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Abstract

This introduction to the R package equateIRT is a (slightly) modified version of Bat-
tauz (2015a), published in the Journal of Statistical Software.

The R package equateIRT implements item response theory (IRT) methods for equat-
ing different forms composed of dichotomous items. In particular, the IRT models in-
cluded are the three-parameter logistic model, the two-parameter logistic model, the
one-parameter logistic model and the Rasch model. Forms can be equated when they
present common items (direct equating) or when they can be linked through a chain of
forms that present common items in pairs (indirect or chain equating). When two forms
can be equated through different paths, a single conversion can be obtained by averaging
the equating coefficients. The package calculates direct and chain equating coefficients.
The averaging of direct and chain coefficients that link the same two forms is performed
through the bisector method. Furthermore, the package provides analytic standard errors
of direct, chain and average equating coefficients.

Keywords: bisector, chain, equating, equating coefficients, IRT, Rasch model, standard errors.

1. Introduction

In many testing programs, security reasons require that test forms are composed of different
items, making test scores not comparable across different administrations. The equating pro-
cess permits the comparison of scores obtained from different forms taken. The term equating
traditionally refers to the adjustment of scores from parallel forms, that are as similar as pos-
sible in content and statistical characteristics (Kolen and Brennan 2014, Chapter 1.1.2 and
Chapter 1.2.3). The methods presented in this paper, implemented in the R (R Core Team
2014) package equateIRT (Battauz 2015b), allow more general forms of equating, such as
horizontal and vertical scaling. For example, vertical scaling is intended to make scores com-
parable across different educational grades, where the content of the tests differs accordingly
to the educational level. The package is available from the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=equateIRT.

Various statistical methods have been proposed to perform equating (for a broad review, see
Kolen and Brennan 2014). The R package equateIRT focuses on item response theory (IRT)
methods for dichotomous items. IRT models are statistical models that have as response
variable the responses given to the items of a questionnaire or test. These responses are
modeled as a function of a latent trait, for example the ability level, and the item parameters
that are related to some characteristics of the items, such as the difficulty. The purpose
of IRT models is to provide a measure of the latent trait under investigation. For a broad

http://CRAN.R-project.org/package=equateIRT
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review of IRT models see van der Linden and Hambleton (1997). The IRT models included
in the equateIRT package are the three-parameter logistic model, the two-parameter logistic
model, the one-parameter logistic model and the Rasch model. When the parameters of the
IRT model are estimated separately for each group of people taking a different test form,
they are not comparable because the origin of the measurement scale is not identifiable.
However, when two forms present a subset of common items, the parameters can be put on
the same scale. There are two methods available to pursue this end. Concurrent calibration
consists of estimating the item parameters together and yields measurements directly on a
common metric. Alternatively, item parameters are estimated separately for each test form
(separate calibration) and the estimates of the item parameters for the common items can be
used to estimate the scale transformation. Both approaches can be extended to the case of
multiple test forms, provided that the forms can be linked through common items. Concurrent
calibration presents the advantage of not requiring any conversion after the estimation of the
parameters as they are already expressed on the same scale. However, this approach requires
the combination of the data from each form in a single dataset that could become quite large
when there are many forms or when each form is administered to a very large number of
people. In some cases, the large dimension of the dataset then makes the estimation very
slow or even unfeasible. Instead, by equating the coefficients of separate calibrations, it is
not necessary to estimate again the parameters of previous administrations, thus avoiding the
construction of a single dataset.

The conversion of parameter estimates is attained by applying a linear transformation and the
coefficients of this transformation are called equating coefficients. For each pair of forms con-
taining common items, direct equating coefficients can be calculated. Suppose that Forms 1
and 2 have common items and that Forms 2 and 3 have common items. Forms 1 and 3 can
then be equated employing the chain going through Form 2. In this case, indirect equating
coefficients linking Forms 1 and 3 can be calculated as a function of direct equating coeffi-
cients linking pairs of forms with common items. In general, when two forms can be linked
through a chain of forms that present common items in pairs, indirect equating coefficients
can be calculated that permit the conversion of parameter estimates of one form into the scale
of the other form using a linear transformation. These coefficients are a function of direct
equating coefficients. Furthermore, some linkage designs are quite complex and two forms
can be linked through different chains and possibly a direct link. For every path that links
the same two forms the equating coefficients can be computed, thus yielding different scale
conversions. In this case, the equating coefficients can be averaged in order to obtain a single
transformation.

For the computation of direct equating coefficients, the equateIRT package implements meth-
ods based on moments of item parameters, that are the mean-sigma (Marco 1977), the mean-
mean (Loyd and Hoover 1980), and the mean-geometric mean (Mislevy and Bock 1990)
methods, and response function methods, that are the Haebara (Haebara 1980) and the
Stocking-Lord (Stocking and Lord 1983) methods. The package computes also indirect equat-
ing coefficients through a chain of forms. The bisector method is used to average equating
coefficients derived from different paths (Holland and Strawderman 2011; Battauz 2013).

