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Abstract: A special version of option pricing model based on elliptic dis-
tribution is developed to explain the volatility smile for short-maturity
options. A skew fractional exponential distribution, called λ distribution,
is formulated to facilitate the so-called λ transformation for option pric-
ing. The distribution has a single shape parameter that covers the normal
distribution, Laplace distribution, and the elliptic cusp distribution. The
option prices are hypothesized to have two regimes: The local regime is the
high-kurtosis regime where the prices can be calculated, but not observed
directly. Mathematical procedures are developed to handle moment explo-
sion in this regime. The global regime is based on the normal distribution
and Black-Scholes model where the prices can be observed by the mar-
ket. The λ transformation is a 4-step transformation projecting between
the local regime and the global regime. The implied volatility curve is hy-
pothesized to be movable by the expectation of market momentum during
the regime transformation. This model captures the major features of the
volatility smile for short-maturity SPX options from a few days to a few
weeks.
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1. Introduction

This paper is a continuation of the work on the elliptic distribution[15]. The
main goal of this paper is to provide an analytic framework to explain volatility
smile. The importance of understanding volatility smile in financial economics
is well written on Wikipedia1, and quoted here:

In fact, Benôıt Mandelbrot had discovered already in the 1960s that changes in
financial prices do not follow a Gaussian distribution, the basis for much option
pricing theory, although this observation was slow to find its way into main-
stream financial economics. Financial models with long-tailed distributions and
volatility clustering have been introduced to overcome problems with the realism
of classical financial models; jump diffusion models allow for (option) pricing in-
corporating “jumps” in the spot price. Risk managers, similarly, complement (or
substitute) the standard value at risk models with historical simulations, volatil-
ity clustering, mixture models, principal component analysis and extreme value
theory...
Closely related is the volatility smile, where implied volatility is observed to dif-
fer as a function of strike price (i.e. moneyness). The term structure of volatility
describes how (implied) volatility differs for related options with different maturi-
ties; an implied volatility surface is a three-dimensional surface plot of volatility
smile and term structure. These empirical phenomena negate the assumption
of constant volatility — and log-normality— upon which Black-Scholes is built.
Approaches developed here in response include local volatility and stochastic
volatility (the Heston, SABR and CEV models, amongst others). Alternatively,
implied-binomial and -trinomial trees instead of directly modeling volatility, re-
turn a lattice consistent with — in an arbitrage-free sense — (all) observed prices,
facilitating the pricing of other, i.e. non-quoted, strike/maturity combinations.
Edgeworth binomial trees allow for a specified (i.e. non-Gaussian) skew and kur-
tosis in the spot price. Priced here, options with differing strikes will return
differing implied volatilities, and the tree can thus be calibrated to the smile
if required. Similarly purposed closed-form models include: Jarrow and Rudd
(1982); Corrado and Su (1996); Backus, Foresi, and Wu (2004).
Particularly following the financial crisis of 2007–2010, financial economics and
mathematical finance have been subjected to criticism; notable here is Nassim
Nicholas Taleb, who claims that the prices of financial assets cannot be charac-
terized by the simple models currently in use, rendering much of current practice
at best irrelevant, and, at worst, dangerously misleading...

In this paper, the foundation is based on the study of elliptic distribution,
which captures the highly leptokurtic nature of the log-return distributions in
major financial assets2. The main observation there is that, due to the high
kurtosis, the fits have to be located in the small (α, γ) region (in the polar
coordinate language, small R), where they have close proximity to the standard
cusp distribution.

1.1. Introducing The Option Generating Function

If the log-return distribution of the underlying asset is believed to be known,
the most wanted question next is - what does the option pricing model look like

1https://en.wikipedia.org/wiki/Financial economics#Challenges and criticism
2My reference of high kurtosis is 12.257, that of the standard cusp distribution. See Table

2.1.
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with that distribution? And one of the most pronounced issues in option pricing
is the origin of the volatility smile. These days, even the popular financial data
portal, Yahoo Finance, is publishing volatility smile every day3. This paper is
an attempt to answer this question.

Assume S̃t is the price of the underlying asset at time t. In the logarithmic
framework, where X is the log-return process of the underlying asset between
time 0 and T , we have S̃T = S̃0e

X . The forward prices of European option can
be expressed as the expected profit in excess of the strike price, discounted by
the risk-free rate,

C̃ = E
[
max

(
S̃0e

X − K̃e−rT , 0
)]
, for call option;

P̃ = E
[
max

(
K̃e−rT − S̃0e

X , 0
)]
, for put option;

(1.1)

where C̃, P̃, S̃0, K̃, r, T are standard notations for call price, put price, underlying
price at time 0, strike price, risk-free rate, and time to maturity. They are often

abbreviated as C̃ =
(
S̃ − K̃

)

+
and P̃ =

(
K̃ − S̃

)

+
in textbooks (E.g. Eq.

(6.1) of [4]). From Eq. (1.1), assume X has the probability distribution P (x),

the S̃0-normalized forward prices of European option, C̃/S̃0 and P̃/S̃0, can be
abstracted as functions of log-strike k,

Lc(k) =
´∞
k

(
ex − ek

)
P (x) dx, for call option;

Lp(k) = −
´ k

−∞
(
ex − ek

)
P (x) dx, for put option;

(1.2)

where k = log(K̃/S̃0) − rT . The transformational functions, Lc(k) and Lp(k),
play the central role in option pricing model. For instance, they are the starting
point of Dupire’s local volatility model[10, 11]. These two functions are called
“option generating function” (OGF) in this paper. They are viewed as a Laplace-
style transform with a kernel of ±

(
ex − ek

)
in incomplete integrals. They can

also be viewed as “operators” (like in quantum mechanics) that project the
distribution from the log-return space to the log-strike space.

The OGF, Lc,p(k), can be decomposed to the subtraction of two integrals -
the incomplete moment generating function (IMGF,

´

k
exP (x) dx) and cumula-

tive density function (CDF,
´

k
P (x) dx). However, naive attempt to solve such

integrals soon encounters infinity not too far along the way. The bulk of this pa-
per is spent on how to properly solve CDF, IMGF, OGF; and insights obtained
from solving them.

1.2. Introducing The λ Distribution

Although the origin of the elliptic distribution is very simple - just the elliptic
curves in one of their simplest forms, x2 = −y3 − γy − βxy + α, the resulting
probability distribution rarely has analytic solution. Most of the calculations

3E.g. see http://finance.yahoo.com/q/op?s=SPY+Options
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are carried out numerically. In order to obtain analytic solutions for OGF, it
is necessary to simplify the elliptic distribution. Therefore, a special version of
elliptic distribution called the λ distribution is formulated. This distribution
comes to existence with several purposes:

1. My numerical experiments with SPX option data have indicated that P (x)
is very close to the standard cusp distribution (in the polar coordinate lan-
guage, R is very small). The specific shape in the valley of the volatility
smile may vary somewhat, but the general shape of the smile doesn’t
change much. This implies the standard cusp distribution plays an impor-
tant role.

2. The output of Lc,p(k) must be translated to implied volatility via the
Black-Scholes equation, which is based on the normal distribution. How-
ever, in the context of elliptic distribution, it is not convenient to express
normal distribution cleanly since it is the asymptotic distribution when
R → ∞ (and θ 6= 7

4π). It is also unlikely to perform precise calculation
using the distribution in the infinity (I’ve discussed how slow kurtosis con-
verges to 3 in [15]). Therefore, it calls for a novel way to encompass the
normal distribution into the framework more elegantly, which motivates
the creation of λ distribution.

3. Coincidentally, the Laplace distribution can be incorporated into the frame-
work of λ distribution nicely. It is the asymptotic distribution of the gen-
eral cusp distribution (R → ∞ at θ = 7

4π). It is also the tail distribution
of hyperbolic distribution. It turns out to be the boundary of the local
regime too.

The λ distribution has the tail of logP (x) ∼ |x|−
2
λ where λ ∈ [1, 3]. The risk-

neutral drift, µD = E
[
eX
]
=
´∞
−∞ exP (x) dx, diverges when λ ≥ 2. The bound-

ary λ = 2 separates the local regime (λ ≥ 2) from the global regime (λ = 1). In
the global regime, it is well known the risk neutrality yields the put-call parity
of option prices. However, in the local regime, a major hypothesis of this paper
is that the risk neutrality can be violated, which produces volatility skew4.

1.3. Introducing The λ Transformation

The second point above needs to be elaborated more since it is one of the key
features of the so-called λ transformation. The option pricing model doesn’t stop
at calculating Lc,p(k) from a peculiar distribution P (x), although this itself is
already a lengthy process. There are more complications. The output of Lc,p(k)
(which is a form of price) must be transformed to implied volatility, σimp(k),
which is then transported by a certain amount of log-strike, then transformed
back to option prices, at which point the result matches what’s observed in the
market data.

4The volatility skew is generally observed as the stylized fact that downstrike volatilities
are higher than upstrike volatilities. However our result indicates this is only true for call
options. The put options can have upstrike volatilities higher than downstrike volatilities.
This is explained in Section 4.8.
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To put them together, the option prices, C̃(k) and P̃(k), observed in the
market, is a composite transformation of

C̃(k)
S̃0

= Oc·M (rM ) ·Vc·Lc |P (x)〉 , for call option;

P̃(k)

S̃0
= Op·M (rM ) ·Vp·Lp |P (x)〉 , for put option.

(1.3)

Here we use the quantum-mechanics like operator notations, and the four oper-
ators of λ transformation are outlined below:

• Lc,p: Input is a probability distribution P (x); output is the normalized
option prices in the local regime (in log-strike).

• Vc,p: Input is normalized option prices; output is implied volatility curve.
• M (rM ): Input is implied volatility curve; output is also implied volatility
curve with log-strike transported by market momentum rM .

• Oc,p: Input is implied volatility curve; output is the normalized option
prices, observable in the global regime.

The concept of the local regime and the global regime is developed to provide
philosophical support for such transformation. The transportation of implied
volatility along log-strike, M (rM ), is a new, intriguing mechanism in this paper.
The shift rM is interpreted as a form of “market momentum”[3]. It is thought of
as an expression of market expectation by bullish or bearish market participants.
Such expectation shifts the volatility smile horizontally and produces the ATM
skew, often denoted as σATM (T ). The amount of shift is different for different
time to maturity as well as different assets. The view on the sources of ATM
skew in this paper is quite different from that of e.g. [20].

The formulae developed in this paper have been validated by R with hundreds
of test cases. Calculations and charts are generated by the ecd package, which
is uploaded to CRAN. Feedback and collaboration are welcomed.

2. The Development of λ Distribution

2.1. The Motivation

The motivation of the λ distribution is to construct a simple distribution that
covers the normal distribution, Laplace distribution, and the elliptic cusp distri-
bution. These are the three asymptotic cases in the elliptic distribution family[15]-

1. The normal distribution: This is the asymptotic distribution when R→ ∞
and θ 6= 7

4π. In the elliptic distribution language, it is y ∼ −x2. This
distribution is also called “the global regime” in the λ transformation.
Obviously, in option pricing model, it is connected to the Black-Scholes
model and the industry-standard implied volatility calculation.

2. The Laplace distribution: This is the asymptotic distribution when R →
∞ and θ = 7

4π. In the elliptic distribution language, it is (−y)2 ∼ x2. This
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distribution is the boundary of the local regime. Due to its simple math-
ematical form P (x) ∼ e−x, many analytic solutions can be developed. It
provides good anchor for the rest of local regime, where analytic solutions
are much harder to get.

3. The elliptic cusp distribution: This is ECD(0, 0) at the center of the (α, γ)
plane, or simply R = 0. In the elliptic distribution language, it is y3 ∼ −x2.
In addition, its asymmetric distribution, x2 = −y3−βxy, also has analytic
solution. This is the area that I am most interested in, since this is where
the solution of SPX options resides.

If the new distribution can be constructed in the form of (−y)λ ∼ x2+ ... where
λ = 1, 2, 3, then the integer λ can represent the three cases outlined above.
Furthermore, when λ is extended to real number, it provides analytic continuity
between the three distributions. In a sense, these three distributions become
one. The integer λ is also more favorable in a numeric package. It can index the
distributions and solutions precisely. It avoids concern of floating-point rounding
issue.

The simple form of λ distribution attempts to capture the influence of the tail
exponent, but foregoes the delicate structure of the elliptic distribution near the
peak. The rationale here is that volatility smile is dominated by the behavior of
the tails. This can be illustrated by the order-of-magnitude estimate. For SPX
index, the daily log-returns have standard deviation of ∼ 1%[15]. Due to the low
market volatility in Q2 of 2015 (when the sample data is taken for this paper),
the standard deviation of the λ distribution that fits SPX options maturing in
a day in June (see Figure 6.1) is only about 0.6%. So for log-strike k = 0.05,
this is 8 standard deviations away from the peak of the distribution.

In real-world applications where fine structures are important, a general
model based on the elliptic distribution should be developed. That is a sep-
arate project beyond the scope of this paper.

2.2. Basic Notations

Now that the motivation is outlined, we can start developing the distribution.
The curves of the so-called “unit distribution” takes the form of

x̂2 = (−ŷ)λ − βx̂ŷ, whose symmetric case is ŷ(x) = − |x̂|
2
λ . (2.1)

The ·̂ symbol (hat) is used to label this particularly simple parametrization
across the paper. By setting x̂ = x−µ

σ , we make the distribution qualified as a
location-scale distribution family, and the curves become

(x− µ)
2

σ2
= (−y)λ − β

(
x− µ

σ

)
y. (2.2)

Thus, the unit distribution is a special case when σ = 1, µ = 0. The curve y(x) =
y(x;λ, σ, β, µ) is solved as the smallest real roots of Eq. (2.2) for x ∈ [−∞,+∞]
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with the boundary condition: y(x) → −∞ when x → ±∞. It is also obvious
that y(µ) = 0.

The distribution is primarily controlled by the shape parameter λ. It becomes
a normal distribution when λ = 1; a Laplace distribution when λ = 2; a cusp
distribution when λ = 3. The main source of the volatility smile is λ 6= 1.
Although our primary interest are these three integer cases, λ can be any positive
real number due to analytic continuity. It forms a continuous distribution family.

The σ parameter is the volatility parameter that affects the standard de-
viation (stdev) of the distribution. It is also directly related to the minimum
implied volatility of a volatility smile curve (See Eq. (4.14)). The focus in this
paper is the high frequency regime where σ is reasonably small, e.g., from the
order of 0.01 down to 0.001. The integrals involving small σ typically require
the MPFR library to achieve decent precision unless certain scaling rules are
applied to transform the raw formula to that of a unit distribution. For this
reason, in the later part of the paper, the log-strike is often normalized by σ via
k̂ = k−µ

σ , such that k̂ is measured in the units of σ.
The µ parameter is the drift term of the stochastic process. In the classic op-

tion pricing framework, its value is determined via the risk neutral requirement,

which is denoted as µD. In the global regime, we have µD = σ2

4 . However, in
the elliptic framework, this doesn’t need to be held true in the local regime. The
volatility skew is produced from µ 6= µD.

