere except when γ = 0, where f3 becomes
zero and so is the j-invariant. A special treatment is needed - however, it is just

y(x) = sgn(α − x2)
∣

∣α− x2
∣

∣

1/3
. Also notice that there are cases where f2 can

be complex (f2C < 0) even though y(x;α, γ) always comes out real numbers;
therefore, certain care must be given when you convert between complex num-
bers and real numbers in your program. In those cases, you can avoid complex
number calculation with the trigonometric solution.

2.7. Chebyshev Trigonometry

Another approach of solving a depressed cubic polynomial is based on Cheby-
shev trigonometry6. In order to capture the broadest solution, let’s extend α, γ

to α̃ = α − (x−µ)2

σ2 and γ̃ = γ + β
(

x−µ
σ

)

. And the extended discriminant is

∆̃ = −16(4γ̃3 + 27α̃2). That is, nonzero x can be viewed as moderating (α, γ)
to a different location (α̃, γ̃) , but we still have the same form of a depressed
cubic,

y3 + γ̃y − α̃ = 0. (2.16)

There are four scenarios:
(1) When γ̃ = 0, that is, on the j = 0 line, the solution is simply y(x) =

sgn(α̃) |α̃|1/3 . the trigonometric system can’t handle such scenario (because
V → ∞).

(2) When ∆̃ < 0 and γ̃ > 0, that is, the entire upper (α̃, γ̃) plane, we have

y(x) = −2

√

γ̃

3
sinh

(

1

3
arcsinh(V )

)

, where V = −3α̃

2γ̃

√

3

γ̃
. (2.17)

(3) When ∆̃ < 0 and γ̃ < 0, that is, the lower left outer region on the (α̃, γ̃)
plane, we have

y(x) = 2 sgn(α̃)

√

−γ̃
3

cosh

(

1

3
arccosh(V )

)

, where V = −3 |α̃|
2γ̃

√

−3

γ̃
. (2.18)

6See http://en.wikipedia.org/wiki/Cubic function#Trigonometric .28and hyperbolic.29 method
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(4) When ∆̃ ≥ 0 (which implies γ̃ < 0), that is, the lower central region on
the (α̃, γ̃) plane, we have

y(x) = −2

√

−γ̃
3

cos

(

1

3
arccos(V )

)

, where V =
3α̃

2γ̃

√

−3

γ̃
. (2.19)

Notice that, in scenario (4), since the cos(...) term is always between -1 and

1, the scale of y(x) is controlled by − |γ̃|1/2. What α̃ is doesn’t actually matter
that much to the scale of y(x). In addition, it should be pointed out that sce-
narios (3) and (4) are the same due to the analytic continutity on the complex
plane between trigonometric and hyperbolic functions. There is a relation rarely
mentioned in textbook,

cos

(

1

3
arccos(z2 − 1)

)

= cosh

(

1

3
arccosh(z2 − 1)

)

, where z is real. (2.20)

The beauty of the trigonometric solution is that, in all four scenarios, no
complex number calculation is involved, especially taking cubic roots, which
is somewhat convoluted (I am referring to f3 in Eqs. (2.15). In addition, for
ECD, the output has to yield the smallest real root for y(x) in a definite way.
These trigonometric equations are particularly good for such purpose. There is
no ambiguity.

3. The Cusp Distribution

In this section, various types of cusp distribution are studied. The cusp distri-
butions are on the critical line, where the discriminant is zero with α ≥ 0 and
γ ≤ 0. On one end of the critical line where α = 0, we have the “standard cusp
distribution”, which is symbolic of the tails of all elliptic distributions; on the
other end of the critical line where α is large, the cusp distributions evolve into
the Laplace distribution. These are very interesting aspects associated with the
critical line.

3.1. The Standard Cusp Distribution

The standard cusp distribution ECD(0, 0) is one of the few distributions in the
family that have known analytic solutions. It has a very special place in ECD
because it is representative of the general shape of the tails for the entire elliptic
distribution family, following the result of the expansion around the origin O.
I use the Λ subscript to represent it here. This distribution is the result of
α = γ = β = µ = 0 and σ = 1. Its elliptic curve is simply

yΛ(x) = −x2/3. (3.1)
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This curve is historically called “semicubical parabola” 7. CΛ =
´∞
−∞ eyΛ(x) dx

has a closed form 3
√
π/2. Therefore, its PDF is

PΛ(x) =
2

3
√
π
e−x2/3

, (3.2)

which is shown in Panel (1) of Figure 3.2. It has a cusp at x = 0. The PDF also
satisfies the following differential equation

x
1
3
dPΛ(x)

dx
+

2

3
PΛ(x) = 0, (3.3)

which can be solved if the boundary condition is given, PΛ(x = 0) = 2
3
√
π
.

3.2. Moments and Kurtosis of Standard Cusp

All the central moments can be calculated via the change of variable x = z3.
The odd moments are zero, and the even moments are

µΛ(n) =

ˆ ∞

−∞
xn PΛ(x) dx =

4√
π

ˆ ∞

0

z3n+2 e−z2

dz. (3.4)

And the closed form for the even moments is

µΛ(n) =
2√
π
Γ(

3

2
(n+ 1)) =

(3n+ 1)!!

23n/2
. (3.5)

Specifically, the second moment is µΛ(2) = 105/8 and the fourth moment is
µΛ(4) = 135135/64. Therefore, its kurtosis is

KΛ =
µΛ(4)

µΛ(2)2
=

429

35
≈ 12.257, (3.6)

which is called the “standard kurtosis” of the elliptic distribution family. Kurto-
sis higher than this level is called high kurtosis. For people familiar with financial
time series, the kurtoses of the daily log-returns of many stock market indices
and commodities are in this range. So this distribution should have an impor-
tant role for financial application. Another important reference of kurtosis below
this level is 6 from the Laplace distribution. Therefore, between 6 and 12.257 is
called medium kurtosis.

Since all the moments exist, the characteristic function can be composed as8

ϕΛ(t;µ, σ) = E
[

eitX
]

= eitµ

[

1 +
∞
∑

n=2,4,...

(−1)
n
2
µΛ(n) (σt)

n

n!

]

. (3.7)

7http://en.wikipedia.org/wiki/Semicubical parabola
8It is preferred to have µ and σ in the characteristic function,

in order to compare it with what’s on Wikipedia. See examples in
http://en.wikipedia.org/wiki/Characteristic function (probability theory)#Examples
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When µ = 0, the characteristic function is a real-value transcendental function.
Likewise, the moment generating function (MGF) is composed by the sum of
moments,

MΛ(t;µ, σ) = E
[

etX
]

= etµ

[

1 +
∞
∑

n=2,4,...

µΛ(n) (σt)
n

n!

]

. (3.8)

However, strictly speaking, MGF diverges due to the elliptic tail exponent 2
3

less than 1. MGF is the crucial element in the option pricing model. The issue
of MGF explosion and tail truncation will be studied in great details in the
subsequent paper on option pricing model.

3.3. The CDF and Tail Behavior of Standard Cusp

Since the standard cusp doesn’t depend on any parametrization, it is a good
place to explore the tail behavior, which is necessary for the implementation of
the quantile function. The complimentary CDF (CCDF) of the cusp distribution
allows us to study the right tail without worrying about the sign of x. It is defined
as

CCDF = 1− ΦΛ(x) =
2

3
√
π

ˆ ∞

x

e−x2/3

dx, where x > 0. (3.9)

With a change of variable, t = x2/3, The CCDF is transformed to the equivalent
of a gamma distribution with shape 3

2 and scale 1, 9

1− ΦΛ(x) =
1

2

ˆ ∞

x2/3

Γ (x;
3

2
, 1) dx, where x > 0. (3.10)

Therefore, the tail behavior of the ECD is closely related to that of the gamma
distribution. This integral can be expressed in terms of the complimentary error
function (erfc),

1− ΦΛ(x) =
1√
π
x

1
3 e−x2/3

+
1

2
erfc

(

x
1
3

)

. (3.11)

The tail region is defined as Φ(x) < 1% on the left tail; or 1−Φ(x) < 1% on the
right tail. This is approximately 4-5 standard deviations away from the mean.
(One standard deviation is 3.62 for standard cusp.) The asymptotic expansion
of incomplete gamma function (See §8.11(i) of NIST DLMF) yields

1−ΦΛ(x) =
1√
π
x

1
3 e−x2/3

(

1 +

N−1
∑

k=1

Γ ( 32 )

Γ ( 32 − k)x2k/3
+RN (x)

)

, when x→ ∞,

(3.12)

9Gamma distribution with scale one is also called “incomplete gamma function”.
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Fig 3.1. The cusp distributions. (1) The log PDF(x) of a few cusp distributions. (2) The
rapidly decreasing kurtosis of cusp distributions for small α. (3) The asymptotic behavior of
kurtosis when α → ∞. (4) Illustration of a cusp distribution at α = 105 where the kurtosis
is 6.21, very close to the theoretical value of 6 for a Laplace distribution.
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where N is a large integer and RN (x) is the residual error term O(x2N/3).
Numerical test shows 10−4 precision for x = −20, N = 10. Taking the logarithm,
the dominant tail behavior is

log (1− ΦΛ(x)) = −x 2
3 +

log x

3
− log π

2
+ log(1 + ...). (3.13)

That is, the log CCDF decreases like −x2/3 in the tails, which is then moderated
by the 1

3 log |x| term. As shown in Panel (4) of Figure 3.2, the log CCDF is
quasi-linear from 4 stdev to 30 stdev with a linear slope of ∼ 0.62 per stdev.
Numerically it can be fitted reasonably accurate by a polynomial of less than 6
orders. This fit gives us a precise mapping up to 30 stdev, which can be used to
invert the CDF for the quantile function. This is how the quantile function is
implemented in the ecd package. For financial applications, the probability of
an event occurring one day in 100 years is approximately log Φ(x) = − log(250×
100) ∼ −10. This is the minimum precision required for the quantile function.
The range shown in Panel (4) is twice of this level.