Since the estimated equating coefficients are subject to sampling variation, it is important
to assess the magnitude of this variability in order to evaluate the accuracy of the equating
process (Ogasawara 2011). This objective can be accomplished by observing the asymptotic
standard errors of the equating coefficients. Despite the importance of verifying the precision
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of the equating performed, equating software generally does not provide standard errors of
equating coefficients. To the best of my knowledge, just a few computer programs calculate
standard errors based on bootstrap techniques. The computation of analytic standard errors
of IRT equating coefficients is not implemented in any software, with the only exception
being a set of subroutines that implement the methods developed by Ogasawara (2000) and
Ogasawara (2001) for direct equating coefficients, available from the author. Instead, the
equateIRT package provides analytical standard errors for direct, chain and average equating
coefficients. It is important to note that analytical standard errors of equating coefficients
can only be computed if the covariance matrix of item parameter estimates is available. This
covariance matrix should be obtained from the software used to estimate the item parameters.
The package provides functions to import data from flexMIRT (Cai 2013), IRTPRO (Cai,
Thissen, and du Toit 2011) and the R packages ltm (Rizopoulos 2006) and mirt (Chalmers
2012). All of these IRT programs supply the covariance matrix of item parameter estimates.

Other R packages provide implementation of IRT equating methods. The package irtoys

(Partchev 2014) performs IRT equating for dichotomous items and the package plink (Weeks
2010) implements unidimensional and multidimensional IRT equating for both dichotomous
and polytomous items. The plink package performs chain equating by providing direct equat-
ing coefficients between forms that present common items, but does not provide indirect
equating coefficients that permit the conversion from the first form into the last form of the
path. Chain equating is not included in the irtoys package. Furthermore, the packages irtoys

and plink do not provide average equating coefficients nor standard errors of direct, indirect
and average coefficients.

The paper is structured as follows. The theory on IRT test equating is summarized in Sec-
tion 2. Section 3 illustrates the equateIRT package and Section 4 concludes the paper.

2. IRT test equating

Consider a single test form that is denoted by g. In the three-parameter logistic model, the
probability of a positive response on item j in form g for a person with ability θ is given by

pgj(θ(g); agj , bgj , cgj) = cgj + (1 − cgj)
exp

{

Dagj(θ(g) − bgj)
}

1 + exp
{

Dagj(θ(g) − bgj)
} , (1)

where agj is the item discrimination parameter, bgj is the item difficulty parameter, cgj is the
item guessing parameter and D is a constant typically set to 1.7. We define the parameter
vector of form g as αg = (α⊤

g1, . . . , α
⊤
gng

)⊤, where αgj = (agj , bgj , cgj)⊤, j = 1, . . . , ng, and ng

is the number of items of form g. Item parameters are estimated separately for each form
by using the marginal maximum likelihood method (Bock and Aitkin 1981), regarding the
person parameter θ as a random variable with standard normal distribution.
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2.1. Direct equating

Let g−1 be another form that presents ng−1, g items in common with Form g. The parameters
estimated for Form g − 1 can be transformed to the scale of Form g by using the following
equations

θg = Ag−1, g θg−1 + Bg−1, g , (2)

ag =
ag−1

Ag−1, g
, (3)

bg = Ag−1, g bg−1 + Bg−1, g , (4)

where Ag−1, g and Bg−1, g are the equating coefficients. These coefficients can be estimated
by using moments of item parameters (Kolen and Brennan 2014, Chapter 6.3.2), or response
function methods (Kolen and Brennan 2014, Chapter 6.3.3). In any case, direct equating
coefficients are estimated using only the item parameter estimates for the items in common
between two forms, irrespective of the items in common with other forms.

The mean-sigma, mean-mean and mean-geometric mean methods are based on moments of
item parameters. In particular, the equating coefficient Ag−1, g is given by

Ag−1, g =

√

√

√

√

√

√

∑ng−1, g

j=1 b2
gj − 1

ng−1, g

(

∑ng−1, g

j=1 bgj

)2

∑ng−1, g

j=1 b2
g−1j − 1

ng−1, g

(

∑ng−1, g

j=1 bg−1j

)2 (5)

using the mean-sigma method,

Ag−1, g =

∑ng−1, g

j=1 ag−1j
∑ng−1, g

j=1 agj
(6)

using the mean-mean method, and

Ag−1, g =





ng−1, g
∏

j=1

ag−1j

agj





1

ng−1, g

(7)

using the mean-geometric mean method, while the equating coefficient Bg−1, g is given by

Bg−1, g =
1

ng−1, g

ng−1, g
∑

j=1

bgj − Ag−1, g
1

ng−1, g

ng−1, g
∑

j=1

bg−1j (8)

for all methods.

The Haebara and Stocking-Lord methods are based on the response function. The equating
coefficients using the Haebara method are obtained by minimizing the following function

fH(Ag−1, g, Bg−1, g) =
1

2

∫ +∞

−∞

ng−1, g
∑

j=1

[

pgj(θ; agj , bgj , cgj) − pg−1j(θ; a∗
g−1j , b∗

g−1j , cg−1j)
]2

h(θ)dθ,

(9)
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where h(θ) is the density of a standard normal variable, a∗
g−1j = ag−1j/Ag−1, g and b∗

g−1j =
Ag−1, g bg−1j + Bg−1, g. The Stocking-Lord method requires, instead, the minimization of the
function

fSL(Ag−1, g, Bg−1, g) =
1

2

∫ +∞

−∞







ng−1, g
∑

j=1

[

pgj(θ; agj , bgj , cgj) − pg−1j(θ; a∗
g−1j , b∗

g−1j , cg−1j)
]







2

h(θ)dθ.

(10)
The integrals in Equations 9 and 10 do not have an analytical solution and they are generally
approximated using Gaussian quadrature.