The β parameter is the skew parameter. It is the coefficient of the xy term. If
β is assumed not to change the tail behavior, then we must have λ ≥ 2 for non-
zero β 5. This is one of the indications for the local regime vs the global regime.
The role of β in our model is somewhat subtle. It creates the first moment and
skewness (the third moment). For instance, the stock market indices generally
have a negative skewness around −0.4 to −0.7. In general, β is expected to
be in the range of [−0.8, 0.8], in which the analysis is performed in this paper.
However, its most meaningful effect is to provide the proper scale for the risk-
neutral violation, µ−µD

σ ∼ O(β). See Section 4.7 for more detail.
The probability density function (PDF) of a λ distribution is defined as

P (x;λ, σ, β, µ) =
1

C
ey(x), where C =

ˆ ∞

−∞
ey(x)dx. (2.3)

C is the normalization constant to maintain the unity of the density function,
´∞
−∞ P (x) dx = 1. The cumulative density function (CDF) is obviously Φ(x) =

E
[
1{X≤x}

]
=
´ x

−∞ P (x)dx; while at times it may be more suitable to study the

tail behavior with the complementary CDF (CCDF), 1 − Φ(x) =
´∞
x
P (x)dx.

Due to the canonical structure of x−µ
σ in Eq. (2.2), the CDF has the following

5When λ < 2 and β 6= 0, then y ∼ −x, and βxy always dominates the tails, instead of
(−y)λ. This is not good.
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scaling law on µ, σ:

Φ(x;λ, σ, β, µ) =





Φ(x− µ;λ, σ, β, µ = 0), shifting µ;

Φ( xσ ;λ, σ = 1, β, µσ ), scaling σ;

Φ(x−µ
σ ;λ, σ = 1, β, µ = 0), via unit distribution.

(2.4)

When β = 0, we have the symmetric distribution,

(x− µ)
2

σ2
= (−y)λ , whose solution is y(x) = −

∣∣∣∣
x− µ

σ

∣∣∣∣

2
λ

. (2.5)

This is the so-called “stretched exponential function”6. It has been used in
many areas of physics in which most noticeable interpretation of σ is the mean
relaxation time of a decay process. Survey of literatures shows that it has been
treated as a distribution family since Subbotin (1923)[19]7. Its CDF has been
described as the “generalized error function”8. More recently a skew parameter
has been added to it, and Hansen, McDonald, and Theodossiou [5] have cat-
egorized it as “generalized error distribution” (GED) within the larger “skew
generalized t-distribution” family (SGT). Its skew form (SGED) can be viewed
as a step-function approximation to the skew λ distribution (See Panel (2) of
Figure A.1), and therefore is treated rigorously in Appendix A, following the
same framework laid out in this paper 9.

The change of variable, x = zλ, leads to the analytic solution of C,

C(λ, σ) = 2σ

ˆ ∞

0

λzλ−1e−z2

dz = σλΓ

(
λ

2

)
= σĈ(λ), (2.6)

where Ĉ(λ) = λΓ
(
λ
2

)
is the scale-independent normalization constant for unit

distribution. When β 6= 0, y(x) has known analytic forms at λ = 2, 3. So λ
distribution can be viewed as a distribution family based on a peculiar kind
of “skew stretched exponential function”. Non-zero β has limited effect to C,
typically within 8% of variation for β ∈ [−0.8, 0.8], and most of the change can
be captured by the first β term. This is addressed in Section 2.6.

The slope of y(x) will be used in the truncation of IMGF in the local regime.
It is

dy

dx
=

2
σ (x− µ) + βy

−λσ(−y)λ−1 − β (x− µ)
. (2.7)

When x = µ , dy
dx is singular for λ ≥ 2, else dy

dx = 0. On one hand, dy
dx < 0

when x > µ; on the other hand, dy
dx > 0 when x < µ. When β = 0, it is pretty

6https://en.wikipedia.org/wiki/Stretched exponential function
7See discussion about its history at http://mathoverflow.net/questions/144202/whats-the-

name-of-this-distribution
8http://dlmf.nist.gov/7.16
9See Figure 1 of [5] for the family tree of SGT distribution. Its skew form (SGED) is

constructed by simply multiplying σ with (1 + sgn(x− µ)β). This is different from our origin
of elliptic curves.
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λ C var kurtosis

1
√
πσ ≈ 1.772σ 1

2
σ2 3

2 2σ 2σ2 6

3 3
2

√
πσ ≈ 2.659σ 105

8
σ2 ≈ 13.125σ2 429

35
≈ 12.257

Table 2.1

The normalization constant, variance and kurtosis of λ = 1, 2, 3

straightforward that dy
dx = 2

λ
y

(x−µ) = − sgn (x− µ) 2
λσ

∣∣x−µ
σ

∣∣ 2λ−1
. Most of the

complexity is caused by the presence of β. Since β is small, its effect on dy
dx can

be thought of as a perturbation to the symmetric solution.

2.3. Statistics of The Symmetric Distribution

When β = 0, the distribution is symmetric. The CDF and moments have ana-
lytic form. With µ = 0, the moments can be integrated in a similar fashion as
C. The odd moments are zero, and the even moments are

m(n) =
2λ

C
σn+1

ˆ ∞

0

znλ+λ−1e−z2

dz = σn
Γ
(

λ(n+1)
2

)

Γ
(
λ
2

) . (2.8)

10 Therefore, the variance and kurtosis are

var = m(2) = σ2 Γ( 3λ
2 )

Γ(λ
2 )

; kurtosis =
Γ(λ

2 )Γ(
5λ
2 )

Γ( 3λ
2 )

2 . (2.9)

Both the variance and kurtosis are increasing with λ, as listed in Table 2.1.
The CDF, Φ(x), and CCDF, 1−Φ(x), of a symmetric λ distribution can be

expressed by the incomplete gamma function Γ (s, x) =
´∞
x
ts−1e−tdt,11

Φ(x;λ, σ, µ) = 1

2 Γ(λ
2 )
Γ
(

λ
2 ,
∣∣x−µ

σ

∣∣ 2λ
)
, when (x− µ) < 0;

1− Φ(x;λ, σ, µ) = 1

2 Γ(λ
2 )
Γ
(

λ
2 ,
∣∣x−µ

σ

∣∣ 2λ
)
, when (x− µ) ≥ 0.

(2.10)

Obviously, Φ(µ) = 1
2 due to Γ

(
λ
2 , 0
)
= Γ

(
λ
2

)
. For λ = 1, Γ

(
1
2 , x
)
= Γ

(
1
2

)
(1− erf(x))

and the CDF becomes Φ(x;λ = 1) = 1
2

(
erf
(
x−µ
σ

)
+ 1
)
for all x. For λ = 2,

Γ (1, x) = e−x and the CDF becomes that of a Laplace distribution (See Eq.
(2.26) with β = 0). For λ = 3, the CDF of a cusp distribution has been solved
in the elliptic distribution framework [15]:

Φ(x;λ = 3) = ΦΛC

(∣∣x−µ
σ

∣∣) , when (x− µ) < 0;
1− Φ(x;λ = 3) = ΦΛC

(∣∣x−µ
σ

∣∣) , when (x− µ) ≥ 0;
(2.11)

10This quantity will show up again in Eq. (3.46).
11See http://dlmf.nist.gov/8.2#i. In R, Γ (s, x) /Γ (s) = pgamma(x, s, lower = FALSE).

One short coming of Rmpfr package is that it didn’t re-implement pgamma as it did to erf.

imsart-generic ver. 2014/10/16 file: ecop-special.tex date: December 20, 2015



S. H-T. Lihn/The Special Elliptic Option Pricing Model 11

with the cusp CCDF: ΦΛC(x) =
1√
π
x

1
3 e−x2/3

+
1

2

(
1− erf

(
x

1
3

))
. (2.12)

Since all the moments exist, the characteristic function (CF) can be derived
as

ϕsym(t;λ, σ, µ) = E
[
eitX

]
= eitµ

[
1 +

∞∑

n=2,4,...

(−1)
n
2
m(n)t

n

n!

]
. (2.13)

Likewise, the moment generating function (MGF) for the symmetric distribution
is

Msym(t;λ, σ, µ) = E
[
etX
]
= etµ

[
1 +

∞∑

n=2,4,...

m(n)t
n

n!

]
. (2.14)

For λ = 1, 2, there are well-known analytic formulae from the normal distri-
bution and Laplace distribution,

Msym(t;λ = 1, σ, µ) = etµ+σ2t2/4;

Msym(t;λ = 2, σ, µ) = etµ
(
1− σ2t2

)−1
, for σt < 1.

(2.15)

The asymmetric counterpart for λ = 2 is in Eq. (3.6). The subtlety to notice
here is that, at λ = 2, σ has an upper limit t−1 if MGF must converge. This
is an important theme that I want to convey repeatedly in this paper - as λ
increases in the sub-linear local regime, σ must be confined to smaller ranges
if MGF “must” converge. That is, local regime only exists for high frequency
log-returns, and therefore, for short maturity options.

2.4. Local Regime vs Global Regime

In this paper, the local regime is defined as λ ≥ 2. The global regime is λ = 1. I
don’t find any use for λ between 1 and 2 in this paper, so this range is ignored.
In the local regime, we encounter the phenomena called “MGF explosion” (In
other literatures such as [2], it may be called “moment explosion”). This is the
major obstacle in many stochastic volatility models. The volatility σ needs an
upper limit, depending on λ and β. This is required in order for MGF integral
to converge.

In addition, in local regime, the right tail of the distribution must be trun-
cated in the MGF (and IMGF) integrals. This is a central subject in this paper.
There are two ways to approach the subject:

1. The truncation in the MGF summation;
2. The truncation of the right tail in the MGF integral.

Exact mathematical procedures are developed to handle them. My attempt is
to make them as mathematically elegant as possible. Here we study the first
approach, in which case we use n−→∞ to label the largest n in

∑N
n=1. The second

approach is studied in Section 3.1. When the integrals are truncated, we use
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x−→∞ to label the upper limit of such integrals, or simply
´

−→∞
. The location of

truncation (for either x−→∞ and n−→∞) is at infinity for λ = 2; and it gets smaller
as λ increases. Therefore, λ = 2 is the boundary of the local regime.

The truncation justifies the violation of risk neutrality. The option prices
calculated in the local regime is not directly observable in general. The prices
must be transformed to the global regime to make them observable. This trans-
formation is called λ transformation because it is thought of as projecting the
data from one λ to another. The exception is the options with one-day maturity
where the effect of λ transformation is small.

2.5. Truncation of MGF Summation

Each term in the MGF of a symmetric distribution in Eq. (2.14) is denoted as
(etµ ignored)

G(n;λ, σt) =
m(n)t

n

n!
= (σt)

n
Γ
(

λ(n+1)
2

)

Γ
(
λ
2

)
Γ (n+ 1)

. (2.16)

Here we merge t with σ since most of the time they show up in pairs, and bear in
mind that t ends up to be 1 in the option pricing model. For a reasonably small
σ, G(n;λ, σt) is decreasing as n increases; but when λ > 2, G(n;λ, σt) always
becomes increasing when n is large enough. Where G(n;λ, σt) reaches minimum
is where the summation of MGF should be truncated. Expressed in terms of the
digamma function ψ(x) = d

dx logΓ (x), the truncation point, denoted as n−→∞, is
the root of

d

dn
logG(n;λ, σt) = log (σt) +

λ

2
ψ

(
λ (n+ 1)

2

)
− ψ(n+ 1) = 0. (2.17)

We can solve it numerically at t = 1. For instance, for λ = 3, when σ = 0.1, we
have n−→∞ = 28.63 and Msym(t = 1) = 1.076985. When σ = 0.01, n−→∞ = 2961.96
and Msym(t = 1) = 1.000657. These truncations are satisfactory since they
occur far enough in the summation. For reasonably large n, the asymptotic
expansion of the digamma function can be used to obtain closed form solution.
With ψ(x) = log (x) + ...12, we have

n−→∞ + 1 ≈ σt

(
2

σtλ

) λ
λ−2

. (2.18)

This formula turns out to be quite precise. At n−→∞ = 28.63, its error is less than
10−4. This result is very interesting as it shows up again in Eq. (3.8) such that
n−→∞+1 ≈ x−→∞. That is, where the power series is truncated is where the right tail
is truncated in MGF integral. This is the foundation for the incomplete moment
expansion in Section 3.8.3 and small σ limit in Section 4.

12https://en.wikipedia.org/wiki/Digamma function#Computation and approximation
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On the other hand, there is an upper limit how large σ can be for each λ.
Assume we have a minimum requirement nmin for n−→∞ in Eq. (2.17), we get
(assume t = 1)

log(σmax(λ)) = ψ(nmin + 1)− λ

2
ψ

(
λ (nmin + 1)

2

)
(2.19)

When λ = 2, the two digamma functions cancel out and σmax(λ) = 1. This
is consistent with the limit set by Eq. (2.15). For λ > 2, σmax(λ) decreases as
λ increases. Assume nmin = 1, then, at λ = 3, we have σmax = 0.38, which is
exp

(
1
2γ − 5

4

)
via digamma’s recurrence relation, ψ(n+1) = ψ(n)+ 1

n and ψ(1) =
−γ, where γ is the Euler-Mascheroni constant. The real-world application should
use σ much smaller than this since the standard deviation is nearly 100% at
this level of σmax. The MGF truncation and the existence of σmax(λ) solidify
the concept of the local regime.

2.6. Statistics of Asymmetric Distribution

When β 6= 0, the distribution is asymmetric. Although most of the calculations
have to be numerical, there are still a few analytic solutions that can enhance
our insights and serve as unit tests for numerical implementation. If β is assumed
not to change the tail behavior, then we must have λ ≥ 2. Therefore, we will
focus our effort in the range of λ ∈ [2, 3]. y(x) has known analytic formulae only
at λ = 2, 3.