3.4. The Discriminant

The discriminant and j-invariant are two fundamental quantities associated with
elliptic curves. Contour of discriminant on the (α, γ∆) plane is shown in Figure
3.3. On the upper plane, the discriminant is negative. The contour lines form
many confocal circles due to

∆(α, γ∆) = −432 (sgn(γ∆) γ2∆ + α2). (3.14)

Elliptic curves in this region have single real roots. As the discriminant ap-
proaches −∞, the distribution is asymptotic to a normal distribution.

On the lower plane, the critical line (∆ = 0) is where many contour lines
converge on the right side of the chart. In the region of positive discriminant,
γ∆ is negative and the contour lines are hyperbolic. Elliptic curves in this region
can have three real roots in parts of the curve. The distributions have wedge-like
shapes (in log PDF) similar to that of hyperbolic distributions. The closer to
the critical line, the sharper the wedge is at the peak.

3.5. General Cusp Distributions and Laplace Distribution

In this section, we will discuss some properties of the general “cusp distribution”
family. The standard cusp distribution is a special case of this family. All the
cusp distributions are located on the critical line defined by Eq. (2.10) in the
fourth quadrant of the (α, γ) plane10. They are singular at x = 0. This spe-
cial group of distributions forms the first single-parameter sub-family of elliptic
distribution.

10In the polar coordinate that follows, this is θ = 7

4
π,R ∈ [0,∞).

imsart-generic ver. 2014/10/16 file: elliptic.tex date: September 26, 2015



S. H-T. Lihn/On the Elliptic Distribution 19

-10 -5 0 5 10

0.
0

0.
1

0.
2

0
.3

(1) PDF of Standard Cusp

x

P
D
F

stdev: 3.62

kurt: 12.26

-15 -10 -5 0 5 10 15

-7
-6

-5
-4

-3
-2

-1

(2) Log PDF of Standard Cusp

x

l
o
g
P
D
F

stdev

4 stdev

10 20 30 40 50

0.
00
0

0.
00
2

0.
00
4

0.
0
0
6

0
.0
0
8

0
.0
1
0

(3) CCDF of Right Tail

x

C
C
D
F

4 stdev

20 40 60 80 100

-2
0

-1
5

-1
0

-5

(4) Log CCDF of Right Tail

x

l
o
g
C
C
D
F

slope: -0.62 per stdev

4 to 30 stdev
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Here we illustrate a method to identify all the cusp distributions by examining
the slope dy/dx. By definition, a cusp distribution has a singular point where
the slope is undefined, that is, the denominator of dy/dx is zero,

3y2 + γ + βx = 0 (3.15)

This can be evaluated at the peak of the distribution, which is defined by the
numerator of dy/dx being zero,

2x+ βy = 0 (3.16)

Putting them back to the Weierstrass equation, Eq. (2.1), we can solve the
location of the peak and the relationship between the parameters. When β = 0,
we first get the location of the peak, x = 0, from Eq. (3.16), Then we get the
peak density y2(0) = −γ/3, which implies γ < 0; and y(0) = 3

2
α/γ < 0. Finally

we get 27
4 α

2 = −γ3, which is identical to ∆ = 0. The asymmetric case can be
solved numerically by following the same procedure. It is important to have a
defined procedure to identify where the peak is since the peak area tends to be
numerically unstable and requires special handling.

We prefer to specify each cusp distribution by a positive α. Based on ∆ = 0,
Eq. (2.19) can be simplified quite well for the symmetric case. With the change
of variable z2 = x2/(ασ2), we have

y(z) = −(4α)1/3 cos

(

1

3
arccos

(

z2 − 1
)

)

, where z2 ≤ 2. (3.17)

Its Taylor expansion is (assuming z > 0)11

y(z) ≈ −
(α

2

)
1
3

(

1+

√
2 z√
3

− z2

9
+

5 z3

23/2 37/2
− 4z4

243
+ ...

)

. (3.18)

We see that the cusp shows up via the linear z term. We also have y(0) =
−(α/2)1/3, that is, the peak is negative and moving lower as α increases. Panel
(2) of Figure 3.1 shows the kurtosis decreases rapidly as α increases from zero.
As you can see, the Laplace distribution, ∼ exp(− |x| /b), is a special case of

the general cusp distribution when z is small or α is very large (α ≫ (x/σ)
2
).

It should also be pointed out that this quasi-linear segment of the general cusp
distributions only exists when z2 ≤ 2, that is, x2 ≤ 2ασ2. It disappears when
α→ 0.

The stable growth of an economic system requires a power law (Gabaix
2009[9]), which in turn requires a large linear segment by a large α. As α in-
creases, the cusp distribution will approach the Laplace distribution asymptot-
ically. Replacing z with x, we have

y(x) ≈ −
(α

2

)
1
3 −

(

2

α

)
1
6 x√

3σ
+ ..., when α→ ∞. (3.19)

11Eq. (3.17) can cover the entire z-axis by extending to hyperbolic functions on the complex
plane. But Taylor expansion can’t be extended naturally because z2 = 2 is singular.
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The linear coefficient b is equal to 6
√
ασ

√
3

6
√
2
. We see that σ is merged with α

asymptotically in a peculiar way.
Next, we will explore the behavior of the kurtosis on the critical line. Panel

(2) of Figure 3.1 shows the kurtosis drops rapidly for small α. Attempt of using
Taylor expansion to analyze this decreasing curve has failed; however, it is found
that the kurtosis curve can be fitted quite well empirically by a polynomial of
α1/3. Within order of 5 12, a reasonably high precision fit can be obtained as
shown in green dash line of Panel (2) and (3). This fit can go as high as α ≈ 3000.

At this level of large α, we can study the variance and kurtosis asymptot-
ically by the following Taylor expansion method. The dimensionless moments
are rearranged as

µn = C

ˆ ∞

0

zn exp (y(z)− L(z)) eL(z)dz, where L(z) = −
(α

2

)
1
3

(

1+

√
2 z√
3

)

.

(3.20)
C is a constant that normalizes µ0 to one, whose exact value is not needed here.
Next, Taylor expansion on z is applied to exp(...) at z = 0. The integral is then
broken up to a sum of Laplace integrals. The kurtosis and variance at large α
are expanded by 1/α. The results are

var

σ2
=
µ2α

µ0
= 10 + 3 2

2
3 α

1
3 +

13

3 2
2
3 α

1
3

−

17 2
2
3

9α
2
3

+
445

108α
+ ..., (3.21)

kurtosis =
µ4µ0

µ2
2

= 6+
2

10
3

α
1
3

−

2
8
3

α
2
3

−

44

3α
+
19 2

10
3

3α
4
3

−

257 2
2
3

3α
5
3

− 15140285

27α2
+.... (3.22)

The kurtosis 6 of a Laplace distribution appears naturally. The red dash line
in Panel (3) of Figure 3.1 shows the result of Eq. (3.22), which is precise for
α > 103.5 as the kurtosis drops below 6.5. Panel (4) shows a cusp distribution
at α = 105. Using MPFR, the kurtosis 6.214 calculated numerically matches
the sum in Eq. (3.22). The variance 231.1 also matches the sum in Eq. (3.21).

One interesting phenomena is that, because kurtosis stays above 6 on the
critical line, it pushes the spirals of low kurtosis regime towards infinity, as
shown in Figure 5.2. The contour lines are straight lines, almost parallel to the
critical line, in the third and fourth quadrants.