Using the delta method, Ogasawara (2000) and Ogasawara (2001) derived the asymptotic
covariance matrix for the vector of estimates (Âg−1, g, B̂g−1, g)⊤, that is given by

ACOV(Âg−1, g, B̂g−1, g)⊤ =
∂(Ag−1, g, Bg−1, g)⊤

∂α
⊤
g−1, g

ACOV(α̂g−1, g)
∂(Ag−1, g, Bg−1, g)

∂αg−1, g
, (11)

where αg−1, g = (α⊤
g , α

⊤
g−1)⊤ is a vector containing all the item parameters related to

Forms g−1 and g, ∂(Ag−1, g, Bg−1, g)⊤/∂α
⊤
g−1, g is the matrix containing the partial derivatives

of Ag−1, g and Bg−1, g with respect to the item parameters evaluated at their true values, and
ACOV(α̂g−1, g) is the asymptotic covariance matrix of α̂g−1, g. The derivatives depend on the
method used to determine the equating coefficients and are given in Ogasawara (2000, 2011)
for methods based on moments, and in Ogasawara (2001) for response function methods.
The estimate of the asymptotic covariance matrix is obtained by inserting item parameter
estimates into Equation 11.

2.2. Equating chains

Suppose that two forms are linked through a chain of forms that present common items in
pairs. Define the path from Form 0 to Form l as p = {0, 1, . . . , l}. According to Battauz
(2013), it is possible to obtain the equating coefficients transforming the scale of θ0 to that
of θl as a function of the direct equating coefficients that link the forms with common items.
These coefficients will be referred to as indirect or chain equating coefficients and they are
given by

Ap = A0,1,...,l =
l

∏

g=1

Ag−1, g (12)

and

Bp = B0,1,...,l =
l

∑

g=1

Bg−1, g Ag,...,l , (13)

where Ag,...,l =
∏l

h=g+1 Ah−1, h is the coefficient that links Form g to Form l.

Similarly to the case of a direct link, the delta method can be exploited to obtain the asymp-
totic covariance matrix of the vector of estimates (Âp, B̂p)⊤, that is

ACOV(Âp, B̂p)⊤ =
∂(Ap, Bp)⊤

∂α
⊤
p

ACOV(α̂p)
∂(Ap, Bp)

∂αp
, (14)
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where αp = (α⊤
0 , α

⊤
1 , . . . , α

⊤
l )⊤ is the vector containing all the item parameters related

to the forms that compose the path, ∂(Ap, Bp)⊤/∂α
⊤
p is the matrix containing the partial

derivatives of Ap and Bp with respect to the item parameters evaluated at their true values,
and ACOV(α̂p) is the asymptotic covariance matrix of the estimate α̂p. The derivatives are
given in Battauz (2013). The estimate of the asymptotic covariance matrix is obtained by
inserting item parameter estimates into Equation 14.

The computation of chain equating coefficients is then performed in two steps: first, the
calculation of direct equating coefficients between consecutive forms of a path and second,
the determination of indirect equating coefficients as a function of direct equating coefficients.
Thus, in this process, only the items in common between two consecutive forms of a given
chain are used. If, for example, Forms 0 and 2 present common items, this information is not
used to estimate the chain equating coefficients for path p = {0, 1, . . . , l}. This link can be
used to constitute a further path that connects Forms 0 and l and a different scale conversion
can be derived for this path. In this case, there are two different equatings for the same two
forms, and they can be averaged as explained in Section 2.3.

2.3. Average equating coefficients

Suppose that two forms are linked through different paths. Define the set of paths that link
two Forms 0 and l as P0l and the linking coefficients related to path p as Ap and Bp, p ∈ P0l.
The equations that transform the scale of θ0 to that of θl are then

θp
l = Ap θ0 + Bp, p ∈ P0l. (15)

As observed by Kolen and Brennan (2014, p. 280) and Braun and Holland (1982, p. 44), the
equating relationships provided by each path could be averaged to produce a single conversion
that is expected to be more accurate. Battauz (2013) proposed using the bisector method,
suggested by Holland and Strawderman (2011) to average the equating functions obtained
by using different equating methods. The angle bisector, in case of two linear functions
that intersect at a point, is the linear function that bisects the angle between them. The
bisector method satisfies the symmetry property, which requires that the inverse function
of the average equating function equals the average of the inverse functions. Instead, the
(weighted) mean of the equating functions does not satisfy the symmetry property, making
the bisector method preferable. The bisector method yields a weighted average of the linear
transformations (15):

θ∗
l =

∑

p∈P0l

wp θp
l , (16)

where

wp =
np(1 + A2

p)−1/2

∑

b∈P0l
nb(1 + A2

b)−1/2
, (17)

and np are optional weights associated with each path. The average equating coefficients are
then

A∗
0l =

∑

p∈P0l

Apwp (18)

and
B∗

0l =
∑

p∈P0l

Bpwp. (19)
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The asymptotic covariance matrix of the vector of estimates (Â∗
0l, B̂∗

0l)
⊤ can then be obtained

by using the delta method as follows

ACOV(Â∗
0l, B̂∗

0l)
⊤ =

∂(A∗
0l, B∗

0l)
⊤

∂α
⊤

ACOV(α̂)
∂(A∗

0l, B∗
0l)

∂α

, (20)

where α = (αp)p∈P0l
is the vector containing all the item parameters used in the equating

process in at least one of the paths in P0l, ∂(A∗
0l, B∗

0l)
⊤/∂α

⊤ is the matrix containing the
partial derivatives of A∗

0l and B∗
0l with respect to the item parameters evaluated at their

true values, and ACOV(α̂) is a block diagonal matrix composed of all ACOV(α̂p), p ∈ P0l,
and it is the asymptotic covariance matrix of the estimate α̂. The derivatives are given in
Battauz (2013). The estimate of the asymptotic covariance matrix is obtained by inserting
item parameter estimates into Equation 20.