2.6.1. Case I: λ = 2

For λ = 2, with B0 =
√
1 + β2

4 and B± = B0 ± β
2 , we reach a form of skew

Laplace distribution,

y−(x, β) = −B+
∣∣x−µ

σ

∣∣ , when (x− µ) < 0;
y+(x, β) = −B− ∣∣x−µ

σ

∣∣ , when (x− µ) ≥ 0.
(2.20)

Its normalization constant is

C(λ = 2, σ, β) = σĈ(λ = 2, β) = 2σB0, (2.21)

which is approximately 2σ
(
1 + 1

8β
2
)
. The algebraic rules for B± are

B+B− = 1,

B+ +B− = 2B0 = Ĉ(λ = 2, β),
△B = B+ −B− = β.

(2.22)

Its moments have analytic form:

m(n)(β, λ = 2) = σnΓ (n+ 1)

2B0

((
B+
)n+1

+ (−1)
n (
B−)n+1

)
. (2.23)
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The first 4 moments are straightforward:

m(1) = σβ,
m(2) = 2σ2

(
1 + β2

)
,

m(3) = 6σ3β
(
2 + β2

)
,

m(4) = 24σ4
(
1 + 3β2 + β4

)
.

(2.24)

and the variance, skewness and kurtosis are

var = σ2
(
2 + β2

)
,

skewness =
2β(3+β2)
(2+β2)3/2

≈ 3√
2
β
(
1− 5

12β
2
)
.

kurtosis =
3(8+12β2+3β4)

(2+β2)2
.

(2.25)

The CDF, Φ(x), and CCDF, 1− Φ(x), are

Φ(x) = 1
2B0B+ e

−B+| x−µ
σ |, when (x− µ) < 0;

1− Φ(x) = 1
2B0B− e−B−| x−µ

σ |, when (x− µ) ≥ 0.
(2.26)

Notice the simple result: Φ(µ) = B−

2B0
at x = µ. As β → 0, the asymmetric

solutions converge to the symmetric solutions continuously. This is very nice. It
is not so “fortunate” in the case of λ = 3.

2.6.2. Case II: λ = 3

For λ = 3, it is called “asymmetric standard cusp distribution”, whose y(x) has
been solved analytically via trigonometric solutions of elliptic distribution (See

Lihn 2015[15]). With x0 = − 4β3

27 , V =
∣∣∣x−µ
x0σ

∣∣∣
1
2

and W = 2
∣∣∣β(x−µ)

3σ

∣∣∣
1
2

, we have

y−(x, β) = −J
(
1
3Jarc(V )

)
W, when (x− µ) < 0;

y+(x, β) = −I
(
1
3Iarc(V )

)
W, when (x− µ) ≥ 0;

(2.27)

where (I, J) = (sinh, cosh) when β > 0; and (I, J) = (cosh, sinh) when β < 0.
The arc suffix in Iarc and Jarc are mapped to the arcsinh and arccosh functions
respectively. Notice that V is singular at β = 0. Therefore, analytical continuity
between the asymmetric solutions and symmetric solutions has to go through
infinity, which is not so good for numerical implementation.

Note that cosh
(
1
3 arccosh(x)

)
is peculiarly associated with Chebychev poly-

nomial Tn(x) where n = 1
3 . In this context, T1(x) = x seems to be associated

with y(x) for λ = 2; and T2(x) = 2x2 − 1 with y(x) for λ = 1. But for λ = 3, it
becomes

√
xT 1

3
(
√
x). These are my wild speculation13.

The CDF and moments have to be integrated numerically. This is so for
all λ’s greater than 2. For non-integer λ, in order to achieve good numerical

13Furthermore, in Eq. (15.4.3) of [1], Tn(1− 2x) = F (−n, n; 1
2
;x) where F is the hyperge-

ometric function 2F1.
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performance when solving y(x), the R implementation assumes λ is a rational
number m

n and still resorts to polynomial root solver,

(−y)m −
(
x̂2 + βx̂ŷ

)n
= 0,

where x̂ = x−µ
σ .

(2.28)

This method works well for m < 30. For instance, λ = 3.125 and 2.75 are used
to fit SPX options, they correspond to 25

8 and 11
4 .

For λ ≥ 2, the integral needs to be performed separately on each side of the
cusp numerically. Assume ŷ±(x) are the solutions for the unit distribution, then
the moments (and C) have the form of:

Ĉ(λ, β) =

ˆ ∞

0

(
eŷ

+(x) + eŷ
−(x)

)
dx. (2.29)

m(n)(β, λ) =
σn

Ĉ(λ, β)

ˆ ∞

0

xn
(
eŷ

+(x) + (−1)
n
eŷ

−(x)
)
dx. (2.30)

The CDF, Φ(x), and CCDF, 1− Φ(x), are

Φ(x) = 1
Ĉ(λ,β)

´ x̂

−∞ eŷ
−(x)dx, when x̂ = x−µ

σ < 0;

1− Φ(x) = 1
Ĉ(λ,β)

´∞
x̂
eŷ

+(x)dx, when x̂ = x−µ
σ ≥ 0.

(2.31)

The B± notation can be extended to λ > 2 as B± (λ, β) =
´∞
0
eŷ

±(x)dx,
which are integrals of the entire tail on each side of the cusp. By this definition,
we have B− (λ, β) = Φ(µ) Ĉ(λ, β). The algebraic rules become

B+ (λ, β) +B− (λ, β) = Ĉ(λ, β);
△B = B+ (λ, β)−B− (λ, β) = β.

(2.32)

The first rule comes directly from the definition of the CDF itself. The second
rule on △B is new - it is based on numerical result, yet it is very precise for
every λ, β. The exactness of the difference is amazing. This indicates the skew
parameter enters λ distribution in an elegant way.

At λ = 3, the regression analysis in the range of β ∈ (0.1, 0.8) yields simple
numerical results for the first moment m(1) and skewness S:

m(1) ≈ 1.2353σβ,
S ≈ 1.2113β,

m(1) ≈ sgn(S)σ (0.00178 + 0.9875 |S|+ 0.0405 |S|2).
(2.33)

Such linear relations have profound implication. The skewness (S or β), the
first moment, the risk-neutral drift (Eq. (3.10)) become almost synonym to one
another at λ = 3 for short-maturity options.
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2.6.3. Interpolation between λ = 2 and 3

More generally, we can use λ = 2, 3 as our base, and estimate the numeric
formulae up to second order of β for C, m(1), m(2), and skewness (S) in the two
dimensional space of λ ∈ [2, 3] and β ∈ (0.1, 0.8):

C ≈ λΓ
(
λ
2

)
σ
(
1 + β2

8 (0.98− 0.335 (λ− 2))
)
,

m(1) ≈ (1 + 0.235 (λ− 2)) σβ,

m(2) ≈ Γ2 (λ) σ
2
(
1 + 2

Γ2(λ)
β2
)
, where Γ2 (λ) =

Γ( 3λ
2 )

Γ(λ
2 )

var ≈ Γ2 (λ) σ
2
(
1 + β2

Γ2(λ)

)
,

S ≈ 3√
2
β
(
1− 3

7 (λ− 2)
) (

1− 4.5
12 (3− λ)β2

)
.

(2.34)

It is commonly known that equity indices, such as SPX, have negative skew-
ness and it affects the dynamics of volatility surface. The 80-year daily data on
DJIA shows the skewness is approximately -0.5[15]14. At this level of skewness,
if σ is small, m(1) is much larger than m(2) in magnitude. In addition, m(1) is
negative for SPX, while m(2) is always positive. m(1) and m(2) have opposite
signs. The risk neutral drift µD is dominated by skewness times σ. These facts
are important in the study of the risk-neutral drift.

3. Option Pricing in Local Regime

In this section, the option pricing model is laid out for the local regime, λ ≥ 2.
The option prices obtained at the end of this section can explain the closing
prices and implied volatilities of the options to be expired in one day. A cusp in
the option prices is the signature that λ ≈ 3 is indeed the correct model.

However, in order to model the option prices for longer maturities, e.g. 4 days
or more, the prices will have to go through the so-called “λ transformation”.
The prices have to be projected from the local regime to the global regime via
the implied volatility, then transported by the market momentum, and finally
converted back to market prices. This complex transformation is the subject of
Section 5.

3.1. Moment Generating Function

As a prerequisite of the option pricing model, the moment generating function
(MGF) must be studied. The integral form of MGF is defined as

M(t;λ, σ, µ, β) = E
[
etX
]
=
´

−→∞
−∞ etxP (x;λ, σ, µ, β) dx. (3.1)

The special symbol −→∞ is used to represent the truncation of positive infinity,
since, strictly speaking, the MGF integral diverges in the right tail when λ > 2.

14-0.5 is the asymptotic skewness from ecd fit. The statistics of the data is -1.1, much
higher due to the 1987 crash.
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As a location-scale distribution family, the MGF has the following scaling law
on µ, σ:

M(t;λ, σ, β, µ) =





etµM(t;λ, σ, β, µ = 0), shifting µ;

M(σt;λ, σ = 1, β, µσ ), scaling σ;

etµM(σt;λ, σ = 1, β, µ = 0), via unit distribution.

(3.2)
And here the risk-neutral drift is also defined via MGF,

µD =

{
− log (M (t = 1;λ, σ, µ = 0, β)) , or

− log (M (σ;λ, σ = 1, µ = 0, β)) , via unit distribution.
(3.3)

Conversely, we can writeM(t = 1;λ, σ, µ = 0, β) = e−µD . However, we will only
focus on the mathematics of µD and defer the discussion of its meaning until
Section 3.715. And when x represents the log-returns, t = 1 is all that we need
to consider. In a more general setting, t is in the same role as σ.

For λ = 1, M(t) is the well-known analytic solution of a normal distribution
(β must be zero)

M(t;λ = 1, σ, µ) = etµeσ
2t2/4. (3.4)

The risk-neutral drift is the well-known drift term of the geometric Brownian
motion (GBM),

µD(λ = 1) = −σ2

4 , (3.5)

For λ = 2, M(t) has analytic solution as long as 1− βσt− σ2t2 > 0,

M(t;λ = 2, σ, µ, β) = etµ
(
1− βσt− σ2t2

)−1
. (3.6)

The risk-neutral drift is

µD(λ = 2) = log
(
1− βσ − σ2

)
. (3.7)

In the global regime (λ = 1), σ can be any value, there is no limit. But in the
local regime (λ ≥ 2), σ has an upper limit σmax. At λ = 2, this limit is set
by 1 − βσmax − σ2

max = 0, whose solution is σmax = B−. This upper limit gets
smaller as λ increases.

When λ > 2, the right tail of MGF integral must be truncated. The location of
truncation is denoted as x−→∞. It is determined by the condition: dy/dx+ t = 0,
in the right tail (x − µ ≫ σ). When σ is small, the divergence in the MGF
integral occurs very far into the right tail, usually several hundred standard
deviations away, which justifies the truncation. When β 6= 0, solving dy

dx + t = 0
is a numerical root-finding task. With µ = β = 0, the truncation occurs at root

of dy
dx + t = − 2

λσ

(
x
σ

) 2
λ−1

+ t = 0. The analytic solution is

x−→∞ = σ

(
2

σtλ

) λ
λ−2

. (3.8)

15Since M(t;µ) = etµM(t;µ = 0), it is intuitive that µ must to be µD in order to eliminate
one degree of freedom.
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Eq. (3.8) is identical to the asymptotic digamma solution in Eq. (2.18). That
is, n−→∞ + 1 = x−→∞, which implies where the power series is truncated is where
the integral is truncated. And the truncated MGF value from integral method
is exactly the same that of summation method. For λ = 3 and σ = 0.1, we have
truncation occurring at x−→∞ = 29.63 andM(t = 1) = 1.076985. For σ = 0.01, we
have truncation occurring at x−→∞ = 2962.96 andM(t = 1) = 1.000655. The trun-
cation at 300σ is numerically precise enough for most financial applications16.
At a fixed σ, due to the exponent λ

λ−2 in Eq. (3.8), x−→∞ increases exponentially
as λ decreases and reaches infinity at λ = 2. So tail truncation in MGF is a
special phenomena for λ > 2, which justifies the concept of the local regime.

The MGF integral for µD can also be represented in unit distribution that
allows maximum numeric precision for small σ,

e−µD =M(t = 1;µ = 0) =M(σ;λ, µ = 0, β) = 1+
1

Ĉ(λ,β)

(
´

−→∞
0

(eσx − 1) eŷ
+(x)dx+

´∞
0

(e−σx − 1) eŷ
−(x)dx

)
.

(3.9)

Notice these are integrals of the entire tail on each side of the cusp. The trun-

cation is determined by dŷ
dx + σ = 0, which is at x−→∞ =

(
2
σλ

) λ
λ−2 for a symmetric

distribution.
Furthermore, for very small σ, only the first and second moments matter in

MGF and there is a short cut for µD,

M(t = 1) ≈ 1 +m(1) +
m(2)

2 ,

µD ≈ −m(1) +
1
2

(
m2

(1) −m(2)

)
.

(3.10)

For example, the equity market indices have skewness of -0.4 to -0.7. At
λ = 3, this corresponds to β = −0.3 to −0.6. Coincidentally in this range,
m(1) can be approximated by the skewness times σ within 2% error. In Table
3.1, µD is calculated by three different methods and in various scenarios of σ
at λ = 3 and β = −0.5. We see that, for σ = 0.1, m(1) is in the same order
as m(2) but with opposite signs. When σ is reduced to 0.05, m2 term cancels
out half of m(1) term. At σ = 0.01, m(1) is clearly much larger than m(2). The
effect of skewness dominates µD. The second-order approximation is less than
0.1% error. At σ ≤ 0.005, m(1) estimate is within less than 6% error. The first-
order approximation is reasonably precise. As you can see, using the small-σ
approximation can reduce the computing time significantly.

3.2. Insight

The MGF truncation procedure and the existence of an upper limit σmax re-
veals an important insight for the physics of the financial market: High kurtosis
distribution is only meaningful in the small variance domain. To extend it fur-
ther, since the variances of log-return distributions of financial assets, such as
equities currencies, commodities, and bonds, are proportional to the sampling

16This limit is set by .ecd.mpfr.N.sigma in the ecd package.
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method σ = 0.1 σ = 0.05 σ = 0.01 σ = 0.005 σ = 0.0015

est. maturity 30 days 4-7 days 1 day
− logM(t = 1;µ = 0) -0.006920 0.01459 0.005541 0.002935 0.0009152

−m(1) +
1
2

(

m2
(1)

−m(2)

)

-0.004431 0.01440 0.005537 0.002934 0.0009152

−m(1) 0.062011 0.03101 0.006201 0.003101 0.0009302

Table 3.1

Various scenarios of µD calculations at λ = 3 and β = −0.5. Note that, for weekly and
monthly expiries, λ would decrease as maturity increases. This will increase the accuracy of

the estimates.

period, var ∼ T , it follows that high kurtosis distribution is only meaningful in
the high frequency regime, from daily to a few weeks; that is, T ≪ 1, when T
is measured by the fraction of a year.