3.6. Asymmetric Standard Cusp Distribution

When β 6= 0, the elliptic curve of the standard cusp distribution becomes asym-
metric,

x2 = −y3 − βxy. (3.23)

This curve also has analytic solution. The cusp is still located at the peak of
the distribution, y(0) = 0; and y(x) ≤ 0 everywhere. Notice that β 7→ −β
is equivalent to x 7→ −x. Therefore it is sufficient to study β > 0. Using the

12In R, it is [ a3<-a^(1/3); lm(k ~ poly(a3,5,raw=TRUE)) ].
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trigonometric solutions from Section 2.7, we have α̃ = −x2, γ̃ = βx, and ∆̃ =

−432x3 (x − x0), where x0 = − 4β3

27 . With V =
∣

∣

∣

x
x0

∣

∣

∣

1
2

and W = 2
∣

∣

∣

βx
3

∣

∣

∣

1
2

, there

are three scenarios:
(1) When ∆̃ < 0 and γ̃ ≥ 0 (that is, if β > 0, then x ≥ 0), we have the

solution of the right tail,

y+(x, β) = −W sinh

(

1

3
arcsinh(V )

)

. (3.24)

(2) When ∆̃ < 0 and γ̃ < 0 (that is, if β > 0, then x < x0), we have the
solution of the left tail,

y−(x, β) = −W cosh

(

1

3
arccosh(V )

)

. (3.25)

(3) When ∆̃ ≥ 0 and γ̃ < 0 (that is, if β > 0, then x0 ≤ x < 0), we have

y−(3)(x, β) = −W cos

(

1

3
arccos(V )

)

. (3.26)

According to analytic continuity in the complex plane, (2) and (3) can be
viewed as identical. That is, cosh

(

1
3 arccosh(V )

)

= cos
(

1
3 arccos(V )

)

, if V is
evaluated as a complex number, V + 0i. 13

Due to the facts that y+(−x, β) = y+(x, β) and y−(−x, β) = y−(x, β), the
moments can be expressed as integrals of x ∈ [0,∞),

µn =
1

C

ˆ ∞

0

xn
(

ey
+(x,β) + (−1)ney

−(−x,β)
)

dx, (3.27)

where C =
´∞
0

(

ey
+(x,β) + ey

−(−x,β)
)

dx. The quantities, B± =
´∞
0
ey

±(x,β)dx,

follow a peculiar conservation law: B+−B− = β. It is very precise numerically,
but yet to have analytic proof. Such precision also indicates the elegance of the
skew term βxy.

Generally speaking, the effect of β to the even moments and C is small. The
first order effect is less than 5% for C and 2% for stdev. Eq. (3.27) appears quite
complicated, but it produces rather simple numerical results for the first moment
(µ1) and skewness (S). The regression analysis in the range of β ∈ (0.1, 0.8)
yields

µ1 ≈ 1.2353β,
S ≈ 1.2113β,

µ1 ≈ sgn(S) (0.00178 + 0.9875 |S|+ 0.0405 |S|2).
(3.28)

13However, for numerical implementation, if one chooses to use complex number, the issue
of branch cut discontinuities in the complex plane for inverse hyperbolic/trignometric functions
must be handled properly. cosh

(

1

3
arccosh(x)

)

is also associated with Chebychev polynomial

Tn(x) where n = 1

3
.
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As you can see, both µ1 and skewness are almost linear to β in this range, and
µ1 is almost equal to skewness, all within 3% error. The implication is that, in
the high frequency data where σis small and the negative skewness is obvious,
such as in an equity index, the skewness and µ1 are synonym to each other and
will overtake the second moment.

4. The J-Invariant and the Polar Coordinate

The j-value in Eq. (2.9) is an invariant for elliptic curves, it does not depend on
the choice of inflection (elliptic) point if the equation is written in the Weierstrass
or Legendre form. Over an algebraically closed field, two elliptic curves are
isomorphic if and only if they have the same j-invariant. The contour of j-
invariant on the (α, γ∆) plane is presented in Panel (1) of Figure 4.1. The
contour levels are straight lines when presented in the units of γ∆ instead of γ.
This inspires the definition of the polar coordinate (R, θ) as

Reiθ = α+ iγ∆. (4.1)

These straight lines are defined by the polar angle θ alone, with the j-invariant
in the form of

j(α,γ∆)
1728 =

sgn(γ∆) γ2
∆

sgn(γ∆) γ2
∆+α2 = j(θ)

1728 =
{ sin2 θ, γ∆ > 0;

(

1− cot2 θ
)−1

, γ∆ < 0.
(4.2)

Each θ forms a distribution sub-family that shares the mathematical property
called “isomorphism”.

4.1. Isomorphic Mapping

All the distributions with the same θ are isomorphic. The isomorphic mapping
between two elliptic curves, say (α, γ) and (α′, γ′), is stated as 14

(α′, γ′) =
(

αλ6, γλ4
)

⇔ (x′, y′) =
(

xλ3, yλ2
)

. (4.3)

It follows that R′ = Rλ6. So λ is not a new dimension. It is simply the scaling
of R. This speaks for the elegance of the polar coordinate. Also on the right
hand side, xλ3 is just the scaling of the volatility parameter, σ = λ−3. So
the isomorphism can be carried out from within our existing parametrization
framework. This is good.

Panel (2) of Figure 4.1 shows the j-invariant on the unit circle in the polar
coordinate (R = 1), Eq. (4.2). Notice that ±α map to the same j. This isomor-
phism is facilitated by λ = i. However, because λ is imaginary, the mapping
alters the structure of the roots and the distribution is changed in a very fun-
damental way (remember we are taking the smallest real root). So I would not
consider such isomorphism a valid mapping in the context of elliptic distribution.

14See Proposition 1.7, p.50 of Silverman 2008[17].
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The isomorphism allows us to “map out” all other distributions from the
ones on the unit circle. Assume we have y0(x) for ECD(α0, γ0) on the unit circle
at angle θ, that is, α0 = cos θ, γ∆0 = sin θ. Now there is another elliptic dis-
tribution with R 6= 1 on the same j-invariant line. It can be parametrized as
ECD(α0R, γ0R

2/3). And its elliptic curve y(x) can be constructed according to
isomorphism,

y(x) = R
1
3 y0

(

xR− 1
2

)

= R
1
3 y0

(

x; σ0 =
√
R
)

. (4.4)

If y0(x) is known, there is no need to recompute y(x) (at least in theory).
This is the power of isomorphism - once an elliptic curve on the unit circle is
fully understood, all the distributions on the same j-invariant line are known.
However, this doesn’t mean they are the same distributions. The PDF is ∼ ey(x).
The R1/3 factor multiplied to y0(...) changes the exponential integral on the
PDF, which in turn changes the statistical properties of the new distribution.15

In fact, an important effect of moving R via isomorphic mapping is to alter
the variance and kurtosis. It is very similar to a diffusion process, which I call
“isomorphic diffusion”. I plan to address this interesting topic in a separate
paper.

In the Introduction, I’ve emphasized that ECD should have several well-
known single-parameter sub-families. Indeed, more than you’d expect, every
angle θ forms its own sub-family with R ∈ (0,∞). When R = 0, it is the
standard cusp distribution. So the standard cusp distribution has a very special
place in elliptic distribution - It is an singularity in isomorphism. The general
cusp distribution family discussed in Section 3.5 is just the sub-family at θ = 7

4π.
And we will study two sub-families, the j = 0 and j = 1728 lines, in Sections
4.3 and 4.4.

4.2. Solving y(0;R, θ) Isomorphically

The analytic solution of y(0) is an important subject for numerical computation
and it can be solved elegantly by isomorphism. The peak of PDF, P (x = 0), is
ey(0) before normalization. Therefore, if |y(0)| becomes very large, the compu-
tation associated with P (x) can exhaust the digital precision available to the
integration library. The intregral

´

ey(x)dx can have convergence issue if the
absolute tolerance (abs.tol) is not set properly. This can happen when R is
very large (for instance, when studying asymptotic behavior).

From Eq. (4.4), the isomorphic mapping leads to

y(0;R, θ) = R
1
3 y(0;R = 1, θ), (4.5)

where y(0;R = 1, θ) is y(0) on the unit circle. From the trigonometric equations

15The
√
R term that x is divided by in Eq. (4.4) is just σ. This should be fairly obvious

to the reader.
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(1) Contour of J-Invariant (j1/3)
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Fig 4.1. (1) Contour of J-Invariant on the (α, γ∆) plane. Since j-invariant tends to be quite
large, the cubic root of j-invariant is shown in the plot. Notice j-invariant becomes infinity
when the discriminant is zero. (2) J-Invariant on the unit circle in the polar coordinate. Its
structure becomes complicated when θ > 180◦.
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at x = 0, we arrive at the following analytic form,

y(0;R = 1, θ) = Y (θ) =











-2
2
3 sin (θ)

1
3 sinhΘ, θ ∈ [0, π];

-2
2
3 sin (θ)

1
3 coshΘ′, θ ∈ (π, 74π);

−2−
1
3 cos (θ)

1
3 , θ = 7

4π;

(4.6)

where Θ = 1
3 log

(

tan( θ2 )
)

and Θ′ = 1
3arccosh (cot(θ))

16. The angular function
Y (θ) defined here is range-bound: For θ ∈ [0, π], Y (θ) is 1 at θ = 0; 0 at θ = π

2 ; -1
at θ = π; and predominantly linear around θ = π

2 . For θ ∈ (π, 74π), Y (θ) is like a
half circle with upward opening, bounded between -1.44 and -0.71. In Section 6,
the first part of Y (θ) will show up again from the asymptotic Taylor expansion
on the upper (α, γ) plane. The solution developed here confirms the exact form of
y(0), not just the first-order approximation. Furthermore, the y(0) formula will
be used in Section 6.4 to estimate the magnitude of the normalization constant
C and the absolute tolerance required for the integration library to converge
properly.