Obtaining average equating coefficients is then a process that takes place over three phases:
First, the estimation of direct equating coefficients, then the calculation of chain equating
coefficients for more than one path connecting two forms, and finally the computation of
average equating coefficients. The distribution of common items across forms determines
which forms can be directly linked in the first phase. From this follows the composition
of paths connecting each pair of forms and the computation of chain equating coefficients.
There are no restrictions on these connections: Different paths can share some parts, or the
same item can be used to link more than one form. The relationship between the average
coefficients and the item parameters used to compute them is reflected in the derivatives
∂(A∗

0l
,B∗

0l
)⊤

∂α
⊤ , that determine the covariance matrix of the average equating coefficients.

A further issue concerns which weights np to use in averaging. Battauz (2013) proposed
determining weights by minimizing the average variance of θ∗

l , namely

Eθ0

[

VAR(Â∗
0l θ0 + B̂∗

0l

∣

∣θ0)
]

= VAR(Â∗
0l) + VAR(B̂∗

0l), (21)

assuming that θ0 has zero mean and variance equal to one.

3. The equateIRT package

In order to perform equating with the equateIRT package, it is necessary to have previously
estimated item parameters. Item parameters can be estimated using R packages, or using
external software and then import them into R. To calculate standard errors of equating
coefficients it is also necessary to have estimated the covariance matrix of the item parameter
estimates. If the program used to estimate the IRT model does not provide the covariance
matrix of item parameter estimates or the user is not interested in standard errors of equating
coefficients, the covariance matrix can be set to NULL.

3.1. Data preparation

To the best of my knowledge, the computer programs for IRT model estimation that export
the covariance matrix of parameter estimates are flexMIRT, IRTPRO and the R packages ltm

and mirt. The equateIRT package provides functions to import data from these programs.
Item parameters and the covariance matrices can be also imported from other programs. In
this case, the user should import item parameter estimates and the covariance matrices using
the general R function read.table.
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For item parameter estimation, the programs flexMIRT, IRTPRO and the R packages ltm

and mirt formulate the three-parameter logistic model as a latent trait model (Bartholomew,
Knott, and Moustaki 2011),

πj = cj + (1 − cj)
exp(β1j + β2jz)

1 + exp(β1j + β2jz)
, (22)

where πj is the probability of a positive response for the jth item, βj1 = −D · aj · bj are
easiness parameters, β2j = D · aj are discrimination parameters, cj are guessing parameters
and z = θ the latent ability. In the following, this parameterization will be referred to as the
latent trait parameterization. The two-parameter logistic model, the one-parameter logistic
model and the Rasch model can be presented with the same formulation. The two-parameter
logistic model can be obtained by setting cj = 0, the one-parameter logistic model can be
obtained by constraining also β2j to be constant across items, and the Rasch model can be
obtained by setting cj = 0 and β2j = 1. Furthermore, for a three-parameter logistic model, if
the guessing parameters are given under the parameterization

cj =
exp(c∗

j )

1 + exp(c∗
j )

, (23)

this will be called the logistic parameterization in the following. The IRT programs estimate
the parameters (c∗

j , β1j , β2j), for every item j, and then calculate the item parameters of the
usual IRT parameterization given in Equation 1 using Equation 23 and the equations

bj = −
β1j

Daj
and aj =

β2j

D
. (24)

The covariance matrix of parameter estimates exported by the programs is related to the
vector of parameters (c∗

j , β1j , β2j). The covariance matrix of (cj , bj , aj) can be obtained on
the basis of the covariance matrix provided by the IRT programs by applying the delta
method. The equateIRT package provides this functionality.

The functions provided by the equateIRT package to import item parameter estimates and
the covariance matrix are import.ltm, import.mirt, import.flexmirt and import.irtpro.
Since ltm and mirt are R packages, functions import.ltm and import.mirt just extract item
parameter estimates and the covariance matrix from an object previously created with these
packages. The arguments of the functions are:

mod: Output object from functions rasch, ltm, or tpm of the ltm package, or from function
mirt of the mirt package.

display: Logical value indicating whether the coefficients and the standard errors should be
printed. The default is TRUE.

digits: Integer value indicating the number of decimal digits to be used if display is TRUE.

Instead, functions import.flexmirt and import.irtpro read external files previously cre-
ated with the programs flexMIRT or IRTPRO. The arguments of the functions are:

fnamep: The name of the file containing the item parameter estimates. This is a file whose
name ends with “-prm.txt”.
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fnamev: The name of the file containing the covariance matrix of item parameter estimates.
This is a file ending with “-cov.txt”.

fnameirt: The name of the file containing additional information to link item parameters
with the covariance matrix and to identify parameters that have been constrained to a
fixed value. This is a file ending with “-irt.txt”.

display: Logical value indicating whether the coefficients and the standard errors should be
printed. The default is TRUE.

digits: Integer value indicating the number of decimal digits to be used if display is TRUE.