There is a distant analogy to the quantum physics. Quantum mechanics man-
ifests itself in the atomic scale, while the Newtonian mechanics is observable at
the large scale. This is what I have in mind for the λ transformation: There is
a local regime where the high kurtosis distribution exerts its physics, and such
effect can’t be observed directly. There is a global regime (aka the venerable
normal distribution) where the implied volatility can be projected to option
prices, which can be observed by the market practitioners.

The first obstacle of quantum electromagnetism is to work around infinity.
Here we have a similar challenge - taming the infinity of MGF so that we can
move on to build out the option pricing model in the local regime.

Since the MGF must be truncated when λ > 2, it also indicates the “true”
value of MGF can not be known. Because of this, there is an uncertainty as to
what the ideal µ is (think of the uncertainty principle in quantum mechanics).
This leads to the violation of risk neutrality in the local regime. As we will
see, in order to explain the volatility skew in the SPX option data, µ must be
different from µD and small constants are added to the option prices.

3.3. Incomplete MGF

Given a distribution P (x;λ, σ, β, µ), the incomplete MGF (IMGF) is defined as

Mc(k, t) = E
[
etX
]
X≥k

=
´

−→∞
k
etxP (x) dx, for call option;

Mp(k, t) = E
[
etX
]
X≤k

=
´ k

−∞ etxP (x) dx, for put option.
(3.11)

Since t = 1 in most cases, we can define the shorthand function,

Mc,p(k) =Mc,p(k, t = 1). (3.12)

And we have the parity equations: Mc(k, t) +Mp(k, t) =M(t) and Mc(−∞) =
Mp(

−→∞) = M(t = 1). Remember M(t = 1) = 1 in risk-neutral setting by
definition.
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As a location-scale distribution family, the IMGF has the following scaling
law on µ, σ:

Mc,p(k, t;λ, σ, β, µ) =





etµMc,p(k − µ, t;λ, σ, β, µ = 0), shifting µ;

Mc,p(
k
σ , σt;λ, σ = 1, β, µσ ), scaling σ;

etµMc,p(
k−µ
σ , σt;λ, σ = 1, β, µ = 0), via unit distribution.

(3.13)
Since σ and t in IMGF always show up in pairs and µ can always be factored
out to etµ, we can set t = 1 without losing any information.

For λ = 1, Mc,p(k) is straightforward:

Mc(k;λ = 1, σ, µ) = 1
2e

µ+σ2/4
(
1− erf

(
k−µ
σ − σ

2

))
,

Mp(k;λ = 1, σ, µ) = 1
2e

µ+σ2/4
(
1 + erf

(
k−µ
σ − σ

2

))
.

(3.14)

Substituting µ with the risk-neutral drift µD(λ = 1) = −σ2/4, we arrive at the
component in the Black-Scholes model,17

Mc(k;λ = 1, σ, µD) = 1
2 − 1

2 erf
(
k
σ − σ

4

)
.

Mp(k;λ = 1, σ, µD) = 1
2 + 1

2 erf
(
k
σ − σ

4

)
.

(3.15)

For λ = 2, the algebra for B± must be expanded to B±
σ = B± ± σ. The

algebraic rules for B±
σ are (1) B+

σ + B−
σ = 2B0; (2) B

+
σ − B−

σ = β + 2σ; (3)
B+

σ B
−
σ = 1 − βσ − σ2 = eµD . The third rule is quite impressive. Mc,p(k;λ =

2, σ, β, µ) can be carried out analytically on each side of the cusp:

Mc(k;λ = 2, σ, β, µ) = 1
2

eµ

B−
σ B0

e−B−
σ

k−µ
σ , when k − µ ≥ 0;

Mp(k;λ = 2, σ, β, µ) = 1
2

eµ

B+
σ B0

e−B+
σ | k−µ

σ |, when k − µ < 0.
(3.16)

This equation is very similar to the CDF formula in Eq. (2.26).
The more general approach for λ > 2 is to integrate the tail on each side of

the cusp through a unit distribution, following the truncation procedure of x−→∞
in Section 3.1,

Mc(k;λ, σ, β, µ) =
eµ

Ĉ(λ,β)

´

−→∞
k̂
eŷ

+(x)+σxdx, when k̂ = k−µ
σ ≥ 0;

Mp(k;λ, σ, β, µ) =
eµ

Ĉ(λ,β)

´∞
−k̂
eŷ

−(x)−σxdx, when k̂ = k−µ
σ < 0.

(3.17)

We can extend the B±
σ notation to λ > 2. Define B+

σ (λ) =Mc(k = µ) Ĉ(λ, β)
and B−

σ (λ) = Mp(k = µ) Ĉ(λ, β). Then the algebraic rules for B±
σ are (1)

B+
σ + B−

σ = Ĉ(λ, β); (2) B+
σ − B−

σ ≈ β + Γ (λ+ 1)σ. The first rule is the
direct result of Mc+Mp = 1. The second rule is derived from numerical results.
The precision is okay, but not perfect for λ > 2, indicating it is the first order
approximation of a full, yet unknown, conservation law.

17Notice that
(

k
σ
− σ

4

)

is simply
(

k−µD
σ

)

.

imsart-generic ver. 2014/10/16 file: ecop-special.tex date: December 20, 2015



S. H-T. Lihn/The Special Elliptic Option Pricing Model 21

3.4. Incomplete Moments

As in the case of MGF integral, I’ve shown that truncation of the integral is not
the only way to handle the infinity. The other alternative is to tackle it with
moment expansion. This leads to the small σ limit of OGF, which produces
elegant analytic solution for volatility smile.

Writing Mc,p as moment expansion of a unit distribution, we have

Mc(k;λ, σ, β, µ) = eµ
∑n−→

∞

n=0
σn

n! E [Xn]X≥k̂ ,

Mp(k;λ, σ, β, µ) = eµ
∑n−→

∞

n=0
σn

n! E [Xn]X<k̂ ,
(3.18)

where n−→∞ is the limit of the summation. It must be emphasized that, once eµ is
factored out, only the normalized k̂ matters in the rest of this section. We can

define each term in the series as incomplete moments M
(n)
c,p (k), where

M
(n)
c (k;λ, σ, β) = σnE [Xn]X≥k̂ = σn M̂

(n)
c (k̂;λ, β),

M
(n)
p (k;λ, σ, β) = σnE [Xn]X<k̂ = σn M̂

(n)
p (k̂;λ, β),

(3.19)

On the right hand side, M̂
(n)
c,p (k̂) are the incomplete moments for the unit dis-

tribution, the smallest building blocks in moment expansion. The parity rule,

M
(n)
c (k) +M

(n)
p (k) = m(n), allows us to derive the other half on each side of

the cusp. Notice when n = 0, M
(0)
c,p (k) are just CCDF/CDF,

M
(0)
c (k;λ, σ, β) = 1− Φ(k̂), when k̂ ≥ 0;

M
(0)
p (k;λ, σ, β) = Φ(k̂), when k̂ < 0;

M
(0)
c (k;λ, σ, β) +M

(0)
p (k;λ, σ, β) = 1.

(3.20)

Because of the third rule, we have M
(0)
c (k) = 1− Φ(k) and M

(0)
p (k) = Φ(k) for

all k.
The symmetric solutions are straightforward. When β = 0, they are based

on the incomplete gamma function,

M̂
(n)
c (k̂;λ, β = 0) = 1

2Γ(λ
2 )
Γ

(
λ(n+1)

2 ,
∣∣∣k̂
∣∣∣
2
λ

)
, when k̂ ≥ 0;

M̂
(n)
p (k̂;λ, β = 0) = (−1)

n
M̂

(n)
c (k̂;λ, β = 0), when k̂ < 0.

(3.21)

The case for λ = 2 is also quite simple, based on a slightly different (simpler)
form of incomplete gamma function,

M̂
(n)
c (k̂;λ = 2, β) = 1

Ĉ(λ,β)

´∞
k̂
e−B−xxndx =

(B−)
−n−1

2B0
Γ
(
n+ 1, k̂B−

)
, when k̂ ≥ 0;

M̂
(n)
p (k̂;λ = 2, β) = (−1)n

Ĉ(λ,β)

´∞
−k̂
e−B+xxndx =

(−1)n(B+)
−n−1

2B0
Γ
(
n+ 1,−k̂B+

)
, when k̂ < 0.

(3.22)
The general asymmetric solutions have to be carried out numerically,

M̂
(n)
c (k̂;λ, β) = 1

Ĉ(λ,β)

´∞
k̂
eŷ

+(x)xndx, when k̂ ≥ 0;

M̂
(n)
p (k̂;λ, β) = (−1)n

Ĉ(λ,β)

´∞
−k̂
eŷ

−(x)xndx, when k̂ < 0.
(3.23)
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When k̂ = 0, incomplete moment integral, M̂n
c (0;λ, β) + M̂n

p (0;λ, β), becomes
the moment integral in Eq. (2.30).

For small σ, since only the first and second terms matter, the approximated
version of Mc,p for λ > 2 is

Mc,p(k;λ, σ, β, µ) = eµ
(
M̂ (0)

c,p (k̂) + σM̂ (1)
c,p (k̂) +

σ2

2
M̂ (2)

c,p (k̂) + ...

)
. (3.24)

The advantage of incomplete moments is that the integral is independent of
σ nor µ. Therefore, they can be pre-computed from unit distribution based on
λ, β; and stored in a database for quick lookup. For λ = 3, σ = 0.01, the sum of
first two orders produces accurate results with error less than 0.1%, except for
very small values. In a compute-time sensitive environment, incomplete moment
approach can be valuable.

On the other hand, the analytic form for β = 0 can be extended to OGF.
This provides solid baseline in an area where, due to its complexity, only the
integral form exists otherwise.

3.5. Option Generating Function

The option generating function (OGF) is defined as

Lc(k;λ, σ, β, µ) =
´

−→∞
k

(
ex − ek

)
P (x;λ, σ, β, µ) dx, for call option;

Lp(k;λ, σ, β, µ) = −
´ k

−∞
(
ex − ek

)
P (x;λ, σ, β, µ) dx, for put option;

(3.25)
Generally speaking, Lc,p(k) can be implemented as

Lc(k) =Mc(k)− ek (1− Φ) (k),
Lp(k) = −Mp(k) + ek Φ(k).

(3.26)

It is obvious that this leads to the put-call parity rule,

Lc(k;λ, σ, β, µ)− Lp(k;λ, σ, β, µ) = 1 +∆µ− ek. (3.27)

where ∆µ =M(t = 1;λ, σ, β, µ)− 1 = eµ−µD − 1.
Since, in the local regime, analytic formula is expressed in terms of Lc on

one side of cusp, and Lp for the other side of the cusp. We have to use put-call
parity quite often to derive complete solutions for both option types.

Lc,p(k) is translationally invariant, by which µ in the distribution can be
factored out:

Lc,p(k;λ, σ, β, µ) = eµLc,p(k − µ;λ, σ, β, µ = 0). (3.28)

This invariant has an important implication: µ affects the absolute values of
option prices, but it has no effect on the “shape” of logLc,p(...). The most

relevant quantity is k̂ = k−µ
σ , that is, the log-strike relative to µ, measured in
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the unit of σ. And the best representation of option prices is in its logarithm
form, logLc,p(...).

Here we see that a constant ∆µ is added to the put-call parity when µ 6= µD.
There is an uncertainty whether such constant should be added on the side of
k ≥ µ or k < µ. Furthermore, the tail truncation also introduces an uncertainty
on the true value of Lc,p in the local regime. As the market data indicates,
the option prices should be padded with small constants in the local regime. In
addition, the mathematics of volatility smile also dictates that there must two
different µ’s for call option chain and put option chain (See Eq. (4.30)). So the
local (normalized) option prices should be calculated as

call option prices = Lc(k;λ, σ, β, µc) + ǫc,
put option prices = Lp(k;λ, σ, β, µp) + ǫp.

(3.29)

Both ǫc and ǫp are very small, typically in the order of the smallest quotation
unit of option prices, but nevertheless are necessary to account for small premi-
ums that the market adds to the deeply out-of-money options. And for λ ≥ 2,
Lc and Lp have to be calculated separately for each side of the cusp. To put
these concepts together, the (normalized) option prices in the local regime are
determined by

call option prices =

{
Lc(k;λ, σ, β, µc) + ǫc, when k − µc ≥ 0;

Lp(k;λ, σ, β, µc) + 1− ek +∆µc + ǫc, when k − µc < 0.

put option prices =

{
Lc(k;λ, σ, β, µp)− 1 + ek −∆µp + ǫp, when k − µp ≥ 0;

Lp(k;λ, σ, β, µp) + ǫp, when k − µp < 0.

(3.30)

3.6. From OGF to Volatility Smile

To calculate implied volatilities, it is simply equating Lc,p in the local regime to
Lc,p in the global regime. The high-level procedure is described in this section.
The notation σ1(k) is used for the volatility curve with a suffix 1 to emphasize
its global nature (λ = 1). If the time to maturity T is known, the quantity
σimp(k) = σ1(k)/

√
2T is typically called the “implied volatility” in the industry.

In this paper, we also call σ1(k) the “implied volatility” for simplicity sake.

When equating Lc,p, we shall use risk neutral drift µ = µD1 = −σ2
1(k)
4 from

Eq. (3.5) for the global regime. So from Eq. (3.30), we reach the high-level
implied volatility formula based on OGF,

Lc(k;λ = 1, σ1(k), β = 0, µD1) =

{
Lc(k;λ, σ, β, µc) + ǫc, when k − µc ≥ 0;

Lp(k;λ, σ, β, µc) + 1− ek +∆µc + ǫc, when k − µc < 0.

Lp(k;λ = 1, σ1(k), β = 0, µD1) =

{
Lc(k;λ, σ, β, µp)− 1 + ek −∆µp + ǫp, when k − µp ≥ 0;

Lp(k;λ, σ, β, µp) + ǫp, when k − µp < 0.

(3.31)
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Given the inputs - λ, σ, β, µc, ǫc for calls, the implied volatility σ1(k) can be
solved for each k by root-finding utility. Likewise, given λ, σ, β, µp, ǫp for puts,
another curve of σ1(k) can be solved. The operation to calculate σ1(k) from
Lc,p is called the Vc,p operator. σ1(k) is also called “volatility smile” because
the ATM region has smaller values and the further out k is from zero, the larger
σ1(k).