4.3. Distributions on the J=0 Line

When γ = 0, the distribution ECD(α, 0) is reduced to x2 = −y3 + α, and the
solution of y(x) has a simple form of

yj0(x;α) = sgn(α− x2)
∣

∣α− x2
∣

∣

1/3
. (4.7)

When α < 0, yj0(x) = −
(

x2 + |α|
)1/3

which has a sharp round top near
x = 0, but not a cusp, due to the smoothing effect of |α| inside the cubic root.
The peak value is negative, yj0(0) = − |α| 1/3. The ellipticity is at |x| =

√
3α

where the convexity changes sign. As shown on the left sides of Panel (1) and
(2) of Figure 4.2, the kurtosis decreases and the stdev increases with larger
|α|. Heuristically speaking, as |α| → ∞, yj0(x) is dominated by the x2 term
asymptotically, and it becomes a normal distribution.

When α > 0, the distribution has a special shape that looks like a nipple.
This is caused by the flip of sign in sgn(α−x2) at the elliptic points, |xe| =

√
α,

where yj0(xe) = 0. The peak value is at y(0) = α1/3. This nipple-shape sub-
family of distributions consists of the high kurtosis solutions crucial for the
financial applications. In Panel (1) of Figure 4.2, we see that the maximum kur-
tosis Kmax = 35.05 occurs at αmax = 2.94. This maximum-kurtosis distribution
marks the highest modeling potential of ECD. The special symbols, Kmax and
αmax, are designated for its quantity and location. Many high-kurtosis daily
log-return distributions require parametrization in this neighborhood. Panel (3)
illustrates the nipple-shape log PDF of this “maximum” distribution. Panel (4)
illustrates its PDF that looks like bullet, very different from a normal distribu-
tion.

16 sinθ
cosθ+1

= tan( θ
2
) and arcsinh (z) = log

(

z +
√
z2 + 1

)

.
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(1) Kurtosis along j = 0 line
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Fig 4.2. The kurtosis and stdev along the j = 0 line. (1) Notice the maximum kurtosis
Kmax = 35.05 occurs at αmax = 2.94. (2) In the range of α ∈ (−5, 5), the decreasing
stdev compresses the probability towards the peak as α increases. (3) The log PDF of the

Kmax distribution has a nipple shape in the peak, then decays quickly at ellipticity,
√

|αmax|,
indicated by the vertical lines. (4) The bullet-like PDF of the Kmax distribution. A shape
typical of a daily log-return distribution when its kurtosis is near or greater than 20.
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To study the kurtosis asymptotically at large α, we first transform yj0(x)
dimensionless with the change of variable x2 = αz2 (that is, α merged into a
role of variance). This leads to

yj0(z) = sgn(α) |α|
1
3
(

1− sgn(α) z2
)1/3

. (4.8)

The connection to a normal distribution becomes obvious in its Taylor expan-
sion,

yj0(z) |α|−
1
3 = sgn(α)− z2

3
− sgn(α)

z4

9
-
5 z6

81
+ ... (4.9)

The dimensionless moments can be rearranged as

µn = C ′
ˆ ∞

0

zn exp (yj0(z)−G(z)) eG(z)dz, where G(z) = − |α|
1
3
z2

3
(4.10)

C ′ is a constant that normalizes µ0 to one. Next, Taylor expansion on z is
applied to exp(...) at z = 0. The integral is then broken up to a sum of Gaussian
integrals. The power expansion by 1/α yields both the variance and kurtosis as

var

σ2
=
µ2α

µ0
=

63

8
+

3α
2
3

2
−

9α
1
3

2
−

39

8α
1
3

−

117

32α
2
3

−

3

4α
+ ..., (4.11)

kurtosis =
µ4µ0

µ2
2

= 3−
6

α
1
3

+
15

α
2
3

−

345

4α
4
3

+
75

8α
5
3

+ .... (4.12)

The precision can be verified by ECD(−103, 0) and ECD(103, 0). ECD(−103, 0)
has variance of 203.332 and kurtosis of 3.742 by way of numeric integral. The
variance expansion yields 203.327; the kurtosis expansion yields 3.741. On the
other hand, ECD(103, 0) has variance of 112.351 and kurtosis of 2.542 by way of
numeric integrals. The variance expansion yields 112.350; the kurtosis expansion
yields 2.541. This is very good. Notice that the variance scales like α

2
3σ2 =

R
2
3σ2. This is a general asymptotic result, see Eq. (6.12).
The kurtosis 3 of a normal distribution comes out naturally from Eq. (4.12).

The second term −6α− 1
3 indicates the kurtosis converges to 3 from above and

below 3. In particular, for positive α, the kurtosis drops from the maximum of
35 rapidly to below 3, then comes back to 3 slowly. This is illustrated by the
purple line in Panel (1) of Figure 6.1. The speed of convergence is slow due to

the power of α− 1
3 . α has to be greater than 103 to approach the asymptotic

region.
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4.4. Distributions on the J=1728 Line

When α = 0, the distribution ECD(0, γ) is reduced to x2 = −y3 − γy. It has the
analytical solution of

f1 = 1
2x

2

f2C = 1
4x

4 + 1
27γ

3

f2 =
√
f2C

fsgn = −1 if f2C ≥ 0 and |f1| < f2 ; else 1
f3 = [fsgn(f1 − f2)]

1/3

yj1728(x;α, γ) = fsgn(−f3 + γ
3f3

).

(4.13)

When γ > 0, f3 is real for all x; and yj1728(0) = 0 all the time. This leads
to an important property: all the curves on the positive j = 1728 line anchor at
(0, 0). But when γ < 0, the peak value is at y(0) = −

√

|γ|. The negative peak
increasing with |γ| is a different behavior compared to the positive side, where
the peak is at zero all the time. However, f3 can become complex for small x
when γ < 0, which makes taking cubic root cumbersome. It becomes hard to
gain more analytic insight.

Figure 4.3 illustrates how kurtosis and stdev evolves along j = 1728 line.
The maximum kurtosis Kj1728

max = 13.66 occurs at γj1728max = 1.488. The kurtosis
decreases monotonically in both directions as |γ| → ∞. In Section 6, we will see
that the kurtosis converges to that of a normal distribution most smoothly and
orderly along the positive j = 1728 line. (This is illustrated by the blue line in
Panel (1) of Figure 6.1.) So here we will take a close look at this sub-family of
distributions using the trigonometric solution.

When γ > 0, from Eq. (2.17), we have α̃ = −x2 < 0, γ̃ = γ > 0, and
∆̃ = −16(4γ̃3 + 27α̃2) < 0. Therefore, only one scenario is applicable,

yj1728(x) = −2

√

γ

3
sinh

(

1

3
arcsinh(V )

)

, where V = x2
√

27

4γ3
> 0. (4.14)

To make it dimensionless, we use the change of variable x2 = γz2, (that is, γ
merged into a role of variance) this leads to

yj1728(z) = −2

√

γ

3
sinh

(

1

3
arcsinh

(

z2
√

27

4γ

))

. (4.15)

The connection to a normal distribution becomes obvious in its Taylor expan-
sion,

yj1728(z) = −z2 +
z6

γ
−

3 z10

γ2
+

12 z14

γ3
+ ... (4.16)

The convergence to normal is speedy. For each power of γ, z adds power of 4.
The dimensionless moments can be rearranged as

µn = C ′
ˆ ∞

−∞
zn exp

(

yj1728(z) + z2
)

e−z2

dx, (4.17)
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Fig 4.3. The kurtosis and stdev along the j = 1728 line. (1) Notice the maximum kurtosis

Kj1728
max = 13.6635 occurs at γj1728

max = 1.488. (2) The stdev forms a bottom near γ = 3.08. (3)

The PDF of the distribution at Kj1728
max . (4) The log PDF of the distribution at Kj1728

max has a
triangle shape with an extensive linear slope in both tails.
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where C ′ is a constant that normalizes µ0 to one. Next, Taylor expansion on
z is applied to exp(...) at z = 0. The integral is then broken up to a sum of
Gaussian integrals. The power expansion by 1/γ yields both the variance and
kurtosis as

var

σ2
=
µ2γ

µ0
=

45

8
+
γ

2
+

135

4 γ
−

13365

32 γ2
+

103275

8 γ3
−

403920675

512 γ4
+ ..., (4.18)

kurtosis =
µ4µ0

µ2
2

= 3 +
45

γ
+

4725

4 γ2
−

150255

16 γ3
−

41802075

64 γ4
+ .... (4.19)

The kurtosis 3 of a normal distribution comes out naturally from Eq. (4.19). The
variance is eventually dominated by γ/2. The precision of two formulai can be
verified by ECD(0, 100) whose variance is 55.933 and kurtosis is 3.554 by way of
numeric integral. The variance expansion yields 55.926; the kurtosis expansion
yields 3.552. They match very well.

5. Standard Deviation, Kurtosis, and Ellipticity

In this section, the contours of standard deviation, kurtosis, and ellipticity on
the (α, γ) plane are presented. Interestingly, the contours form beautiful spi-
rals. Especially for kurtosis contour, the spirals convey important asymptotic
behaviors.

5.1. Beautiful Contours and Spirals

Figure 5.1 shows the contour plot of standard deviation on the (α, γ) plane with
σ = 1. Since the standard deviation is always proportional to σ, it is fairly easy
to put σ back. There are some fine structures in the high-kurtosis region, i.e.
R . 10 in the first quadrant, as shown in Panel (2). Once R is reasonably large,
the standard deviation is increasing monotonicly with R at every isomorphic
direction (that is, at a fixed angle θ).