The functions return a list with components:

coef: The matrix with item parameter estimates.

var: The covariance matrix of item parameter estimates.

Item parameters are imported under the parameterization given in Equations 22 and 23. The
usual IRT parameterization can be obtained later by using function modIRT. An example of
importing data from the ltm package is given in Appendix A.

The equateIRT package does not handle mixed item types, but this issue can be easily
overcome by using the more general model and introducing constraints on some parameters.
For example, in the case of some item responses modeled as a two-parameter logistic model
and others as a three-parameter logistic model, the user can specify a three-parameter logistic
model for all items and fix the guessing parameter to zero for some items.

If item parameter estimates are obtained with IRT programs other than flexMIRT, IRT-

PRO, ltm or mirt, the user has to create a matrix containing the item parameter estimates.
These can be provided using typical IRT parameterization (1) or with parameterization (22)
and/or (23). In this matrix guessing, difficulty and discrimination parameters should strictly
be given in this order and they are contained in different columns of the matrix. It is im-
portant that the names of the rows of the matrix are the names of the items because this
information is used to link different forms. The covariance matrix is only necessary if the
user is interested in obtaining the standard errors of the equating coefficients. It is important
that the order of the items in the covariance matrix is the same as in the matrix with the
item parameter estimates. So, there are first guessing parameter, then difficulty parameters
and finally discrimination parameters. An example of item parameters and covariance matri-
ces organized in this way is given in the datasets contained in the equateIRT package. The
package includes three simulated datasets for illustrative purposes containing item parameter
estimates and covariance matrices of five forms. The item parameter estimates were obtained
with package ltm. In particular, dataset est3pl contains parameters of a three-parameter
logistic model, dataset est2pl contains parameters of a two-parameter logistic model and
dataset estrasch contains parameters of a Rasch model. Each dataset is composed of a list
of length 2 with components:

coef: A list of length 5 containing the matrices of item parameter estimates.

var: A list of length 5 containing the covariance matrices of item parameter estimates.
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The following section explains how to obtain the equating coefficients.

3.2. Data analysis

In this section, we use the dataset est2pl to illustrate the use of the package. The code for
loading the package and the data is

R> library("equateIRT")

R> data("est2pl", package = "equateIRT")

To perform the equating, it is necessary to reorganize the data using function modIRT. This
function creates an object of class ‘modIRT’ consisting of a list with length equal to the number
of forms where each element contains a lists with components:

coefficients: Item parameter estimates.

var: Covariance matrix of item parameter estimates.

itmp: Number of item parameters of the model.

The names of the forms can be specified in function modIRT using argument names. If names

is not specified, function modIRT assigns the names. If item parameters are given under the
latent trait parameterization, use option ltparam = TRUE. If guessing parameters of a three-
parameter logistic model are given under the logistic parameterization, use option lparam

= TRUE. The default values of both these arguments is TRUE, so the user does not need to
specify them if these parameterizations were used in the estimation of the parameters. Using
these options, the item parameters are returned under the usual IRT parameterization as in
Equation 1. In this case, the covariance matrix of the item parameters under parameterization
of model (1) is obtained, by using the delta method, on the basis of the covariance matrix
of item parameters under the parameterizations (22) and/or (23), supplied by the user. If
item parameters already conform to the traditional parameterization, the options ltparam

and lparam should be set to FALSE, and the function does not perform any transformation.
Argument coef is used to specify the item parameter estimates. They should be given as a
list of matrices (one for each form) whose row names are the names of the items. Argument
var can be used to specify the covariance matrix of item parameter estimates and it should
be a list of matrices. If it is left equal to NULL, standard errors of equating coefficients will
not be computed. Option display = TRUE can be used to print item parameter estimates
and the corresponding standard errors in order to compare them with those provided by the
software used to estimate the item parameters. The coefficients can be extracted using the
coef method.

R> test <- paste("test", 1:5, sep = "")

R> mod2pl <- modIRT(coef = est2pl$coef, var = est2pl$var, names = test,

+ display = FALSE)

R> coef(mod2pl$test1)[1:5]

Dffclt.I1 Dffclt.I2 Dffclt.I3 Dffclt.I4 Dffclt.I5

0.05774085 0.02753964 0.07275128 0.41568210 -0.00716265
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The linkage plan can be inspected using the function linkp. Given a list of item parameter
estimates with item labels as row names, this function computes the number of common
items between all pairs of forms and returns a matrix whose elements indicate the number
of common items between the forms. On the diagonal of the matrix there are the number of
items of each form.

R> linkp(coef = est2pl$coef)

[,1] [,2] [,3] [,4] [,5]

[1,] 20 10 0 0 10

[2,] 10 20 10 0 0

[3,] 0 10 20 10 0

[4,] 0 0 10 20 10

[5,] 10 0 0 10 20

The output of the function shows that every form is composed of 20 items and presents 10
items in common with adjacent forms. Furthermore, Forms 1 and 5 present 10 common items.