3.7. Risk Neutrality

The risk neutral drift µD can be derived from the boundary condition on the
moneyness of options. When the option is very deep in the money, the option
price should approximately reflect that of the underlying (ignoring ǫ). This is the
so-called “option delta equal to 1” condition. That is, in the normalized scale,
Lc(k) → 1 when k → −∞. Since the CCDF term diminishes in Eq. (3.26), we
have Mc(k) → 1 when k → −∞, which is simply

M(t = 1;λ, σ, β, µD) = 1 (3.32)

This is called the risk-neutral condition of MGF. Since the term etµ can be
taken out of MGF (Eq. (3.2)), we have

eµD M (t = 1;λ, σ, β, µ = 0) = 1. (3.33)

This is equivalent to the definition of µD from Eq. (3.3). Therefore, the risk-
neutral put-call parity is

Lc(k;λ, σ, β, µD)− Lp(k;λ, σ, β, µD) = 1− ek. (3.34)

3.8. Solutions For Option Generating Function

For a λ distribution |P (x;λ, σ, β, µ)〉 where x is log-return of underlying as-
set, Lc,p can be viewed as a (more complicated) Laplace-style operator that
transform the probability from the x-domain (log-return) to the k-domain (log-
strike):

Lc,p(k;λ, σ, β, µ) = Lc,p |P (x;λ, σ, β, µ)〉 . (3.35)

The Lc operator is the first of the 4 operators in the λ transformation. There
are several scenarios where analytic forms can be known. They are explored in
this section.

3.8.1. Case I: λ = 1 and Global Regime Operators

For λ = 1, the risk-neutral Lc,p(k) is the venerable Black-Scholes equation in
our notation:

Lc(k;λ = 1, σ1, µD) = 1
2

(
1− ek

)
− 1

2 erf
(

k
σ1

− σ1

4

)
+ ek

2 erf
(

k
σ1

+ σ1

4

)
,

Lp(k;λ = 1, σ1, µD) = Lc(k;λ = 1, σ1, µD)−
(
1− ek

)
.

(3.36)
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There are two ways Eq. (3.36) will be used in the λ transformation framework.
The first operator is to calculate normalized option prices from implied volatili-
ties: the Oc operator for call, and the Op for put. They take a vector of implied
volatilities, σ1(k), and calculate the normalized option prices, Lc,p(k),

Oc : Lc(k) =
1
2

(
1− ek

)
− 1

2 erf
(

k
σ1(k)

− σ1(k)
4

)
+ ek

2 erf
(

k
σ1(k)

+ σ1(k)
4

)
,

Op : Lp(k) = − 1
2

(
1− ek

)
− 1

2 erf
(

k
σ1(k)

− σ1(k)
4

)
+ ek

2 erf
(

k
σ1(k)

+ σ1(k)
4

)
.

(3.37)
The second operation is the Vc,p operator: to calculate implied volatilities,

σ1(k), from a vector of normalized option prices, Lc(k) or Lp(k). This is a
root-finding computation based on the same formula, Eq. (3.37). There are
two possible sources of input to the Vc,p operator in λ transformation: The first
source is the normalized option prices from market data. They are simply option

prices divided by the price of the underlying, C̃(k)
S̃ for call and P̃(k)

S̃ for put.

Most vendors would convert the option prices to σimp(k), following a prescribed
calendar convention for T . This is a very standard procedure18. Since there is
no regime change here, I prefer to use Vc,p(λ = 1) to label this operation.

The second kind of data source is Lc,p(k) generated from a λ distribution
in the local regime. Since there is a regime change, I would use Vc,p(λ → 1)
to label the source (λ) and the target (1) regimes. So taking µc,p and ǫc,p into
account, we have

σ1(k;λ, σ, β, µ) = Vc,p(λ→ 1)· (Lc,p + ǫc,p) |P (x;λ, σ, β, µc,p)〉 , (3.38)

Since these two operators are inverse functions to each other, we have the iden-
tity rule:

Oc,p·Vc,p = Vc,p·Oc,p = I (3.39)

3.8.2. Case II: λ = 2

For λ = 2, with the normalized k̂ = k−µ
σ , the analytic form for each side of the

cusp is

Lc(k;λ = 2, σ, β, µ) = σeµ

2B0

(
1

B−
σ B−

)
e−B−

σ k̂, when k̂ ≥ 0;

Lp(k;λ = 2, σ, β, µ) = σeµ

2B0

(
1

B+
σ B+

)
e−B+

σ |k̂|, when k̂ < 0;
(3.40)

and the put-call parity, Lc(k)−Lp(k) = eµ−µD − ek, is used to derive the other
half19. We see that, to the first order of σ, option prices are proportional to σ.
When k = µ, we have

18The dividend yield and risk-free rate can be added to Eq. (3.36). However, for the purpose
of this paper, they have very little effect on the short-maturity options. Especially in today’s
environment, the risk-free rate is nearly zero and SPX dividend yield is less than 2% per year.

19Here we use 1

B
±
σ

− 1
B± = ∓σ

B
±
σ B

±
σ
.
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Lc(k = µ) = σeµ

2B0

(
1

B−
σ B−

)
,

Lp(k = µ) = σeµ

2B0

(
1

B+
σ B+

)
.

(3.41)

Furthermore, when µ = µD,20

Lc(k = µD) = σ
2B0

B+
σ B

+,

Lp(k = µD) = σ
2B0

B−
σ B

−.
(3.42)

It follows that Lc(k = µD) + Lp(k = µD) = σ
2B0

(
2 + β2 + βσ

)
. When β = 0,

Lc(k = µD) = Lp(k = µD) = σ
2 .

3.8.3. Case III: Incomplete Moment Approach and β = 0

By replacing incomplete MGF and CDF with incomplete moments, Lc,p can be
expressed as,

Lc(k;λ, σ, β, µ) =
eµ

2

(∑n−→
∞

n=1
1
n! m

(n)
c (k̂) +

(
1− eσk̂

)
m

(0)
c (k̂)

)
, when k̂ ≥ 0;

Lp(k;λ, σ, β, µ) = − eµ

2

(∑n−→
∞

n=1
(−1)n

n! m
(n)
c (k̂) +

(
1− eσk̂

)
m

(0)
p (k̂)

)
, when k̂ < 0;

(3.43)

where m
(n)
c,p (k̂) = 2σn M̂

(n)
c,p (k̂;λ, β) from Eq. (3.23); and the put-call parity,

Lc(k) − Lp(k) = eµ−µD − ek, is used to derive the other half on each side of

the cusp. By expanding
(
1− eσk̂

)
into Taylor series, we show that, to the first

order of σ, option prices are proportional to σ:

Lc(k;λ, σ, β, µ) = σeµ
∑n−→

∞

n=1
σn−1

n!(
M̂

(n)
c (k̂;λ, β)− k̂n M̂

(0)
c (k̂;λ, β)

)
, when k̂ ≥ 0;

Lp(k;λ, σ, β, µ) = σeµ
∑n−→

∞

n=1
(−σ)n−1

n!(
M̂

(n)
p (k̂;λ, β)−

∣∣∣k̂
∣∣∣
n

M̂
(0)
p (k̂;λ, β)

)
, when k̂ < 0;

(3.44)
This Taylor expansion result is the very reason that Lc,p is called “generating
function”.

When β = 0, using Eq. (3.21), the option prices become sums of incomplete
gamma functions,

20Here we use B−
σ B+

σ = eµD ; B−
σ B+ = 1− σB+ and B+

σ B− = 1 + σB−.
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Lc(k;λ, σ, β = 0, µ) = σeµ

2Γ(λ
2 )

∑n−→
∞

n=1
σn−1

n!(
Γ

(
λ(n+1)

2 ,
∣∣∣k̂
∣∣∣
2
λ

)
− k̂n Γ

(
λ
2 ,
∣∣∣k̂
∣∣∣
2
λ

))
, when k̂ ≥ 0;

Lp(k;λ, σ, β = 0, µD) = σeµ

2Γ(λ
2 )

∑n−→
∞

n=1
(−σ)n−1

n!(
Γ

(
λ(n+1)

2 ,
∣∣∣k̂
∣∣∣
2
λ

)
−
∣∣∣k̂
∣∣∣
n

Γ

(
λ
2 ,
∣∣∣k̂
∣∣∣
2
λ

))
, when k̂ < 0;

(3.45)
The symmetric sum-of-incomplete-gamma expression of option prices provides
good baseline for option prices across all λ. It also sheds some light into the for-
mation of option prices: Call option is the sum of all “moment” terms regardless
of odd n or even n; while put option is the sum of the differences between even
“moment” terms and odd “moment” terms.

To illustrate this, we can calculate Lc,p at k = µ. Since Γ (s, 0) = Γ (s), we
arrive at particularly simple expressions,

Lc(k = µ;λ, σ, β = 0, µ) = σeµ

2

(∑n−→
∞

n=1
σn−1

n! Γ
(

λ(n+1)
2

)
/Γ
(
λ
2

))
,

Lp(k = µ;λ, σ, β = 0, µ) = σeµ

2

(∑n−→
∞

n=1
(−σ)n−1

n! Γ
(

λ(n+1)
2

)
/Γ
(
λ
2

))
.

(3.46)

Notice the similarity to Eq. (2.8). Lc(k = µ) and Lp(k = µ) are just taking
different segments of symmetric moments in the series summation of MGF.
And the difference, Lc − Lp, comes back to eµ−µD − eµ by the very definition
of M(t = 1;µ = 0) = e−µD .

3.8.4. Case III: λ > 2

There is no known analytic solution for λ > 2 except when β = 0. We resort to
the integral form of OGF for each side of the cusp, based on unit distribution,

Lc(k;λ, σ, β, µ) =
eµ

Ĉ(λ,β)

´

−→∞
k̂
eŷ

+(x)
(
eσx − eσk̂

)
dx, when k̂ ≥ 0;

Lp(k;λ, σ, β, µ) =
−eµ

Ĉ(λ,β)

´∞
−k̂
eŷ

−(x)
(
e−σx − eσk̂

)
dx, when k̂ < 0;

(3.47)

and use put-call parity, Lc(k)−Lp(k) = eµ−µD−ek, to derive the other half. This
formula provides the most general approach to calculate option prices. However,
one must understand how to estimate numerical error in such direct integral.
In particular, for short-maturity options, σ can be as small as 0.001. In R,
the integrate function has a default tolerance of .Machine$double.eps^0.25,
which is about 0.0001. As you can see, there is not much room for error. This
is one major reason that I use the unit distribution extensively and attempt to
factor out µ and σ as much as possible in this paper.
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4. Small σ Limit of Option Prices and Volatility Smile

I’ve developed several ways to calculate Lc,p(k). As it has been emphasized
repeatedly in this paper, the short-maturity options have particularly simple
behavior. This area corresponds to σ ≪ 1, |µD| ≪ 1. This section is dedicated to
solutions under such condition. One major achievement here is that the analytic
formula for volatility smile is derived.

4.1. The V Operator for Small σ and Small k

Small k corresponds to the neighborhood of ATM options. Eq. (3.36) can be

simplified when Lc,p(k) is small and
(

k
σ1(k)

± σ1(k)
4

)
is small, that is, σ, σ1(k) ≪

1 and k ≪ σ1(k). By expanding the erf function at zero21 and keep the linear
terms, we have (ǫ is ignored here)

Lc,p(k) =
σ1(k)

2
√
π

∓ k

2
. (4.1)

Rearranging the terms, we get the first order approximation of the V operator
for small k,

Vc,p(λ→ 1) : σ1(k) = 2
√
π

(
Lc,p(k)±

k

2

)
. (4.2)

This approximation works only for a very small range of k near µ, neverthe-
less, it is a (somewhat exaggerated) illustration of the volatility smile. Take call
option as example, as k increases on the positive side, Lc decreases exponen-
tially and k/2 term takes over to move the volatility σ1(k) up. As k decreases
on the negative side, Lc is dominated by eµ−µD − ek, which also moves σ1(k)
up. Therefore, a smile is formed with the local minimum near k = µ ≈ 0:
min (σ1) = 2

√
πLc,p(k = µ).

4.2. OGF for Small σ

From both the incomplete moment expansion, Eq. (3.43), and the integral form,
Eq. (3.47), Lc,p’s first order approximation in σ is

Lc(k;λ, σ, β, µ) = σeµ
(
M̂

(1)
c (k̂)− k̂ M̂

(0)
c (k̂)

)
, when k̂ ≥ 0;

Lp(k;λ, σ, β, µ) = −σeµ
(
M̂

(1)
p (k̂)− k̂ M̂

(0)
p (k̂)

)
, when k̂ < 0.

(4.3)

At λ = 3 and σ = 0.001, the error of this approximation is less than 1% even

for
∣∣∣k̂
∣∣∣ as large as 5. The error becomes smaller for smaller

∣∣∣k̂
∣∣∣. At k = µ, Lc,p is

21erf(z) = 2√
π

(

z − 1
3
z3 + ...

)

. See https://en.wikipedia.org/wiki/Error function
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just the first-order incomplete moments, integrating the entire tail on each side
of the cusp,

Lc(k = µ) = σeµM̂
(1)
c (0) = σ eµ

Ĉ(λ,β)

´∞
0
eŷ

+(x)x dx

Lp(k = µ) = −σeµM̂ (1)
p (0) = σ eµ

Ĉ(λ,β)

´∞
0
eŷ

−(x)x dx
(4.4)

At λ = 3 and σ = 0.001, the error of this approximation is less than 0.4%.
For small σ and β = 0, we define the star OGF L∗

λ(k̂), which is independent
of σ and µ,

L∗
λ(k̂) =

1

2Γ
(
λ
2

)
(
Γ

(
λ,
∣∣∣k̂
∣∣∣
2
λ

)
−
∣∣∣k̂
∣∣∣ Γ

(
λ

2
,
∣∣∣k̂
∣∣∣
2
λ

))
, (4.5)

and the OGF reaches its simplest analytic form (non-zero ∆µc,p and ǫc,p only
for the local regime),

Lc (k;λ, σ, β = 0, µc) + ǫc =

{
σeµcL∗

λ(k̂) + ǫc, when k̂ ≥ 0;

σeµcL∗
λ(k̂) +

(
1− ek

)
+∆µc + ǫc, when k̂ < 0;

Lp (k;λ, σ, β = 0, µp) + ǫp =

{
σeµpL∗

λ(k̂)−
(
1− ek

)
−∆µp + ǫp, when k̂ ≥ 0;

σeµpL∗
λ(k̂) + ǫp, when k̂ < 0;

(4.6)

where ∆µc,p = eµc,p−µD − 1. Note that L∗
λ(k̂) is symmetric on k̂.