Figure 5.2 shows the contour plot of kurtosis on the (α, γ) plane. The “high-
kurtosis region” can be defined as kurtosis higher than that of the standard cusp
distribution (KΛ ∼ 12.257). This region is concentrated in the first quadrant on
the (α, γ) plane as shown in Panel (2). The maximum kurtosis Kmax = 35.05
occurs at αmax = 2.94. The spirals are all centered around this point although
their analytic formula is still unknown. Another interesting phenomena is that
the spirals becomes nearly parallel straight lines in the third and fourth quad-
rants. These lines are parallel to the critical line because the kurtosis decreases
very slowly on the critical line and never drops below 6.

The contour plot of ellipticity is shown in Figure 5.3. Ellipticity characterizes
the inflection points of an elliptic distribution. Its meaning is different from that
of the standard deviation. It marks the points that separate the normal region
(concave) from the elliptic (convex) region. So the larger the ellipticity the more
it is like a normal distribution. On the contrary, zero ellipticity is the mark of
the cusp distributions in which the entire curve is convex.
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(1) Contour of Standard Deviation
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Fig 5.1. Contour of Standard Deviation. Notice there is an interesting spiral shape. (1) The
panel shows a large parameter space with R up to 40. (2) Zooms-in a smaller region wtih
R . 10 in the first quadrant. This region is also called the “high-kurtosis region”.
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(1) Contour of Kurtosis
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Fig 5.2. Contour of Kurtosis. Notice there is an interesting spiral shape. (1) The panel shows
a large parameter space with R up to 40. (2) Zooms in on the region of highest kurtosis, located
at R < 5 in the first quadrant.
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Contour of Ellipticity
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Fig 5.3. Contour of Ellipticity. Notice the spirals start from zero on the critical line. On the
positive j = 0 line, the ellipticity is

√
α; while on the negative j = 0 line, the ellipticity is√

3α.
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5.2. Kurtosis Peak at ECD(2.94, 0)

The spirals of kurtosis contour converges to a point of maximum kurtosis on
the j = 0 line. Numerical analysis indicates this point is approximately at
αmax = 2.94, γ = 0, with kurtosis of Kmax = 35.05. The shape of elliptic curve
associated with this highest kurtosis is rather unusual. The log PDF shows a
large triangle base with a nipple shaped peak and a round top at the tip of the
nipple, as shown in Panel (3) of Figure 4.2. This shape leads to a bullet-like
PDF in Panel (4) of of Figure 4.2. Rarely any financial asset can have such
a high kurtosis in its daily log-return distribution and still survive for a long
history, so we are less concerned about its specifics. However, this point serves
as an important reference for analytical purpose as well as for the data fitting
procedure.

If we draw a vertical line from (2.94, 0) to (2.94,∞), this line cuts across all
possible kurtosis values from 35 to 3. This property is valuable for an automated
data fitting program. When you have a data set with a certain kurtosis and
variance, how do you figure out where to start on the (α, γ) plane? One way
to get started is to locate the γ on this vertical line with the same kurtosis (or
the asymptotic kurtosis, which will be explained later). There is a contour line
associated with this kurtosis as shown in Figure 5.2. On this contour line, the
distributions have different shapes. You choose the shape closest to your data,
either via QQ-plot or some measure of least mean square (LMS) estimation,
and that is a good starting point to fit the data.

There is a novel concept associated with such procedure. You can think of
kurtosis as the radius parameter of an abstract polar coordinate, and there is an
imaginary angle parameter linked to the contour of a given kurtosis. Different
angle gives you different shape - a nipple shape, a round shape, a triangular
shape, or a cusp. Therefore, the angle parameter is the shape parameter. It
is just that such imaginary “polar coordinate” is quite difficult to formulate
analytically.

6. Asymptotic to Normal Distribution

By inspecting the kurtosis contour in Figure 5.2, it seems to indicate that the
kurtosis spirals approach 3 when they are further away from (0, 0) on the (α, γ)
plane, but that region is well beyond 40. So the conformity to normal distribution
is a subject of asymptotic behavior in the parameter space. I’ve made some
preliminary exploration of such asympotic behavior on the j = 0 and j = 1728
lines. In this section, I will use several approaches to study this subject more
broadly.

6.1. Heuristic Expansion

The j = 1728 Line.

imsart-generic ver. 2014/10/16 file: elliptic.tex date: September 26, 2015



S. H-T. Lihn/On the Elliptic Distribution 37

First, we look at the asymptotic behavior at the j = 1728 line heuristically.
When α = 0, γ → ∞, and keep γσ2 = constant, Eq. (2.1) becomes

x2

σ2
= −y3 − γy. (6.1)

Assume our focus is near the peak where y3 ≪ γy, we get the normal distribu-
tion,

y = − x2

γσ2
(6.2)

Therefore, in such limiting case, γ is merged into the role of the variance of
a normal distribution, the same role as σ2. When γ < 0, we have to expand
y = y(0) + a2x

2 where y(0) = −
√

|γ|. And there is a factor of 2 added to the

variance, that is, y = − x2

2|γ|σ2 .

The j = 0 Line.
Second, we look at the asymptotic behavior at the j = 0 line heuristically.

When γ = 0, α→ ∞, and keep ασ2 = constant, Eq. (2.1) becomes

x2

σ2
= −y3 + α, (6.3)

and we have

y3 = α

(

1− x2

ασ2

)

. (6.4)

Taking the cubic root, and perform Taylor expansion, we get

y = α1/3

(

1− x2

3ασ2
+ ...

)

≈ α1/3 − x2

3α2/3σ2
(6.5)

Therefore, in such limiting case, α2/3 is merged into the role of the variance of
a normal distribution, the same role as σ2.

The θ =
5
4
π Line.

Thirdly, when γ = −(27α2/4)1/3, α → −∞, and keep ασ2 = constant, Eq.
(2.1) becomes

x2

σ2
= −y3 +

(

27α2

4

)

1
3

y + α, (6.6)

and we have

y ≈ 22/3a1/3 − 22/3

9

x2

α2/3σ2
. (6.7)

Again similarly, in this case, α2/3 is merged into the role of the variance of a
normal distribution, the same role as σ2. This case is provided because its ∆ is
also zero, but it is not on the critical line (The ignored line in Figure 2.2).
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6.2. Taylor Expansion in Cartesian Coordinate

With these empirical results, we now develop a formal Taylor expansion in
the Cartesian coordinate of (α, γ). Assume we can expand y(x) into y(x) =
y(0) + a2x

2 + . . ., put this into the cubic Eq. (2.1), factoring out x2 terms, and
we get

a2σ
2 = −

(

3y(0)2 + γ
)−1

. (6.8)

So the task of solving a2 is the same as solving y(0). And ECD is asymptotic
to the normal distribution when 3y(0)2 + γ approaches ∞.

Based on the analytic solution of y(x) in Eq. (2.15), we can get a general
form of y(0) when ∆ < 0,

y(0) =
φ

21/3
− 21/3γ

3φ
, (6.9)

and φ =
(

√

−∆/432 + α
)1/3

. φ has the same dimension as α1/3 and γ1/2. Setting

α = 0, it becomes Eq. (6.2). Setting γ = 0, it becomes Eq. (6.5). These are
validations for the expansion. However, this expansion has a singularity when
γ = 0 and α < 0, where φ becomes zero. In such case, you just have to count
on Eq. (4.7) and Eq. (6.5). For ∆ > 0 region, there is no simple way to perform
Taylor expansion and estimate variance.

6.3. Taylor Expansion in Polar Coordinate

Similar Taylor expansion technique can be applied to the trigonometric solution,
Eq. (2.17) for θ ∈ [0, π), using polar coordinate (R, θ). This leads to elegant
solutions of17

y(0) = -2
2
3 R

1
3 sin (θ)

1
3 sinhΘ,

a2σ
2 = - 2

2
3

3 R− 2
3 sin (θ)

1
3 coshΘ,

where Θ = 1
3 log

(

tan( θ2 )
)

.

(6.10)

Dimensional analysis validates φ ∼ R1/3. We see that y(0) is just R
1
3 Y (θ),

coinciding with Eq. (4.6). And the normal variance in terms of highest order of
R is

varN = − (2a2)
−1

= R2/3σ2

A1(θ)
, where A1(θ) =

2
5
3

3 sin (θ)
1
3 coshΘ. (6.11)

Here the angular dependency is factored into the angular function An(θ). The
A1(θ) function is range bound in θ ∈ [0, π), with min 0.67 and max 1.06, and
a shape like sine function. Mirroring Eq. (4.11), the variance should have the
general Taylor expansion form of

varN (R, θ) = R
2
3σ2

∞
∑

n=1

R−n−1
3

An(θ)
, (6.12)

17 sinθ
cosθ+1

= tan( θ
2
)
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where we’ve solved A1(θ) and the first few terms of An(0), An(
π
2 ), An(π) via

Maxima. This brings clarity for the asymptotic behavior on the entire upper
plane.