Function direc calculates direct equating coefficients between two forms with common items.
Arguments mod1 and mod2 are objects of class ‘modIRT’ containing item parameter coeffi-
cients and their covariance matrix. Argument method indicates the equating method to
use and should be one of "mean-mean", "mean-gmean", "mean-sigma", "Haebara" or
"Stocking-Lord". For example, to calculate direct equating coefficients between Form 1
and Form 5 using the Haebara method for the est2pl dataset the code is

R> l15 <- direc(mod1 = mod2pl[1], mod2 = mod2pl[5], method = "Haebara")

R> l15

Direct equating coefficients

Method: Haebara

Link: test1.test5

The direc function approximates the integrals in Equations 9 and 10 using a Gauss-Hermite
quadrature with 30 points by default. The number of quadrature points can be modified
using argument nq. Alternatively, setting quadrature = FALSE the integrals are replaced
with a sum over 40 equally spaced values ranging from −4 to 4 with an increment of 0.05
and weights equal to one for all values. Argument D can be used to specify the value of the
constant D in model (1) used in the estimation of item parameters. A summary method for
displaying the output of the function is available.

R> summary(l15)

Link: test1.test5

Method: Haebara

Equating coefficients:

Estimate StdErr

A 0.97152 0.021344

B -0.47511 0.023886
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The package provides also function alldirec to calculate direct equating coefficients between
all pairs of forms that present common items. Using the mean-mean method, the code for
our example is

R> direclist2pl <- alldirec(mods = mod2pl, method = "mean-mean")

R> direclist2pl

Direct equating coefficients

Method: mean-mean

Links:

test1.test2

test1.test5

test2.test1

test2.test3

test3.test2

test3.test4

test4.test3

test4.test5

test5.test1

test5.test4

The summary function can be used to display all the equatings performed

R> summary(direclist2pl)

or just one of them

R> summary(direclist2pl, "test1.test5")

Link: test1.test5

Method: mean-mean

Equating coefficients:

Estimate StdErr

A 0.96497 0.021313

B -0.47418 0.024224

In order to compute chain equating coefficients, it is necessary to have previously computed
direct equating coefficients using function alldirec. Chain equating coefficients can be com-
puted using function chainec. This function requires the specification of the length of the
chain using argument r. For example, to compute all chain equating coefficients of length 4
for the est2pl dataset the code is

R> cec4 <- chainec(r = 4, direclist = direclist2pl)

R> cec4

Chain equating coefficients

Method: mean-mean
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Paths:

test4.test5.test1.test2

test3.test2.test1.test5

test5.test1.test2.test3

test4.test3.test2.test1

test5.test4.test3.test2

test1.test2.test3.test4

test1.test5.test4.test3

test2.test3.test4.test5

test2.test1.test5.test4

test3.test4.test5.test1

The summary function displays all the equatings performed.

R> summary(cec4)

It is also possible to display only one equating using the following code

R> summary(cec4, "test1.test2.test3.test4")

Path: test1.test2.test3.test4

Method: mean-mean

Equating coefficients:

Estimate StdErr

A 1.25323 0.046518

B -0.49789 0.038505

Option f1 can be used to restrict the equatings to those chains that start from the same form.
To consider all chain equatings of length 4 that start from Form 1 the code is

R> cec4.1 <- chainec(r = 4, direclist = direclist2pl, f1 = "test1")

Option f2 can be used to restrict the equatings to those chains that end with the same form.
To consider all chain equatings of length 4 that start from Form 1 and end with Form 4 the
code is

R> cec1234 <- chainec(r = 4, direclist = direclist2pl, f1 = "test1",

+ f2 = "test4")

Alternatively, it is possible to specify one or more particular paths using argument pths. For
example, to compute chain equating coefficients between Forms 1 and 4 using path {1, 5, 4}
the code is

R> pth1 <- paste("test", c(1, 5, 4), sep = "")

R> pth1 <- data.frame(t(pth1), stringsAsFactors = FALSE)

R> cec154 <- chainec(direclist = direclist2pl, pths = pth1)

R> summary(cec154)
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Path: test1.test5.test4

Method: mean-mean

Equating coefficients:

Estimate StdErr

A 1.15857 0.033390

B -0.39971 0.033076

Another example is the chain equating of Forms 1 and 5 using path {1, 2, 3, 4, 5} .

R> pth2 <- paste("test", 1:5, sep = "")

R> pth2 <- data.frame(t(pth2), stringsAsFactors = FALSE)

R> cec12345 <- chainec(direclist = direclist2pl, pths = pth2)

R> summary(cec12345)

Path: test1.test2.test3.test4.test5

Method: mean-mean

Equating coefficients:

Estimate StdErr

A 1.04381 0.043488

B -0.55595 0.037102

When two forms can be linked through different paths, the equating coefficients can be av-
eraged using function bisectorec, that implements the bisector method. Options weighted

= TRUE and unweighted = TRUE can be used to calculate the weighted bisector coefficients
and the unweighted bisector coefficients. Weights are determined in order to minimize func-
tion (21). For example, to calculate bisector and weighted bisector coefficients to equate
Forms 1 and 4 through paths {1, 2, 3, 4} and {1, 5, 4}, and Forms 1 and 5 through paths
{1, 2, 3, 4, 5} and {1, 5} the code is

R> ecall <- c(cec1234, cec154, cec12345, direclist2pl["test1.test5"])

R> fec <- bisectorec(ecall = ecall, weighted = TRUE, unweighted = TRUE)

R> fec

Bisector and weighted bisector equating coefficients

Method: mean-mean

Link: test1.test4

Paths:

test1.test2.test3.test4

test1.test5.test4

Link: test1.test5

Paths:

test1.test2.test3.test4.test5

test1.test5

The summary function displays the results.
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R> summary(fec)