Eq. (4.5) allows us to simplify the Vc,p (λ→ 1) ·Lc,p operation into a one-line
formula which can be applied with the root-finding utility to solve σ1(k). For

λ = 1, we must use k̂1 = k−µD1

σ1(k)
= k

σ1(k)
+ σ1(k)

4 . So from Lc,p in Eq. (4.6), we

reach the volatility smile formula based on incomplete gamma function,

σ1(k)L
∗
1(k̂1) = σL∗

λ(k̂) + δc,p(k̂)∆µc,p + ǫc,p, (4.7)

where

k̂1 = σ k̂
σ1(k)

+
(

µc,p

σ1(k)
+ σ1(k)

4

)
,

δc(k̂) = δ(k̂ < 0),

δp(k̂) = −δ(k̂ ≥ 0),

k̂ =
k−µc,p

σ ,

(4.8)

and δ(x) is the indicator function: 1 when x is true, else 0. Therefore, δc,p(k̂)
is the indicator function for in-the-money option (with a negative sign for put).
Notice that the eµ term in σeµL∗ is dropped on both sides since it is basically 1

for small σ. For reasonably large
∣∣∣k̂
∣∣∣, the σ1(k)

4 term in k̂1 can also be dropped.

The term is retained here for the sake of analytic tractability.
Now we choose to express the volatility smile in terms of the dimensionless

ratio, Q(k̂) = σ1(k)
σ , by which we can replace k̂1 with 1

Q(k̂)

(
k̂ +

µc,p

σ

)
. Eq. (4.7)

becomes

Q(k̂)L∗
1

(
1

Q(k̂)

(
k̂ +

µc,p

σ

))
= L∗

λ(k̂) +
(
δc,p(k̂)∆µc,p + ǫc,p

)
1
σ (4.9)
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in which Q(k̂) can be solved by the root-finding utility, for each k̂ at a given

λ. Since L∗
λ(k̂) is symmetric over k̂, the volatility smile is symmetric if and

only if µc,p = µD. On the other hand, when µc,p 6= µD, the risk neutrality is
violated; and the volatility smile is skewed, which is observed very commonly in
the market data and will be studied more extensively in Section 4.7.

4.3. Exact Solutions of L
∗ for Integer λ

For integer λ = 1, 2, 3, L∗
λ(x) have exact solutions. They shall be mentioned

here before we dive into more complex expansions and asymptotic series. For
the global regime, it is

L∗
1(x) =

1

2
√
π
e−x2 − x

2
erfc (x) , x ≥ 0. (4.10)

For λ = 2, as it has always been simple, it is

L∗
2(x) =

1

2
e−x, x ≥ 0. (4.11)

For λ = 3, the elliptic solution is

L∗
3(x) =

2√
π
e−x

2
3
(
1 + x

2
3

)
− x

2
erfc

(
x

1
3

)
, x ≥ 0. (4.12)

They can be derived via the recurrence relations of incomplete gamma func-
tion (See Eq. (6.5.22) of [1]) and terminated at Γ (1, x) = e−x and Γ

(
1
2 , x
)
=√

π erfc (
√
x). The logarithm of L∗

2(x) is precisely linear; and, for λ > 2, the
logarithm of L∗

λ(x) is approximately linear.
The essense of calculating volatility smile in Eq. (4.7) is an exercise of esti-

mating k̂1 in the logarithm of σ1(k)L
∗
1(k̂1) that matches the quantity of σL∗

λ(k̂)
from the local regime.

4.4. Minimum Implied Volatility in the Smile

The minimum implied volatility in the valley of the volatility smile, near k = 0,
provides an important anchor for the curve. Since it is related to the ATM
options, it is also in the most heavily traded range of k. When k = µ = µD, the
option prices are simply (ǫc,p is negligible here)

Lc,p(k = µ;λ, σ, β = 0, µ) → σeµ

2

Γ (λ)

Γ
(
λ
2

) . (4.13)

For very small σ and µ, µD ≪ σ, from Eq. (4.13), we have

min (σ1(k)) = σ1(µD) =
√
π σ

Γ (λ)

Γ
(
λ
2

) . (4.14)
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When λ = 2, it is min (σ1(k)) =
√
π σ; when λ = 3, it becomes min (σ1(k)) = 4σ.

That is, minQ(k̂) =
√
π and 4 respectively. These are very elegant results.

However, this still ties too much into our model. We can push further for
a more “model-free” result. Replacing σ1(k) with σimp(k)

√
2T and σ with the

variance from Eq. (2.34) , we get an extended relation between minimum implied
volatility and the standard deviation of the underlying distribution applicable
to all λ ≥ 2 and |β| ≤ 0.8,

min(σimp(k))
√
T√

var
≈
√

π
2

Γ (λ)√
Γ(λ

2 )Γ(
3λ
2 )

1√
1+ 1

Γ2(λ)
β2
, (4.15)

where Γ2 (λ) =
Γ( 3λ

2 )
Γ(λ

2 )
. This formula has less than 1% numerical error when

σ = 0.001. Since we are most concerned about λ ≈ 3, we can use the following
nearly “model-free” formula

min (σimp(k))
√
T√

var
≈ 0.781√

1 + 0.0762β2
, near λ ≈ 3. (4.16)

We found that, intuitively speaking, min (σimp(k))
√
T is almost equivalent to

the measurement of 1-stdev move by the market for the duration of time T .
This result gives important meaning to what the minimum implied volatility is.

4.5. Taylor Expansion of L
∗ at Small k̂

The L∗ function is the difference of two incomplete gamma functions. From Eq.
(6.5.29) of [1], the limiting gamma function can be expanded as

γ∗(s, x) = e−x
∞∑

n=0

xn

Γ (s+ n+ 1)
, (4.17)

by which we have
Γ (s, x) = Γ (s) (1− xsγ∗ (s, x)) . (4.18)

Since L∗
λ(k̂) is symmetric on k̂, we will only consider the case of k̂ ≥ 0. Then

L∗ can be represented by γ∗,

L∗
λ(k̂) =

Γ (λ)

2Γ
(
λ
2

) − 1

2
k̂ +

1

2
k̂2

(
γ∗
(
λ

2
, k̂

2
λ

)
− Γ (λ)

Γ
(
λ
2

)γ∗
(
λ, k̂

2
λ

))
, (4.19)

Using the power expansion of γ∗, we get

L∗
λ(k̂) =

Γ (λ)

2Γ
(
λ
2

)− k̂
2
+
k̂2

2
e−k̂

2
λ

∞∑

n=0

k̂
2n
λ

(
1

Γ
(
λ
2 + n+ 1

) − Γ (λ)

Γ
(
λ
2

)
Γ (λ+ n+ 1)

)
,

(4.20)
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It is obvious that L∗
λ(k̂) starts with the constant Γ (λ)

2Γ(λ
2 )

at k̂ = 0, which is

associated with min (σ1(k)) in Eq. (4.14). Then L∗
λ(k̂) decreases as k̂ increases

because of the negative k̂
2 term. But L∗

λ(k̂) is always positive - it must be be-

cause it represents a form of price. To understand L∗
λ(k̂) at large k̂ requires

hyergeometric expansion in the following section.

4.6. Hypergeometric Asymptotics of L
∗ at Large k̂

The asymptotics of incomplete gamma function allows us to study the inner
workings of volatility smile in Eq. (4.7). Γ (s, x) can be expanded asymptoti-
cally via Tricomi confluent hypergeometric function U(a, b, x) and generalized
hypergeometric series 2F0,

Γ (s, x) ≈ e−xxs−1
2F0

(
1, 1− s; ;− 1

x

)

= e−xxs−1
(
1 + s−1

x + (s−1)(s−2)
x2 + (s−1)(s−2)(s−3)

x3 + ...
)

= e−xxs−1
∑N

n=0

(s−1)(n)

xn ,

(4.21)

where (s− 1)(n) is the Pochhammer symbol for falling factorial22. This result is

stated in Eq. (6.5.31) of [1] 23.
When s is a positive integer, the series terminates on n = s. So we have

Γ (s = 1, x) ≈ e−x;
Γ (s = 2, x) ≈ e−xx

(
1 + 1

x

)
;

Γ (s = 3, x) ≈ e−xx2
(
1 + 2

x + 2
x2

)
.

(4.22)

However, in our case, s can be half integer
(
1
2 ,

3
2

)
and the series won’t terminate

24. These infinite 2F0 series have zero radius of convergence. So the terms in

2F0 must be cut off, which is what N stands for. When x is large enough, only
a few terms are needed to obtain a good approximation. Since s is at most 3 for
our purpose, we shouldn’t go too far beyond x−3.

The expansion of L∗
λ(k̂) is performed in terms of the inverse of k̂

2
λ ,

L∗
λ(k̂) =

e−k̂
2
λ k̂2−

2
λ

2Γ
(
λ
2

)
(

2F0

(
1, 1− λ; ;−k̂− 2

λ

)
− 2F0

(
1, 1− λ

2
; ;−k̂− 2

λ

))
,

(4.24)

22See https://en.wikipedia.org/wiki/Pochhammer symbol
23It comes from combining (a) Γ (s, x) = e−xxsU(1, 1+s, x), which can be derived from Eq.

(13.6.28) Γ (s, x) = e−xU(1−s, 1−s, x) and Eq. (13.1.29) U(a, b, x) = x1−bU(1+a−b, 2−b, z)
of [1]; and (b) U (a, b, x) ≈ x−a

2F0

(

a, a− b+ 1; ;− 1
x

)

from Eq. (13.5.2) of [1].
See also https://en.wikipedia.org/wiki/Incomplete gamma function and

https://en.wikipedia.org/wiki/Generalized hypergeometric function#Terminology
24The hypergeometric expansion at s = 1

2
is identical to the asymptotic expansion of the

error function whereby

Γ

(

1

2
, x

)

=
√
π erfc

(√
x
)

= e−xx− 1
2

N
∑

n=0

(−1)n
(2n− 1)!!

(2x)n
. (4.23)

See https://en.wikipedia.org/wiki/Error function#Asymptotic expansion
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by which we get

L∗
λ(k̂) =

λ

4Γ
(
λ
2

) e−k̂
2
λ k̂2−

4
λ

(
1 +

3

2
(λ− 2) k̂−

2
λ +

1

4

(
7λ2 − 36λ+ 44

)
k̂−

4
λ + ...

)
, k̂ ≫ 1.

(4.25)

This result is most useful for the local regime. At λ = 3,
∣∣∣k̂
∣∣∣ has to be greater

than 2 to avoid the singularity at k̂ = 0. We see clearly that L∗
λ(k̂) decays

exponentially as k̂ increases. And notice that the leading term of L∗
λ(k̂) be-

comes 1

4
√
π k̂2

e−k̂2

at λ = 1; and 1
2 e

−k̂ at λ = 2 (which is exactly that); and

3
2
√
π
e−k̂

2
3 k̂

2
3 at λ = 3.

4.7. Volatility Smile

With the help of hypergeometric expansion, the volatility smile formula, Eq.
(4.7), becomes

QL∗
1(

k̂
Q ) = Q

2
√
π

(
e
−
∣∣∣ k̂
Q

∣∣∣
2

−√
π
∣∣∣ k̂Q
∣∣∣ erfc

(∣∣∣ k̂Q
∣∣∣
))

=
(
δc,p(k̂)∆µc,p + ǫc,p

)
1
σ+

λ

4Γ(λ
2 )
e−k̂

2
λ k̂2−

4
λ

(
1 + 3

2 (λ− 2) k̂−
2
λ + 1

4

(
7λ2 − 36λ+ 44

)
k̂−

4
λ + ...

)
,
∣∣∣k̂
∣∣∣ ≥ 2,

(4.26)

in which Q = Q(k̂) can be solved by the root-finding utility, for each k̂ at a

given λ. The precision of this formula is quite high for
∣∣∣k̂
∣∣∣ ≥ 2. For the local

regime (on the right-hand side), due to the convergence issue, only the leading

term and the second order term (k̂−
4
λ ) estimates produce meaningful results.25

For large positive k̂ where k̂
2
λ −

(
2− 4

λ

)
log k̂ > 8, we can use asymptotic

hypergeometric expansion for the global regime as well, which yields

Q3

k̂2
e
−
(

k̂
R

)2
(
1− 3

2

(
Q

k̂

)2
+ 15

4

(
Q

k̂

)4
+ ...

)
=
(
δc,p(k̂)∆µc,p + ǫc,p

)
1
σ+

√
πλ

Γ(λ
2 )
e−k̂

2
λ k̂2−

4
λ

(
1 + 3

2 (λ− 2) k̂−
2
λ + 1

4

(
7λ2 − 36λ+ 44

)
k̂−

4
λ + ...

)
.

(4.27)

When δc,p(k̂) is zero, it corresponds to the trading ranges for out-of-money

options. If the entire constant term
(
δc,p(k̂)∆µc,p + ǫc,p

)
is zero, we only have

the e−k̂
2
λ k̂4−

4
λ term on the right hand side of Eq. (4.26), which determines

the asymptotic behavior of Q(k̂) at large
∣∣∣k̂
∣∣∣. The volatility smile is curved.

By taking logarithm, retaining the exponential terms and the constant D =

25For this reason, the next term, 1
8

(

15λ3 − 140λ2 + 420λ− 400
)

k̂−
6
λ , is not useful for our

purpose.
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log

( √
πλ

Γ(λ
2 )

)
, and dropping the rest of the terms, we reach the elegant result of

volatility smile for very large out-of-money k̂,

σ1(k)

σ
= Q(k̂) =

∣∣∣k̂
∣∣∣
(
k̂

2
λ −D

)− 1
2

. (4.28)

Use the 1-day fit of SPX as an example, at k̂ = 40, Q ≈ 12.71 is within 0.3%

error. Notice that Q(k̂) → k̂1−
1
λ as k̂ → ∞. This indicates the slope d logQ(k̂)

d log k̂
→

1 − 1
λ as k̂ → ∞. However, when the constant term

(
δc,p(k̂)∆µc,p + ǫc,p

)
is

non-zero, it will eventually dominate the e−k̂
2
λ k̂4−

4
λ term. This leads to the

discussion of volatility skew.

4.8. Volatility Skew

When µ 6= µD, volatility smile is morphed into volatility skew. This condition
is called “violation of risk neutrality”. In addition, ǫc,p can also be non-zero.

When either δc,p(k̂) or ǫc,p is not zero, the dynamics of a volatility skew is

very different from what has been described above. δc,p(k̂) 6= 0 corresponds
to the in-the-money options; while ǫc,p 6= 0 changes the smile behavior of the

deeply out-of-money options. In both cases, at large
∣∣∣k̂
∣∣∣, the constant term

(
δc,p(k̂)∆µc,p + ǫc,p

)
eventually dominates the right hand side of Eq. (4.26)

since the e−k̂
2
λ k̂4−

4
λ term diminishes exponentially,

Q
2
√
π

(
e
−
∣∣∣ k̂
Q

∣∣∣
2

−√
π
∣∣∣ k̂Q
∣∣∣ erfc

(∣∣∣ k̂Q
∣∣∣
))

=
(
δc,p(k̂)∆µc,p + ǫc,p

)
1
σ ,
∣∣∣k̂
∣∣∣≫ 1.