The next question is - How large does α or γ (or R) have to be to approach
a normal-like distribution? I’d like to answer this question here in terms of
asymptotic behavior of the kurtosis - assuming when the kurtosis approaches 3,
we are close to a normal distribution. Panel (1) of Figure 6.1 shows asymptotic
behaviors of kurtosis in four directions, from θ = 0, π2 , π,

3π
2 . The kurtosis drops

below 3 then comes back to 3 along the positive j = 0 line. On the positive
j = 1728 line, the kurtosis decreases to 3 in the most smooth and orderly
manner. On both the negative j = 0 line and the negative j = 1728 line, the
kurtosis drops to 3, but not as fast as in previous two directions. It should also
be pointed out that, on the negative j = 1728 line, the kurtosis calculation
requires MPFR due to increasing negative y(0) causing integration over very
small numbers difficult for double precision. The difficulty of calculating kurtosis
also has to do with its closeness to the critical line where the asymptoticity is
towards Laplace distribution instead of normal distribution.

In the first quadrant, θ ∈ [0, π2 ), the kurtosis drops below 3 at certain R(θ).
A normal-like distribution with negative excess kurtosis is useful to describe
the effect of finite sample size. This crossover is shown in Panel (2) of Figure
6.1. The sample size of real-world data is always limited in certain ways. For
example, even 90 years of DJIA daily data will only have 30 data points if
sampled at 3-year intervals (˜1024 days). Long-duration time series also have
strong survivorship bias. At large time scales, only time series of small and/or
negative excess kurtosis can survive for long history. These elliptic distributions
are useful to provide a strong “cut-off” that mimics the real-world data.

6.4. The Convergence In Numerical Integration

In the numerical implementation18, the first challenge is to determine the con-
stant C in

P (x) =
1

C
ey(x), where C =

ˆ ∞

−∞
ey(x)dx (6.13)

Estimating the order of magnitude of C can improve the speed and accuracy of
convergence significantly. The proper estimation depends on the knowledge of
both y(0) and the estimated variance. y(0) can be calculated via Eq. (6.10) with-
out further statistical dependency. The variance however requires some analyt-
ical estimation before any statistics (moments) can be calculated subsequently
(otherwise, it becomes catch-22).

In the first quadrant of the upper (α, γ) plane, the challenge is that, both
y(0) and the variance are growing positively as R increases. And y(0) causes C

18Note: Reader not concerning numerical implementation can skip this section.
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to grow exponentially. 19 From the asymptotic analysis, C can be approximated
by

C ≈
√
2π varN ey(0), where R≫ 1, and θ ∈ [0, π). (6.14)

This allows the program to estimate the range of absolute tolerance when per-
forming the integral.

In the lower (α, γ) plane, the numerical challenge is the opposite. Since y(0)
is negative and grows in magnitude as R increases, y(0) causes C to decrease
exponentially. The numerical integration is losing accuracy at large R if using
double precision based library. One must switch to MPFR in order to regain
the numerical precision for infinitesimally small numbers.

7. Comparison to GHYP Distributions

In this section, the similarities and differences between ECD and GHYP family
of distributions are explored. Since GHYP has been used in financial modeling
for fat tails for many years, the new alternative has to be at least equally good
if not more. Figure 7.1 shows 6 simulations at different kurtosis levels. In partic-
ular, the well-known variants - HYP, NIG, VG - are chosen (Panel (2,3,4)). As
you can see, ECD can fit GHYP fairly good, except the very far end of the tails.
This is due to the fundamental difference of asymptotic behavior between the
standard cusp and modified Bessel function of the third kind (Appendix B of
Breymann 2013[4]). However, ECD’s flexible parametrization, especially asymp-
totically, can push the difference in the tails far beyond the observed quantile.
In general, the elliptic tails tend to be slightly more convex than HGYP. The
major difference comes when kurtosis is above 20, as shown in Panel (6). GHYP
forms a triangular peak, while ECD forms a nipple peak as illustrated in Panel
(3,4) of Figure 4.2.

7.1. Normal-Like Distribution

Panel (1) of Figure 7.1 shows an example of a normal-like distribution from
GHYP with kurtosis of 4. In Section 6, it has been shown that ECD approaches
the normal distribution asymptotically as R → ∞. This simulation shows that
the ECD parametrization leans towards the second quadrant (that is, large
negative α and positive γ) in order to get a good fit. This is because the shape
of ECD in the second quadrant approaches normal distribution in a most smooth
manner.

7.2. Hyperbolic Distribution

The Hyperbolic distribution (HYP) has a round top and linear tails. It is mod-
erately leptokurtic with the kurtosis less than or equal to 6.0, as illustrated in

19In addition, when θ is small, the nipple shape of y(x) and dy/dx → ±∞ around elliptic
points adds more complexity to the error tolerance of an automated integration algorithm.
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Fig 7.1. Comparison of ECD to GHYP. Blue lines are GHYP and red lines are ECD fit. The
plots are arranged in increasing order of kurtosis.
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Panel (2) of Figure 7.1. It can be characterized by ECD reasonably well with
parametrization typically between the negative j = 1728 line and the critical
line (θ > π). HYP has very linear tails while ECD fit tends to be slightly convex,
although the difference is very small.

ECD can be generalized to cover hyperbolic distribution by extending the
basic polynomial (Eq. (2.1)) from curves of genus 1 to rational curves of de-
gree 2. Using the parameter convention on Wikipedia20, y(x) for the hyperbolic
distribution satisfies

(

α2 + β2
)

x2 = −y2 + 2βxy − (αδ)
2
. (7.1)

We can see the two polynomials are very similar except that ECD has a
leading y3 term and the hyperbolic distribution has a leading y2 term. Adding
y2 term to Eq. (2.1) seems a natural extension of ECD. For example, we can
have

(x− µ)
2

σ2
= −y3 − δy2 −

(

γ + β

(

x− µ

σ

))

y + α. (7.2)

When δ is large, the y2 term will overtake the y3 term in the finite range
of x. This seems a plausible proposal; however, this is actually redundant. In
Eq. (2.3), the PDF is divided by the normalization constant C. This makes y
translationally invariant, that is, y and y+ c are the same for any constant c. So
the δy2 term can be cancelled out by a properly chosen c, and be transformed
into translation of (α, γ). Therefore, there must be an asymptotic limit in ECD
that can approximate a hyperbolic distribution.

7.3. Variance Gamma Distribution

Variance Gamma (VG) distribution is very similar to the Laplace limit of the
general cusp distributions. As demonstrated in Panel (3) of Figure 7.1, it requires
very large α (and small σ) to simulate the linear tails in VG. There is still a
small difference in the far end of the tails.

7.4. Normal Inverse Gaussian Distribution

Normal Inverse Gaussian (NIG) distribution has a round top (unlike VG) and
median-high kurtosis. Panel (4) of Figure 7.1 shows ECD fits NIG particularly
well. There is almost no visible difference in the demonstrated range.

7.5. High-Kurtosis GHYP Distribution

Panel (5) and (6) shows two examples of GHYP with high kurtosis. In Panel
(5), the kurtosis is slightly above 12, and ECD fits GHYP very well. The

20http://en.wikipedia.org/wiki/Hyperbolic distribution
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parametrization is in the first quadrant near (0, 0). In Panel (6), the kurtosis is
very high, near 20, the difference between GHYP and ECD becomes obvious.
ECD parametrization is close to (2.94, 0). The nipple shape sets in and forms a
round top; while GHYP has a distinct sharp peak.

8. Fitting Financial Data in Single Period

In this section, I will apply the elliptic distribution to the daily log-return time
series of various financial assets, from exchange rates, commodities, volatility
index, to stock market indices, over long history (20-80 years). During the
long history, an asset class typically went through major financial and polit-
ical events causing large disruptions in prices. Such disruptions were reflected in
large jumps, fat tails, and large kurtosis (6-30). Tail events can be devastating
to ignorant financial institutions and individual investors who use wrong kind of
distributions to analyze tail risks. We will explore how to use this distribution
to fit various sets of data, get intuition on the range of ECD parameters, and
have a feel of how good this distribution behaves in real world.

8.1. Largest Tail Event and Asymptotic Kurtosis

Kurtosis may be one of the most common ways to illustrate the fat tails. How-
ever, there are many different ways to interpret kurtosis. Before we dive into
fitting the distribution, we must first introduce a new concept called “asymp-
totic kurtosis along the tail”. Such asymptotic kurtosis (or you can call it “tail-
truncated kurtosis”) follows the same procedure of calculating central moments,
then dividing the 4th moment by square of variance, except the integral of PDF
is taken between the range of given quantiles - that is, the far ends of the
tails are truncated. The reason for such truncation is that, in the real-world
data, kurtosis has a subtle instability caused by the largest tail event(s). This
is observed among many heavily leptokurtic time series. Such instability can be
worked around by this concept of asymptotic kurtosis, making the outcome of
the data fitting more predictable.

First, the asymptotic moments µi(q) are defined as, given the tail quantile q,

x1 = Φ−1(q),
x2 = Φ−1(1− q),

µi(q) =
´ x2

x1
xnP (x) dx, where n = 1, 2, 3, 4, ...