Link: test1.test4

Method: mean-mean

Equating coefficients:

Path Estimate StdErr

A test1.test2.test3.test4 1.25323 0.046518

A test1.test5.test4 1.15857 0.033390

A bisector 1.20480 0.030609

A weighted bisector 1.18885 0.029302

B test1.test2.test3.test4 -0.49789 0.038505

B test1.test5.test4 -0.39971 0.033076

B bisector -0.44766 0.029927

B weighted bisector -0.43112 0.029713

Link: test1.test5

Method: mean-mean

Equating coefficients:

Path Estimate StdErr

A test1.test2.test3.test4.test5 1.04381 0.043488

A test1.test5 0.96497 0.021313

A bisector 1.00361 0.025683

A weighted bisector 0.97533 0.020528

B test1.test2.test3.test4.test5 -0.55595 0.037102

B test1.test5 -0.47418 0.024224

B bisector -0.51426 0.026383

B weighted bisector -0.48493 0.023780

Function eqc can be used to extract a data frame containing the equating coefficients. For
direct equating coefficients the code is

R> eqc(l15)

link A B

1 test1.test5 0.9715194 -0.4751087

while, for a list of direct equating coefficients, the code is

R> eqc(direclist2pl)

link A B

1 test1.test2 1.2100375 -0.1419891

2 test1.test5 0.9649660 -0.4741816

3 test2.test1 0.8264207 0.1173427

4 test2.test3 1.0136460 -0.1365059

5 test3.test2 0.9865377 0.1346682

6 test3.test4 1.0217563 -0.2113561
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7 test4.test3 0.9787069 0.2068557

8 test4.test5 0.8328952 -0.1412610

9 test5.test1 1.0363059 0.4913972

10 test5.test4 1.2006313 0.1696024

It is also possible to select a specific link.

R> eqc(direclist2pl, link = "test1.test5")

link A B

1 test1.test5 0.964966 -0.4741816

For a list of chain equating coefficients it is possible to display the equating coefficients for
all paths, or specify a particular link and/or path. The code is as follows

R> eqc(cec4)

link path A B

1 test4.test2 test4.test5.test1.test2 1.0444247 0.2754830

2 test3.test5 test3.test2.test1.test5 0.7867321 -0.2535563

3 test5.test3 test5.test1.test2.test3 1.2710807 0.3222905

4 test4.test1 test4.test3.test2.test1 0.7979350 0.3972838

5 test5.test2 test5.test4.test3.test2 1.1592470 0.5024956

6 test1.test4 test1.test2.test3.test4 1.2532349 -0.4978899

7 test1.test3 test1.test5.test4.test3 1.1338989 -0.1843480

8 test2.test5 test2.test3.test4.test5 0.8626289 -0.4334672

9 test2.test4 test2.test1.test5.test4 0.9574649 -0.2637653

10 test3.test1 test3.test4.test5.test1 0.8819128 0.1625789

R> eqc(cec4, path = "test1.test2.test3.test4")

link path A B

1 test1.test4 test1.test2.test3.test4 1.253235 -0.4978899

Also for the output of function bisectorec, it is possible to extract a data frame containing
all the coefficients, or select the link and/or the path.

R> eqc(fec)

link path A B

1 test1.test4 test1.test2.test3.test4 1.2532349 -0.4978899

2 test1.test4 test1.test5.test4 1.1585684 -0.3997148

3 test1.test4 bisector 1.2048012 -0.4476611

4 test1.test4 weighted bisector 1.1888525 -0.4311214

5 test1.test5 test1.test2.test3.test4.test5 1.0438133 -0.5559511

6 test1.test5 test1.test5 0.9649660 -0.4741816

7 test1.test5 bisector 1.0036128 -0.5142608

8 test1.test5 weighted bisector 0.9753335 -0.4849333
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R> eqc(fec, link = "test1.test4", path = "bisector")

link path A B

1 test1.test4 bisector 1.204801 -0.4476611

Functions direc, alldirec and chainec provide also the scale conversion of item parameter
estimates. This is included in the data frame tab, that is part of the outputs of the func-
tions. Function itm extracts this data frame. Some examples for direct and chain equating
coefficients are given below.

R> itm(l15)[1:3, ]

Item test1 test5 test1.as.test5

1 Dffclt.I1 0.05774085 NA -0.4190124

2 Dffclt.I10 0.65469024 NA 0.1609356

3 Dffclt.I2 0.02753964 NA -0.4483534

R> itm(direclist2pl, "test1.test5")[1:3, ]

Item test1 test5 test1.as.test5

1 Dffclt.I1 0.05774085 NA -0.4184636

2 Dffclt.I10 0.65469024 NA 0.1575722

3 Dffclt.I2 0.02753964 NA -0.4476068

R> itm(cec12345, "test1.test2.test3.test4.test5")[1:3, ]

Item test1 test5 test1.as.test5

1 Dffclt.I1 0.05774085 NA -0.4956804

2 Dffclt.I10 0.65469024 NA 0.1274233

3 Dffclt.I2 0.02753964 NA -0.5272049

The transformation of item parameter estimates can be found under column test1.as.test5.