(4.29)

This produces nearly linear volatility curves asymptotically at large
∣∣∣k̂
∣∣∣. But ǫc,p

itself doesn’t produce volatility skew. The skew is generated by δc,p(k̂)∆µc,p.
Furthermore, notice that there is no explicit dependency on λ. This is quite
amazing. The in-the-money skew is all about how much risk-neutral violation
there is:

∆µc,p+ǫc,p
σ ≈ µc,p−µD+ǫc,p

σ . The out-of-money smile comes from the
minimum risk premium

ǫc,p
σ . Not only so, it is also required by mathematics

that δc,p(k̂)
∆µc,p

σ ≥ 0 (assume ǫc,p is much smaller than ∆µc,p). This indicates

(µc,p − µD) must have the same sign as δc,p(k̂). Therefore, we have

µc ≥ µD, for call option,
µp ≤ µD, for put option.

(4.30)

The fact that µ is directional and there are two different µ’s for calls and puts is
intriguing. The mathematics dictates that the steeper slope of a volatility skew
is always on the side of in-the-money options. It appears that the call-option
market expects more upward drift; while the put-option market expects more
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downward drift. More premium is required to insure the in-the-money options.
In the case of SPX options, this is more so for in-the-money call options than
put options. Is this psychology? Or there is a market dynamics driving it? I
don’t have a deeper explanation as to what is the cause behind it.

The quantity, ∆µ
σ ≈ µ−µD

σ , determines the magnitude of the volatility skew.
Now if the distribution is symmetric, µD ∼ m(2) ∼ σ2, this order of magnitude is
too small to produce observable volatility skew. Only when µ−µD ∼ m(1) ∼ σβ,
it is large enough to be observable. This insight is very important for the role of
the skew parameter β. The effect of β on the magnitude of Lc,p is far smaller than
exponential. Therefore, it has relatively small impact on the outcome of implied
volatility curve. This is shown in Panel (5) of Figure A.1. The difference of
implied volatility generated from a skew λ distribution (blue line) vs a symmetric
distribution (black line) is very small. However, the main effect of β is to produce
the right magnitude for ∆µ. In Panel (6) of Figure A.1, the large enough skew is
produced by ∆µ = 1

2µD(λ, σ, β) which is in the order of σβ. Without reference
to β, a symmetric distribution will not be able to determine what ∆µ should be
for the skew. We also see a very small ǫ changes the upstrike curve quite a bit
at large k̂. This concludes the asymptotic analysis of volatility smile for small
σ.

5. The Lambda Transformation

In the previous sections, I’ve developed the Vc,p (λ→ 1) and Lc,p operators in
great length. The implied volatility (σ1(k)) can be calculated by the combination
of these two operators. However, it takes two more steps to connect to the
market data observed in the real world. This 4-step transformation is called
“the λ transformation”. The transformation is best described in the operator
form, similar to the quantum mechanics.

5.1. The Option Pricing Framework

The option prices, C̃(k) and P̃(k), observed in the market at a given time (S̃ is
fixed) and time to maturity (T is fixed) is a composite transformation of

C̃(k)
S̃ = Oc (λ = 1) ·M (rM ) ·Vc (λ→ 1) · (Lc + ǫc) |P (x;λ, σ, β, µc)〉 ;

P̃(k)

S̃ = Op (λ = 1) ·M (rM ) ·Vp (λ→ 1) · (Lp + ǫp) |P (x;λ, σ, β, µp)〉 .
(5.1)

This equation is called the λ transformation since it is projecting quantities
from the λ ≥ 2 regime on the right side towards the λ = 1 regime on the left
side.

First, the Lc operator takes a distribution |P (x;λ, σ, β, µc,cp)〉, and generate
the normalized option prices (for each log-strike) in the local regime. This has
been implemented in Section 3.5 in great detail.

Secondly, the Vc,p operator takes the normalized prices and generate the
implied volatilities (for each log-strike) in the global regime. Conversely, the
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Oc,p operator takes the implied volatilities and generates the normalized prices
in the global regime. They have been implemented in Section 3.8.1.

Last, the M (rM ) operator is called the momentum operator. It is a new con-
cept here in our option pricing model. It moves the implied volatility horizontally
by the quantity rM ,

M (rM ) : σ1(k) 7→ σ1(k + rM ) (5.2)

The quantity rM is called “market momentum”. It is typically in the order of the
standard deviation of log-returns of the underlying at the sampling frequency
T , which is proportional to σ. The difference between rM and σ is that rM
is directional. If the market participants expect the market to go up, rM is
positive, such is the case for SPX most of the time. On the other hand, if the
general expectation on the market is bearish, rM is negative (or non-positive),
such is the case for preciosu metals.

Since the market prices are often quoted in terms of implied volatilities,
σimp(k), The Oc,p (λ = 1) operator can be moved to the left hand side via Equa-
tion 3.39, and we have the three-step λ transformation,

σimp(k) = Vc (λ = 1) · C̃(k)
S̃ = M (rM ) ·Vc (λ→ 1) · (Lc + ǫc) |P (x;λ, σ, β, µc)〉 ;

σimp(k) = Vp (λ = 1) · P̃(k)

S̃ = M (rM ) ·Vp (λ→ 1) · (Lp + ǫp) |P (x;λ, σ, β, µp)〉 .
(5.3)

5.2. Market Momentum

The quantity rM (T ) is an input from the option market. It is a new degree of
freedom. The magnitude of rM can be as large as annualized 30%. The effect is
far more significant than the risk-free rate (≪ 1%) and dividend yield (∼ 2%).
In our framework, this is a major contributor to the ATM skew.

I’d like to interpret rM (T ) as an expression on market momentum. The col-
lective expectation of the market participants moves the volatility smile not
only up and down (via σ), but also left and right (via rM ). Market momentum
has been observed and put to practice for two decades that generates fantas-
tic investment results[3]. Whether they are really related will require further
research.

Since the valley of a volatility smile can be fit with a quadratic curve, its loca-
tion can be determined with reasonable accuracy. This distance is approximately
rM . Therefore, rM can be determined from the market data in a nonparametric
model-free fashion. It is interesting to investigate if such knowledge has any
predictive power and provides any arbitrage opportunity.

Nevertheless, I do want to mention that, in the stochastic volatility mod-
els, the ATM skew is generated by the correlation (typically the ρ notation
in dW1dW2 = ρdt) between the price process and the volatility process. In this
frame of thought, rM could be just an expression of such correlation. This would
require more delicate comparison between models and large amount of market
data.
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5.3. The Cusp in Option Prices

One major question the reader may ask is - Does the “cusp” really exist? Or,
can the cusp be observed “directly” from the market data? Although there are
some complication due to the effect of λ transformation, I’d like to say, the
answer is yes - especially in the option chain to expire in one day, in which the
“market momentum” is smallest.

One of the most direct way to observe the cusp of the distribution, if it exists,
is through the log-slope of Lc(k), that is, the derivative of logLc(k), normalized
by the stdev of the distribution. We define this log-slope as

Uc(k) =
√
var

d

dk
logLc(k) = −

√
var

ek (1− Φ(k))

Lc(k)
, (5.4)

Up(k) =
√
var

d

dk
logLp(k) =

√
var

ek Φ(k)

Lp(k)
, (5.5)

with the relation dLc(k)
dk = −ek (1− Φ(k)) and

dLp(k)
dk = ek Φ(k). The interpre-

tation of Uc(k) is how much option price changes in log scale per log-strike,
measured in unit of standard deviation of the underlying distribution. Notice
that this quantity is independent of the actual option prices nor the underlying.
It is also almost independent of the level of volatility σ in a theoretical sense.
It is a pure measure on the “shape” of the distribution itself. However,

√
var

doesn’t not come from market data directly. But indirectly it can be estimated
by Eq. (4.16) with minimum assumption. Comparing this curve between theory
and data should give a fairly strong evidence that the cusp exists.

Figure 5.1 shows 6 panels for combinations of λ = 2, 3; and β = 0 and ±0.7
(blue solid lines). The shape of Uc(k) clearly shows the difference between λ = 2
and λ = 3. When λ = 2, the log-slope is flat in the right tail; while it is an
obvious cusp for λ = 3. Once normalized by the stdev, the tip of the cusp is
nearly a constant.

For λ = 2, the flat side of Uc,p(k) can be fully analyzed. From Eqs. (2.26) and
(3.40), the terms related to exponential cancel out nicely. With the variance of
σ2
(
2 + β2

)
, we have

Uc(k;λ = 2, σ, β, µ) = −√
var

B−

(
1

B−
σ
− 1

B−

)−1

= −B−
σ

√
2 + β2, when k̂ ≥ 0;

Up(k;λ = 2, σ, β, µ) = −√
var

B+

(
1

B+
σ
− 1

B+

)−1

= B+
σ

√
2 + β2, when k̂ < 0.

(5.6)
It is obvious that the right side of Uc(k) and the left side of Up(k) are flat for
λ = 2. As σ → 0 and β → 0, this level settles at Uc = −Up = −

√
2 .

This analysis can be extended to locate the tip of the cusp for the symmetric
case. With the variance of σ2Γ

(
3λ
2

)
/Γ
(
λ
2

)
, we have
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Fig 5.1. The log-slope of call option prices, Uc(k), for six combinations of λ = 2, 3; and β = 0
and ±0.7.
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Uc(k = µ;λ = 2, σ, β, µ) = −
√

Γ
(
3λ
2

)
Γ
(
λ
2

) (∑n−→
∞

n=1
σn−1

n! Γ
(

λ(n+1)
2

))−1

,

Up(k;λ = 2, σ, β, µ) =
√

Γ
(
3λ
2

)
Γ
(
λ
2

) (∑n−→
∞

n=1
(−σ)n−1

n! Γ
(

λ(n+1)
2

))−1

(5.7)

As σ → 0, this level settles at Uc = −Up = − 1
Γ (λ)

√
Γ
(
3λ
2

)
Γ
(
λ
2

)
. For λ = 3,

this is −1.605.
In Panel (2) of Figures 6.1 and 6.2, the log-slopes of SPX options are illus-

trated. However, the tip of the cusp is much higher than the theoretical value.
This is explained next.

5.4. Mixing Market Momentum with The Cusp

In last section, we see that Uc,p(k) have relatively stable shapes, primarily de-
termined by λ. Its shapes can be observed fairly clearly in SPX option data.
However, when we apply λ transformation, especially the market momentum
operator, its shapes can change dramatically. When the momentum moves im-
plied volatilities towards out-of-money, the cusp becomes more pronounced. On
the other hand, when the momentum moves implied volatilities towards in-the-
money, it produces a flattening effect that is quite unusual. This flattening shape
is confirmed in the 4-day market data (Panel (5) of Figure 6.2). I consider this
quite impressive.

If we consider Uc,p(k) as the output of the corresponding operators, U =√
var d

dk log (...), then we have

Uc(k; rM ) = U·Oc (λ = 1) ·M (rM ) ·Vc (λ→ 1) · (Lc + ǫc) |P (x;λ, σ, β, µc)〉 ;
Up(k; rM ) = U·Op (λ = 1) ·M (rM ) ·Vp (λ→ 1) · (Lp + ǫp) |P (x;λ, σ, β, µp)〉 .

(5.8)
In Figure 5.1, the positive momentum and negative momentum are added as

dotted green and red lines. We see that the positive momentum enhances the
cusp. It even morphs the flat slope of λ = 2 into a cusp. We also see that the
negative momentum flattens the cusp into a round top. The λ transformation
framework can produce the shapes of log-slope that are observed in the market
data.

6. Fitting Volatility Smiles of SPX Options

I’ve finished the theoretical aspect of the option pricing model. In this section,
the fits to the SPX options are presented to validate the framework developed
so far. The option data is from CBOE for the month of June, 2015. Two fits are
performed - The first fit is on an option chain to expire in a day. The second fit
is on an option chain to expire in 4 days.

The bids, asks and mid-points (average of bid-ask) from market data are
drawn on the charts. The attempt is to fit to the mid-points as best as possible.
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On the theoretical side, the blue line represents the full λ transformation; the
red line takes rM out; and lastly, the dotted red line takes both rM and ǫ out.
This helps the reader to visualize the effect in each step of λ transformation.

In the middle panels, the log-slopes of market data are fit with polynomials
of 6 orders on each side of the cusp at kcusp. This fit helps us understand the
existence of the cusp in the market data.

6.1. Fitting SPX Options to Expire in One Day

The first fit in Figure 6.1 is from the option chain closed as of June 18, to expire
in a day on the quad-witching day, June 19. λ = 3.125 is chosen to fit the very
sharp cusp. The market momentum rM is in the same order as σ, its effect
is relatively small but still noticeable by comparing the tips of log-slopes. The
cusps are very clear in both calls and puts. ∆µ is fairly large for calls but not
much so for puts. And ǫc,p are fairly small.

6.2. Fitting SPX Options to Expire in 4 Days

The second fit in Figure 6.2 is from the option chain closed as of June 16, to
expire in 4 days on the quad-witching day, June 19. λ = 2.8 is smaller and it is
in line with decreasing kurtosis for larger T . However, the term structure of the
kurtosis is still an unsolved research area. The enhanced cusp in log-slope for
calls and the flattened cusp for puts are very obvious. The fits from the theory
are reasonable well done. rM = 0.017 in calls is very noticeable and is much
larger than µ and µD. However, in puts, rM = 0.012 is slightly smaller but is
still significant.

7. Summary

In this paper, I have developed the option pricing model based on λ distri-
bution. When the distribution is combined with the 4-step λ transformation,
its accuracy is very good when fitting the short-maturity SPX options. More
research should be conducted to extend the term structure on maturity. The
model should be also tested on different asset classes, especially on those that
have drastically different smile structure.

Finally, I’d like to thank my family members that this work can’t be accom-
plished without their tolerance. I am very grateful for them.

Appendix A: Skew Generalized Error Distribution (SGED)

The SGED can be viewed as a variation of symmetric λ distribution by multi-
plying σ with (1 + sgn(x− µ)β) on each side of the cusp. The skew is different
from our origin of elliptic curve at λ = 3. However, since its mathematics is
fully compatible with that of incomplete gamma function, lots of mathematical
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Fig 6.1. SPX options to expire in one day. Fit with λ distribution.
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Fig 6.2. SPX options to expire in 4 days. Fit with λ distribution.
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frameworks developed here can be easily modified to cover SGED in the option
pricing setting. In this appendix, I attempt to summary the results in a similar
order that λ distribution is laid out in this paper.