(8.1)

Then the asymptotic statistics is defined as

var(q) = µ2(q)− µ2
1(q),

skewness(q) =
(

µ3(q)− 3µ1(q)µ2(q) + 2µ3
1(q)

)

/ var(q)3/2.
(8.2)

kurtosis(q) = K(q) =
(

µ4(q)− 4µ1(q)µ3(q) + 6µ2
1(q)µ2(q)− 3µ4

1(q)
)

/ var(q)2.
(8.3)
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This forms the theoretical “asymptotic statistics along the tail”. By definition,
when q → 0, the asymptotic statistics becomes the true theoretical statistics
of the distribution. In this paper, I will focus on the behavior of asymptotic
kurtosis along the tail since it is the most unstable quantity among the first 4
moments. As shown in Figure 8.1, with limited number of years, even the largest
one-day events (green dotted line) can hardly show us where the true kurtosis
is (the green bar). What’s interesting though is that, in a fairly large range of q,
K(q) has a quasi-linear relationship with log(q). This allows us to extrapolate
a “reasonable” trend of asymptotic kurtosis along the tail. By comparing the
trend between the theoretical distribution and the statistics from the data, it
tells us whether we are getting a good fit or not, which in return validates the
relation between observed data and theory.

In order to compare data with theory intuitively, the quantiles (q) are rep-
resented by numbers of tail events (n), that is, days. For instance, the largest
jump in DJIA (1987 Black Friday) is one out of 37840 days, therefore, n = 1 is
equal to q = 2.6× 10−5. Take this day out, the statistics of the remaining data
is the asymptotic statistics for excluding one tail event, and n is incremented
to n = 2. Subsequently you can calculate nth asymptotic statistics by exclud-
ing n − 1 tail events, where n = 1..32. Each statistics (variance, skewness, and
kurtosis) forms a curve f(log (n)), which can be fit linearly or quadratically.
Asymptotic kurtosis is a linear fit.

Formally, the nth asymptotic statistics for data is calculated as following.
Assume {ri, i = 1..N} is the daily log-returns with N days in scope, they are
sorted by their absolute values such that |ri+1| ≤ |ri|. The asymptotic moments
µi(n) are calculated from the truncated sample set {r}n,

{r}n = {rk, k = n..N}, n = 1..32,

µi(n) =
1

N−n+1

∑N
k=n r

i
k, where i = 1, 2, 3, 4, ...

(8.4)

From the sample moments µi(n), asymptotic variance, skewness, and kurtosis
(K(n)) can be calculated accordingly. q and n can be matched up by q(n) =
n/N .

The six panels of Figure 8.1 shows the asymptotic kurtosis of the six time
series we are about to fit. The asymptotic kurtosis of data K(n) is shown in
red color. The theoretical asymptotic statistics from the fit K(q) is in green
dotted line. The green bar is where the ECD kurtosis should be, as q → 0 or
n → ∞ (but will never reach in reality). The quasi-linearity of the trend (blue
line) should be obvious to the readers.

In the case of DJIA, after removing the largest event (1987 Black Friday),
the asymptotic kurtosis of data drops from 35 to 13. This level of kurtosis is
more reasonable. The data can be fit by a ECD distribution with kurtosis of 16
whose asymptotic kurtosis matches well with that of data. Similar improvement
is found in all other cases (except VIX). The kurtosis caused by their largest tail
events (often just the last one point) jump far above the trend lines. Such jumps
distort the kurtosis quite a bit and is an indication that the asymptotic kurtosis
is necessary in order to make sense of the finite data set with fat tails. By
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matching the observed and theoretical asymptotic kurtosis, we can understand
how good the fit is within the ECD framework. Furthermore, if the asymptotic
variance and skewness can also be aligned, that is even better.

In VIX, the kurtosis is not high, and the ECD fit is relatively easy. In such
case, I choose to cap the theoretical kurtosis by the observed kurtosis. Use of
asymptotic statistics is not as important for VIX as in other cases.

8.2. Regression Methodology

It is a challenge to perform regression fit with so many parameters in ECD. The
optimx and spg packages in R are used to perform nonlinear programming,
which minimizes the diff function. The diff function is a least-mean-square com-
bination of the following deviations between ECD fit and data.

1. Deviation of stylized statistics: variance, skewness, kurtosis; (In addition,
we use asymptotic variance, skewness and kurtosis as an aide for optimal
fit.)

2. Deviation of PDF, P (x), for x within 3 standard deviations;
3. Deviation of log PDF; (This is close to maximum log-likelihood.)
4. Deviation between QQ-plot and the 45◦ line.

Each item can be given different weights to accommodate varying behaviors of
the underlying data. Sometimes fitting moments are as good as fitting QQ-plot.
But in other cases, one has to choose between better fits to kurtosis or QQ-plot.
In these circumstances, weights can be used to influence the output of optimx.
After the machine fit, ECD parameters can be fine-tuned manually.

The fits are presented in a standard format of four panels: (1) PDF fit; (2)
log PDF fit; (3) CDF fit; (4) QQ plot fit. The PDF and CDF fits show how good
the theoretical distribution describes the peak region of the population. The log
PDF fit shows how good the distribution describes the tails. The QQ plot de-
scribes the quantile-to-quantile comparison between the theoretical distribution
and observed data, which is a stringent test on the theoretical distribution. In
addition, the asymptotic statistics (kurtosis, skewness, and variance) are also ex-
amined to remove the distortion caused by the largest tail event(s), as discussed
in Section 8.1.

8.3. Swiss Franc (CHF/USD)

The first financial data set is the daily log-returns of Swiss Franc (CHF) to
US dollar (USD) exchange rate from 1975 to 2015. This currency is considered
a “strong currency”, appreciating year over year consistently, as indicated by
its negative mean. Up to just a few years, the kurtosis of its log-returns was
medium, less than 8, and was one of the lowest. But after 2008, there were
several important developments that proved devastating. On Sep 7, 2011, Swiss
National Bank (SNB) declared Swiss Franc would peg to Euro at 1.2. Therefore,
its exchange rate to USD was literally that of Euro. This date was also the end
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Fig 8.1. Kurtosis instability and adjustment at the tails. Asymptotic kurtosis follows a quasi-
linear relation to the logarithm of tail quantiles, measured by the number of largest tail events.
Data is in red. Theory is in green dotted line. The green bar is the ECD kurtosis.
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of gold’s 11-year bull market. On Jan 15, 2015, the peg was suddenly scrapped
by SNB as Euro suffered free fall selloff against USD due to Greek bailout
issues. The exchange rate appreciated 20% overnight and became highly volatile.
Investors who purchased Swiss Franc denominated bonds suffered huge losses.
The kurtosis jumped to above 16. This demonstrates that even an asset that
has been perceived as stable historically can make surprising moves that put
its long-term kurtosis well above 12, our barometer of “highly leptokurtic”.
Figure 8.2 shows the ECD fit for CHF/USD exchange rate. It is impressive that
the QQ-plot follows the 45◦ line closely except the far ends of the tails.

8.4. The Volatility Index (VIX)

The volatility index is a mean-reverting process. It swings between the range of
10 to 90 between bull markets and bear markets. Figure 8.3 is the fit for VIX
from 1990 to 2011. The data is medium leptokurtic with excess kurtosis slightly
more than 4.0. The fitting is a relatively easy case. The shape of log PDF looks
like a wedge, a typical shape of hyperbolic tails. It is also well known that the
log-returns of VIX is positively skewed, that is, volatility begets more volatility.
The skewness is described very well by the ECD fit. It should be noted that VIX
is the only time series that we study here without using asymptotic kurtosis to
make large adjustments. That is, all the large jumps in the tails can be described
by the linear trend of the asymptotic kurtosis (See Panel (2) of Figure 8.1). It
is very impressive that the QQ-plot follows the 45◦ line precisely.

8.5. Gold

Gold is studied as the representative of commodities and precious metals. This
group of assets tends to be very volatile, therefore, the log-returns are highly
leptokurtic. Large jumps are common once every few years.

Historical gold prices are based on the London PM fixing, quoted in USD,
from 1972 to 2015. Figure 8.4 shows the fit of the log returns of gold prices. The
data is highly leptokurtic with kurtosis of more than 20. It is obvious that the
tails are bending outward in log PDF on both sides. Its (α, γ) falls squarely in
the high-kurtosis region. Notice that gold has a small positive skewness, which
is different from the equity indices. The QQ-plot is a straight 45◦ line. And both
the asymptotic kurtosis and theoretical kurtosis fits very well between ECD and
data. It appears ECD is a perfect model for gold prices.