Since the bisectorec function returns the equating coefficients of a plurality of scale conver-
sions, it does not provide the scale conversion of the item parameters. For average equating
coefficients the user can employ function convert, that is a specific function to convert item
and person parameters, given the equating coefficients. The following code extracts the equat-
ing coefficients obtained with the bisector method to transform from the scale of Form 1 to
the scale of Form 4 and performs the scale conversion of item parameters of Form 1 and of
an hypothetical vector of person parameters.

R> eqc14 <- eqc(fec, link = "test1.test4", path = "bisector")

R> convert(A = eqc14$A, B = eqc14$B, coef = coef(mod2pl$test1),

+ person.par = seq(-3, 3, 0.5))

$coef

Dffclt.I1 Dffclt.I2 Dffclt.I3 Dffclt.I4 Dffclt.I5
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-0.37809488 -0.41448133 -0.36001029 0.05315316 -0.45629069

Dffclt.I6 Dffclt.I7 Dffclt.I8 Dffclt.I9 Dffclt.I10

-1.37992251 -0.26139414 -0.04166382 -0.66801293 0.34111044

Dffclt.I31 Dffclt.I32 Dffclt.I33 Dffclt.I34 Dffclt.I35

0.18177450 0.55392509 0.24538460 -0.86040329 0.06882968

Dffclt.I36 Dffclt.I37 Dffclt.I38 Dffclt.I39 Dffclt.I40

0.57880081 0.10200975 -0.61407467 0.17753357 0.56645207

Dscrmn.I1 Dscrmn.I2 Dscrmn.I3 Dscrmn.I4 Dscrmn.I5

0.89322180 0.93158897 0.90584958 1.06301718 0.83608708

Dscrmn.I6 Dscrmn.I7 Dscrmn.I8 Dscrmn.I9 Dscrmn.I10

0.78740779 0.87759511 0.99655944 0.81101215 1.11236175

Dscrmn.I31 Dscrmn.I32 Dscrmn.I33 Dscrmn.I34 Dscrmn.I35

1.23076607 1.07889788 1.12225053 1.14717253 1.05509303

Dscrmn.I36 Dscrmn.I37 Dscrmn.I38 Dscrmn.I39 Dscrmn.I40

0.83680267 1.06871161 1.22268701 1.11314169 1.20883896

$person.par

[1] -4.0620646 -3.4596641 -2.8572635 -2.2548629 -1.6524623 -1.0500617

[7] -0.4476611 0.1547395 0.7571401 1.3595406 1.9619412 2.5643418

[13] 3.1667424

Function convert can also be used for direct or chain equating parameters.

4. Conclusion

The linkage plans can be rather complex involving many forms, several links, chains and the
connection of forms through more than one path. This situation necessitates the performance
of chain equating in order to link forms that do not present common items. Furthermore,
when two forms can be connected through different paths it can be useful to synthesize
the conversions obtained into a single one. The equateIRT package includes not only the
computation of direct equating coefficients but also permits the computation of chain and
average equating coefficients. Another important and exclusive feature of the equateIRT

package is the provision of analytical standard errors of equating coefficients. Standard errors
are an important tool for assessing the accuracy of the equating process and can be also used
to perform further inferential analysis.
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A. Importing data from the ltm package

This appendix shows how to import the estimates obtained with the ltm package using the
dataset data2pl. This dataset is a list of length five and includes five simulated data frames
generated from a two-parameter logistic model. Each data frame contains 5000 dichotomous
responses to 20 items. Item parameter estimates and covariance matrices included in the
dataset est2pl are obtained from the dataset data2pl.

The code for loading packages ltm and equateIRT and the data, and for estimating a two-
parameter logistic model is

R> library("ltm")

R> library("equateIRT")

R> data("data2pl", package = "equateIRT")

R> m1 <- ltm(data2pl[[1]] ~ z1)

R> m2 <- ltm(data2pl[[2]] ~ z1)

R> m3 <- ltm(data2pl[[3]] ~ z1)

R> m4 <- ltm(data2pl[[4]] ~ z1)

R> m5 <- ltm(data2pl[[5]] ~ z1)

Function import.ltm extracts the item parameter estimates and the covariance matrix.

R> estm1 <- import.ltm(m1, display = FALSE)

R> estm2 <- import.ltm(m2, display = FALSE)

R> estm3 <- import.ltm(m3, display = FALSE)

R> estm4 <- import.ltm(m4, display = FALSE)

R> estm5 <- import.ltm(m5, display = FALSE)

R> estm1$coef[1:3, ]

(Intercept) z1

I1 -0.06213808 1.076155

I2 -0.03090993 1.122379

I3 -0.07939847 1.091369

R> estm1$var[1:3,1:3]

[,1] [,2] [,3]

[1,] 0.0012285184 0.0002460322 0.0002391000

[2,] 0.0002460322 0.0012628923 0.0002495126

[3,] 0.0002391000 0.0002495126 0.0012407430

The item parameters and the corresponding covariance matrix are given under parameteri-
zations (22) and (23). The function modIRT transforms item parameters into the usual IRT
parameterization given in Equation 1 and returns item parameter estimates and the covari-
ance matrices in a format suitable for running the equating.

R> estc <- list(estm1$coef, estm2$coef, estm3$coef, estm4$coef, estm5$coef)

R> estv <- list(estm1$var, estm2$var, estm3$var, estm4$var, estm5$var)

R> mod2pl.ltm <- modIRT(coef = estc, var = estv, display = FALSE)
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