The simplest view of SGED is that it has two different σ’s for each side of
cusp. It fits well with our framework of thought. Using ± notation, we have

σ− = σ (1− β) , when (x− µ) < 0,
σ+ = σ (1 + β) , when (x− µ) ≥ 0;

(A.1)

where σ+ is the volatility parameter assigned to the right tail of a (symmetric)
λ distribution, and σ− for the left tail. And the following algebraic rules hold,

σ+ + σ− = σ,
σ+ − σ− = 2βσ,

(A.2)

Note that β in SGED context has a very different scale, compared to λ distri-
bution. It modifies the standard deviation in a much significant way.

A.1. The Distribution

The curves are defined for each side of the cusp,

y−(x) = −
∣∣∣x−µ

σ−

∣∣∣
2
λ

, when (x− µ) < 0;

y+(x) = −
∣∣∣x−µ

σ+

∣∣∣
2
λ

, when (x− µ) ≥ 0.
(A.3)

The slope is dy
dx = 2

λ
y

(x−µ) = − sgn (x− µ) 2
λσ±

∣∣∣x−µ
σ±

∣∣∣
2
λ−1

. The normalization

constant is independent of β,

C = σĈ = σλΓ

(
λ

2

)
(A.4)

With ŷ(x) = x−2/λ and x̂± = x−µ
σ±

, the CDF, Φ(x), and CCDF, 1− Φ(x), are

Φ(x) = σ−

σĈ(λ,β)

´ x̂−

−∞ eŷ(x)dx = σ−

2σ Γ(λ
2 )
Γ

(
λ
2 ,
∣∣∣x−µ

σ−

∣∣∣
2
λ

)
, when (x− µ) < 0;

1− Φ(x) = σ+

σĈ(λ,β)

´∞
x̂+
eŷ(x)dx = σ+

2σ Γ(λ
2 )
Γ

(
λ
2 ,
∣∣∣x−µ

σ+

∣∣∣
2
λ

)
, when (x− µ) ≥ 0.

(A.5)

The B± notation is defined as the tail integrals, B± =
´∞
0
eŷ

±(x)dx, whose
algebraic rules are

B+ +B− = Ĉ,
∆B = B+ −B− = βλΓ

(
λ
2

)
.

(A.6)

We see that ∆B, the difference of the tail integrals, is not the same as that of
λ distribution in Eq. (2.32).
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A.2. Basic Statistics

The n-th moment is

m(n) =
Γ
(

λ(n+1)
2

)

2σ Γ
(
λ
2

)
(
σn+1
+ + (−1)

n
σn+1
−

)
. (A.7)

The first 4 moments are straightforward:

m(1) = 2σβ Γ (λ) /Γ
(
λ
2

)
,

m(2) = σ2
(
1 + 3β2

)
Γ
(
3
2λ
)
/Γ
(
λ
2

)
,

m(3) = 4σ3β
(
1 + β2

)
Γ (2λ) /Γ

(
λ
2

)
,

m(4) = σ4
(
1 + 10β2 + 5β4

)
Γ
(
5
2λ
)
/Γ
(
λ
2

)
.

(A.8)

and the variance is (with Γ2 (λ) =
Γ( 3λ

2 )
Γ(λ

2 )
)

var = Γ2 (λ)σ
2

(
1 + 3β2 − 4β2 Γ(λ)2

Γ( 3
2λ)Γ(

λ
2 )

)
. (A.9)

At λ = 3, SGED hasm(1) = 4.5σβ; while λ distribution has m(1) = 1.235σβ.
β’s influence on m(1) in SGED is about 3.6 times that of λ distribution. For

variance, SGED has var = Γ2 (λ)σ
2
(
1 + 1.45β2

)
; while λ distribution has var =

Γ2 (λ)σ
2
(
1 + 0.076β2

)
. The coefficient on β2 in SGED is about 19 times that of

λ distribution. Intuitively speaking, we can estimate that β’s influence in SGED
is about 3.6-4.3 times that of β in λ distribution.

A.3. MGF and Summation Truncation

When λ = 2, the MGF is

M(t) =
(
1− 2βσt−

(
1− β2

)
σ2t2

)−1
. (A.10)

When λ > 2, the MGF is

M(t) = etµ

[
1 +

n−→
∞∑

n=1,2,...

m(n)t
n

n!

]
, (A.11)

in which the summation is truncated at n−→∞ where mnt
n

n! reaches its minimum,
using the even moment formula. So n−→∞ is the root of slightly different digamma
equation,

log (σt) +
λ

2
ψ

(
λ (n+ 1)

2

)
− ψ(n+ 1) +

H(n+ 1, β)

F (n+ 1, β)
= 0, (A.12)

where H(n+1,β)
F (n+1,β) is d

dn logF (n+1, β) with F (n, β) = 1
2 ((1 + β)

n
+ (1− β)

n
) and

H(n, β) = 1
2 (log (1 + β) (1 + β)

n
+ log (1− β) (1− β)

n
). When n log (1 + |β|) ≫
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1, H(n+1,β)
F (n+1,β) → log (1 + |β|) which can be combined with log (σt). So we see that

the skew parameter has an effect of being a multiplier to σ: σ 7→ σ (1 + |β|) in
the summation truncation.

The rate of risk-neutral drift, µD is

µD = − log (M (t = 1;µ = 0)) , (A.13)

whose small σ approximation is

µD ≈ −m(1) −
var

2
= −2σβ

Γ (λ)

Γ
(
λ
2

) − Γ2 (λ)

2
σ2

(
1 + 3β2 − 4β2 Γ (λ)

2

Γ
(
3
2λ
)
Γ
(
λ
2

)
)
.

(A.14)

A.4. MGF Integral Truncation

The MGF integral for µD can be represented in unit distribution as,

e−µD =M(t = 1;µ = 0) = 1+
1

Ĉ(λ,β)

(
σ+

σ

´

−→∞
0

(eσ+x − 1) eŷ(x)dx+ σ−

σ

´∞
0

(e−σ−x − 1) eŷ(x)dx
)

= 1 + 1
Ĉ(λ,β)

´

−→∞
0

(σ+

σ e
σ+x + σ−

σ e
−σ−x − 1

)
e−x2/λ

dx.

(A.15)

When λ > 2, the truncation occurs in the right tail at root of dy
dx + t =

− 2
λσ+

(
x
σ+

) 2
λ−1

+ t = 0. The analytic solution is

x−→∞ = σ+

(
2

σ+tλ

) λ
λ−2

. (A.16)

However, the relation n−→∞ + 1 = x−→∞ doesn’t hold exactly for β 6= 0. Especially
when β is negative, x−→∞ is much larger than n−→∞ + 1. For instance, at λ =
3, σ = 0.1, β = −0.2, x−→∞ = 46.3 and n−→∞ = 19.58. But this doesn’t affect the
consistency between the summation method and the integral method. The result
for µD has 0.3% error between the two methods. The error is reduced to 10−5

if σ is lowered to 0.01.

A.5. Incomplete MGF and Incomplete Moments

The incomplete MGF can be obtained by integrating the tail on each side of
the cusp through a unit distribution, following the truncation procedure of x−→∞
outlined above,

Mc(k) =
σ+eµ

σĈ

´

−→∞
k̂+
e−x2/λ+σ+xdx, when k̂+ = k−µ

σ+
≥ 0;

Mp(k) =
σ−eµ

σĈ

´∞
−k̂−

e−x2/λ−σ−xdx, when k̂− = k−µ
σ−

< 0;
(A.17)
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The parity equation is: Mc(k) +Mp(k) =M(t = 1) = eµ−µD . And M(t = 1) =
Mc(k = µ) +Mp(k = µ).

The incomplete MGF can also expanded as sum of incomplete moments of a
unit distribution,

Mc(k) = eµ
∑n−→

∞

n=0

σn
+

n! M̂
(n)
c (k̂+), when k̂+ ≥ 0;

Mp(k) = eµ
∑n−→

∞

n=0

σn
−

n! M̂
(n)
p (k̂−), when k̂− < 0.

(A.18)

where n−→∞ is the limit of the summation, and M̂
(n)
c,p (k̂±) are based on the incom-

plete gamma function,

M̂
(n)
c (k̂+) =

σ+

2σΓ(λ
2 )
Γ

(
λ(n+1)

2 ,
∣∣∣k̂+
∣∣∣
2
λ

)
, when k̂+ ≥ 0;

M̂
(n)
p (k̂−) =

(−1)nσ−

2σΓ(λ
2 )

Γ

(
λ(n+1)

2 ,
∣∣∣k̂−
∣∣∣
2
λ

)
, when k̂− < 0.

(A.19)

A.6. OGF

The incomplete MGF can be obtained by integrating the tail on each side of
the cusp through a unit distribution, following the truncation procedure of x−→∞
outlined above,

Lc(k) =
σ+eµ

σĈ

´

−→∞
k̂+
e−x2/λ

(
eσ+x − eσ+k̂+

)
dx, when k̂+ = k−µ

σ+
≥ 0;

Lp(k) = −σ−eµ

σĈ

´∞
−k̂−

e−x2/λ
(
e−σ−x − eσ−k̂−

)
dx, when k̂− = k−µ

σ−
< 0;

(A.20)
By replacing incomplete MGF and CDF with incomplete moments, the OGF,
Lc,p(k), can be expressed as,

Lc(k) = σ+e
µ
∑n−→

∞

n=1

σn−1
+

n!

(
M̂

(n)
c (k̂+)− k̂n+ M̂

(0)
c (k̂+)

)
, when k̂+ ≥ 0;

=
σ2
+eµ

2σΓ(λ
2 )

∑n−→
∞

n=1

σn−1
+

n!

(
Γ

(
λ(n+1)

2 ,
∣∣∣k̂+
∣∣∣
2
λ

)
− k̂n+ Γ

(
λ
2 ,
∣∣∣k̂+
∣∣∣
2
λ

))
;

Lp(k) = σ−eµ
∑n−→

∞

n=1

(−1)n−1σn−1
−

n!

(
M̂

(n)
p (k̂−)−

∣∣∣k̂n−
∣∣∣ M̂ (0)

p (k̂−)
)
, when k̂− < 0;

=
σ2
−eµ

2σΓ(λ
2 )

∑n−→
∞

n=1

(−1)n−1σn−1
−

n!

(
Γ

(
λ(n+1)

2 ,
∣∣∣k̂−
∣∣∣
2
λ

)
−
∣∣∣k̂n−
∣∣∣ Γ

(
λ
2 ,
∣∣∣k̂−
∣∣∣
2
λ

))
.

(A.21)
The put-call parity, Lc(k)− Lp(k) = eµ−µD − ek, is used to derive the other

half on each side of the cusp. We can see that, to the first order of σ, option
prices are proportional to σ.

When k = µ, we have M̂
(n)
c,p (0) =

σ±

2σΓ(λ
2 )
Γ
(

λ(n+1)
2

)
. Therefore, the option

prices that contributes to minimum implied volatility are
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Lc(µ) =
σ2
+eµ

2σΓ(λ
2 )

∑n−→
∞

n=1

σn−1
+

n! Γ
(

λ(n+1)
2

)
,

Lp(µ) =
σ2
−eµ

2σΓ(λ
2 )

∑n−→
∞

n=1

(−1)n−1σn−1
−

n! Γ
(

λ(n+1)
2

)
.

(A.22)

The λ transformation is then used to translate option prices from the local
regime to the global regime.

A.7. Small σ Limit of OGF

For very small σ, the OGF reaches its simplest analytic form using L∗
λ(k̂), but

k̂ must be β-adjusted on each side of the cusp,

Lc(k;λ, σ, β = 0, µ) =

{
σ2
+

σ e
µL∗

λ(k̂+), when k̂+ ≥ 0;
σ2
−

σ e
µL∗

λ(k̂−) +
(
1 + ∆µ− ek

)
, when k̂− < 0;

Lp(k;λ, σ, β = 0, µ) =

{
σ2
+

σ e
µL∗

λ(k̂+)−
(
1 + ∆µ− ek

)
, when k̂+ ≥ 0;

σ2
−

σ e
µL∗

λ(k̂−), when k̂− < 0;

(A.23)
where ∆µ = eµ−µD − 1. The

(
1 + ∆µ− ek

)
term can be further reduced to

−eµσ±k̂± for small
∣∣∣k̂±
∣∣∣ and when µD ∼ o(σ).

A.8. SGED as A Step-Function Approximation of λ Distribution

SGED can be viewed as a step-function approximation of λ distribution. This
should become obvious visually from Panel (2) of Figure A.1. For a classroom
modelling exercise, this simpler distribution may be quite useful. In Figure A.1,
we take the parameters from SPX 1-day option fits, and compare various behav-
iors of the skew λ distribution and SGED to the symmetric distribution. The
black dotted line is the symmetric distribution, with λ = 3.125, σ = 0.00127.
The blue line adds β = −0.5 to the λ distribution; and the red line is SGED with
β = −0.18. Panel (1) is the comparison of y(x) among the three distributions.
The next three plots walk through the relative changes of y(x), PDF, and CDF.

However, it gets interesting in Panel (5) where the risk neutral implied volatil-
ity from three distributions are very similar. The differences among them don’t
produce large volatility skew. In Panel (6), ∆µ = 0.0004 and ǫ = 0.0002 are
added to the distributions. The size of ∆µ is chosen to be about half of µD of
the skew λ distribution. The volatility skew is generated and all three curves
look very much alike. What this tells us is that the main contributors of the
volatility skew are non-zero ∆µ and ǫ.

A.9. Fitting SPX Options

SGED is fully compatible with the λ transformation. It can produce equally well
fits to SPX options. Figure A.2 reproduces the fits to SPX options to expire in
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Fig A.1. SGED as a step-function approximation of λ distribution. Panel (5) and Panel (6)
shows that the main contributors of the volatility skew are non-zero ∆µ and ǫ.
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one day with SGED parameters; and Figure A.3 shows the fits to SPX options
to expire in 4 days.

The fits uses slightly different values for the parameters. One major difference
is much smaller scale for β; while λ stays the same.

A.9.1. Discussion

SGED presents a good alternative to λ distribution since it is a step-function
approximation. It fits very well within the λ transformation framework. It is
simpler to manuver and captures most of the features in the volatility smile. The
difference is probably only within the small region near ATM. If this matters,
more research will have to be conducted.
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Fig A.2. SPX options to expire in one day. Fit with SGED.
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Fig A.3. SPX options to expire in 4 days. Fit with SGED.
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