8.6. WTI Oil

Another important commodity is the crude oil. Half of the CRB index is based
on the movements of oil prices. Figure 8.5 presents the fit of the log returns of
WTI oil prices. Its (α, γ) is in the first quadrant but further away from (0, 0).
Notice the straight line in the QQ-plot. The asymptotic kurtosis fits reasonably
well between ECD and data. ECD has a lot of explanatory power for commodity
prices.
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Fig 8.2. The daily log-returns of CHF/USD exchange rate from 1975 to 2015. The tails are
fit very well except the few farthest points.

imsart-generic ver. 2014/10/16 file: elliptic.tex date: September 26, 2015



S. H-T. Lihn/On the Elliptic Distribution 50

o o o
o

o
o

o

o

o

o

o

o

o

o

o
o

o o o o o o

-0.1 0.0 0.1 0.2

0
2

4
6

8

PDF of symbol: vix

log(r)

P
D
F

stdev

1990

to

2011

xe= -0.0794 xe= 0.0763

o data

fit

o o

ooooo

o
o

o

o

o
o

o
o
oooo

o
o
o
o
o
o
o

o

o

o
o
o

o
o o

o

o

-0.2 0.0 0.2 0.4

-6
-4

-2
0

2

ECD Log PDF

log(r)

lo
g
(P

D
F
)

ecd fit

α= -13.8000

γ= 13.1000

σ= 0.013300

β= 1.0200

µ= -0.018120

-0.1 0.0 0.1 0.2

0.
0

0.
2

0.
4

0.
6

0
.8

1
.0

ECD CDF

log(r)

C
D
F

data stats

mean 0.000017

stdev 0.0611

skew 0.6751

kurt 7.3615

asymp stdev 0.0606

asymp skew 0.64

asymp kurt 7.4

tail quant e∧ -8.6

ecd fit

mean 0.000064

stdev 0.0616

skew 0.6749

kurt 7.3874

asymp stdev 0.0609

asymp skew 0.64

asymp kurt 6.3

ellipticity 0.0779

oo
o
oo

ooo
oo

o
oo

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

ooooo
oooo

o

-0.2 0.0 0.2 0.4

-0
.4

-0
.2

0.
0

0.
2

0.
4

ECD QQ-Plot

Observed Quantile

T
h
eo
re
ti
ca
l
Q
u
an

ti
le

o qq data

45 degree

error

Fig 8.3. The daily log-returns of VIX (1990-2011). It is very impressive that the QQ-plot
follows the 45◦ line precisely.

imsart-generic ver. 2014/10/16 file: elliptic.tex date: September 26, 2015



S. H-T. Lihn/On the Elliptic Distribution 51

o o o o o o o o
o
o

o

o

o o

o

o

o

o
o o o o o o o o

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

0
10

20
3
0

4
0

5
0

PDF of symbol: gold

log(r)

P
D
F

stdev

1972

to

2015

xe= -0.0096 xe= 0.0099

o data

fit

o o o oooo

oo

o
o
o

oo

o
oo
o

o
o

o

o

o

oo

o

o

o

o

o
o

o
oo

ooo

o
o

o

o
o

o

o

ooooo o

-0.2 -0.1 0.0 0.1 0.2

-4
-2

0
2

4

ECD Log PDF

log(r)

lo
g
(P

D
F
)

ecd fit

α= 2.4800

γ= 1.8500

σ= 0.005950

β= 0.0845

µ= 0.000100

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

ECD CDF

log(r)

C
D
F

data stats

mean 0.000309

stdev 0.0137

skew 0.1234

kurt 23.6582

asymp stdev 0.0136

asymp skew 0.20

asymp kurt 18.8

tail quant e∧ -9.3

ecd fit

mean 0.000316

stdev 0.0143

skew 0.1961

kurt 22.4979

asymp stdev 0.0141

asymp skew 0.19

asymp kurt 17.5

ellipticity 0.0097

oooooooo
oooooo

ooooo
oooo

ooo
oo
oo
oo
oo
oo
oo
ooo
ooo
oo
oo
oo
oo
ooo
ooo
oo
ooo
ooo
ooooooooooooooooo

o

-0.2 -0.1 0.0 0.1 0.2

-0
.1

0.
0

0.
1

0.
2

ECD QQ-Plot

Observed Quantile

T
h
eo
re
ti
ca
l
Q
u
an

ti
le

o qq data

45 degree

error

Fig 8.4. Gold data fit (1972-2015). Both the asymptotic kurtosis and theoretical kurtosis fits
very well between ECD and data.
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Fig 8.5. WTI oil data fit (1986-2012). Overweight on fitting QQ-plot; underweight on kur-
tosis. The QQ-plot and the asymptotic kurtosis are fit very well.
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8.7. 10-Year Treasury Yield (R10Y)

Historical data of the Treasury yield is published on Federal Reserve’s website.
10-year treasury yield (R10Y) is the representative of the long-term risk-free
interest rate. Figure 8.6 shows the fit for R10Y from 1962 to 2012. The data is
highly leptokurtic with excess kurtosis of more than 10.

Although its kurtosis is similar to that of WTI, its shape of distribution is
subtly different. R10Y has a more concentrated triangular peak, while WTI has
a rounded peak. Such difference is reflected in the ECD parameters. R10Y has
a negative α, while WTI has a positive α larger than αmax (2.94).

8.8. Dow Jones Industrial Average (DJIA)

DJIA is one of the longest-running market benchmarks with world-wide atten-
tion. It is arguably one of the most difficult time series due to its very high
kurtosis of 35. The high kurtosis was caused by several market crashes and
large price swings during recessions.

Figure 8.7 shows the fit for DJIA daily log-returns from 1935 to 2010. One
can see that ECD fit handles it reasonably well. Its (α, γ) falls squarely in the
high-kurtosis region. It is somewhat difficult to get to kurtosis of 35, which is
about the theoretical limit of ECD. But with the guide of asymptotic kurtosis,
a good fit can be accomplished with 25% lower kurtosis. The point on the far
left is the Black Monday of 1987, a one-day crash of 22.6%. The asymptotic
statistics can correctly isolate the impact of this one day event.

9. Summary

In this paper, I have developed the novel elliptic distribution. The mathematical
framework is elegant. It is capable of fitting a wide range of leptokurtic financial
data equal to or better than many known distributions. The straight line in the
QQ-plot is particularly impressive. The distribution family inherits a rich struc-
ture from elliptic curves, e.g. the isomorphic mapping. The parametrization has
three distinct asymptotic behaviors - the cusp distribution at R = 0; approach-
ing the normal distribution as R→ ∞; and approaching Laplace distribution on
the critical line. Most importantly, it introduces a new concept of tail behavior
unique to the elliptic curves. It is very promising to be a useful statistical tool
for the financial professionals.

There are still a lot of statistical properties to be researched on the elliptic
distribution. Is it close as a group under addition? How to construct a multivari-
ate distribution? What is the stochastic process associated with it? How does
it scale with longer time intervals? How does it apply to volatility forecasting
models (e.g. GARCH)? Can it help to explain the kurtosis term structure?

On the toptic of an option pricing model, it is certainly one of the most inter-
esting aspects in quantitative finance. There is likely a general approach based
on elliptic distribution; while there could be a special approach that focuses on

imsart-generic ver. 2014/10/16 file: elliptic.tex date: September 26, 2015



S. H-T. Lihn/On the Elliptic Distribution 54

o o o o o o
o

o

o

o

o
o

o

o

o
o

o o o o o

-0.04 -0.02 0.00 0.02 0.04

0
10

20
30

4
0

5
0

PDF of symbol: r10y

log(r)

P
D
F

stdev

1962

to

2012

xe= -0.0078 xe= 0.0080

o data

fit

o o

o o
o

o

o
oo

o

o
o
o

o

o

o

o

o
oo

o

o

o

o

o
o

o
oo

o

oo

o

ooo

-0.15 -0.10 -0.05 0.00 0.05

-4
-2

0
2

4

ECD Log PDF

log(r)

lo
g
(P

D
F
)

ecd fit

α= -1.0900

γ= 4.2100

σ= 0.003720

β= -0.0920

µ= 0.000290

-0.04 -0.02 0.00 0.02 0.04

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

ECD CDF

log(r)

C
D
F

data stats

mean -0.000016

stdev 0.0119

skew -0.3213

kurt 13.1665

asymp stdev 0.0118

asymp skew -0.09

asymp kurt 9.9

tail quant e∧ -9.4

ecd fit

mean -0.000076

stdev 0.0131

skew -0.1086

kurt 11.4158

asymp stdev 0.0129

asymp skew -0.10

asymp kurt 9.8

ellipticity 0.0079

oooooooooooooooooo
o
oo
o
ooo

ooo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o
o
ooo

o
o

-0.15 -0.10 -0.05 0.00 0.05

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

ECD QQ-Plot

Observed Quantile

T
h
eo
re
ti
ca
l
Q
u
an

ti
le

o qq data

45 degree

error

Fig 8.6. The daily log-return of 10-year Treasury yield (1962-2012). The QQ-plot and the
asymptotic kurtosis are fit very well.
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Fig 8.7. The daily log-returns of DJIA (1935 to 2010). ECD handles the fit reasonably well
except the very far end of the tails in QQ-plot. The point on the far left is the Black Monday
of 1987, a one-day crash of 22.6%. The asymptotic statistics can correctly isolate the impact
of such one day event.
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the big picture of tail behaviors. I will follow up with a subsequent paper from
the second perspective.

In 2008, I presented a working paper on a subordinated distribution to B. B.
Mandelbrot. He explained to me why he didn’t think mixing normal distribu-
tions together could be able to describe the kind of fractal and scaling behaviors
observed in the financial market. I am indebted to his insight that kept me pon-
dering on this subject these years. Elliptic distribution may be very far from
what he had in mind; nevertheless, it is an elegant framework that works really
well with real-world data.

I would like to thank the authors of the ghyp package. The ecd package
emulates the wonderful S4 structure laid out by the ghyp package. I am also
indebted to the devtools and knitr packages, which make package develop-
ment and paper authoring much more efficiently. Finally, this work can’t be
accomplished without the tolerance of my family members. I am very grateful
to them.
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