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Abstract

The R package equate (Albano 2016) contains functions for observed-score linking and
equating under single-group, equivalent-groups, and nonequivalent-groups with anchor
test and covariate designs. This paper introduces these designs and provides an overview
of observed-score equating with details about each of the supported methods. Examples
demonstrate the basic functionality of the equate package.
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1. Introduction

Equating is a statistical procedure commonly used in testing programs where administrations
across more than one occasion and more than one examinee group can lead to overexposure
of items, threatening the security of the test. In practice, item exposure can be limited by
using alternate test forms; however, multiple forms lead to multiple score scales that measure
the construct of interest at differing levels of difficulty. The goal of equating is to adjust for
these differences in difficulty across alternate forms of a test, so as to produce comparable
score scales.

Equating defines a functional statistical relationship between multiple test score distributions
and thereby between multiple score scales. When the test forms have been created according to
the same specifications and are similar in statistical characteristics, this functional relationship
is referred to as an equating function, and it serves to translate scores from one scale directly
to their equivalent values on another. The term linking refers to test forms which have not
been created according to the same specifications, for example, forms which differ in length
or content; in this case, the linked scales are considered similar but not interchangeable; they
are related to one another via a linking function. Specific requirements for equating include
equivalent constructs measured with equal reliability across test forms, equity in the equated
results, symmetry of the equating function itself, and invariance of the function over examinee
populations (for details, see Holland and Dorans 2006).

A handful of statistical packages are available for linking and equating test forms. Kolen
and Brennan (2014) demonstrate a suite of free, standalone programs for observed-score
and item response theory (IRT) linking and equating. Other packages, like equate, have been
developed within the R environment (R Core Team 2016). For example, the R package kequate
(Andersson, Bränberg, and Wiberg 2013) includes observed-score methods, but within a kernel
equating framework. The R package plink (Weeks 2010) implements IRT linking under a
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variety of dichotomous, polytomous, unidimensional, and multidimensional models. The R
package SNSequate (Burgos 2014) contains some functions for observed-score and kernel
equating, along with IRT linking methods.

The equate package, available on the Comprehensive R Archive Network (CRAN) at https://
CRAN.R-project.org/package=equate, is designed for observed-score linking and equating.
It differs from other packages primarily in its overall structure and usability, its plotting
and bootstrapping capabilities, and its inclusion of more recently developed equating and
linking functions such as the general-linear, synthetic, and circle-arc functions, and traditional
methods such as Levine, Tucker, and Braun/Holland. Equating with multiple anchor tests
and external covariates is also supported, as demonstrated below. Linking and equating
are performed using a simple interface, and plotting and summary methods are provided to
facilitate the comparison of results and the examination of bootstrap and analytic equating
error. Sample data and detailed help files are also included. These features make the package
useful in teaching, research, and operational testing contexts.

This paper presents some basic linking and equating concepts and procedures. Equating
designs are first discussed in Section 2. In Section 3, linear and nonlinear observed-score
linking and equating functions are reviewed. In Section 4, methods are presented for linking
and equating when examinee groups are not equivalent. Finally, in Section 5, the equate
package is introduced and its basic functionality is demonstrated using three data sets.

2. Equating designs

Observed-score linking and equating procedures require data from multiple test administra-
tions. An equating design specifies how the test forms and the individuals sampled to take
them differ across administrations, if at all. For simplicity, in this paper and in the equate
package, equating designs are categorized as either involving a single group, equivalent groups,
or nonequivalent groups of examinees, and test forms are then constructed based on the type
of group(s) sampled.

In the single-group design, one group, sampled from the target population T , takes two
different test forms X and Y , optionally with counterbalancing of administration orders (one
group takes X first, the other takes Y first). Any differences in the score distributions on
X and Y are attributed entirely to the test forms themselves, as group ability is assumed
to be constant; thus, if the distributions are not the same, it is because the test forms differ
in difficulty. Related to the single-group design is the equivalent-groups design, where one
random sample from T takesX and another takes Y . Because the samples are taken randomly,
group ability is again assumed to be constant, and any differences in the score distributions
are again identified as form difficulty differences.

Without equivalent examinee groups, two related problems arise: 1) the target population
must be defined indirectly using samples from two different examinee populations, P and Q;
and 2) the ability of these groups must then be accounted for, as ability differences will be
a confounding factor in the estimation of form difficulty differences. In the nonequivalent-
groups design these issues are both addressed through the use of what is referred to as an
anchor test, V , a common measure of ability available for both groups. All non-equivalence in
ability is assumed to be controlled or removed via this common measure. External covariates,
such as scores from other tests, can also be used to control for group differences.

https://CRAN.R-project.org/package=equate
https://CRAN.R-project.org/package=equate
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Equating procedures were initially developed using the single-group and equivalent-groups
designs. In this simpler context, the traditional equating functions include mean, linear, and
equipercentile equating; these and other equating functions are reviewed in Section 3. More
complex procedures have been developed for use with the nonequivalent-groups design; these
equating methods are presented in Section 4. Unless otherwise noted, additional details on
the functions and methods described below can be found in Kolen and Brennan (2014).

3. Equating functions

Procedures for equating test forms to a common scale are referred to here and in the equate
package as different types of equating functions. The equating function defines the equation
for a line that expresses scores on one scale, or axis, in terms of the other. The available
types of equating functions are categorized as straight-linear (i.e., linear), including identity,
mean, and linear equating, and curvilinear (i.e., nonlinear), including equipercentile and circle-
arc equating. The straight-line types differ from one another in intercept and slope, and the
curvilinear lines differ in the number of coordinates on the line that are estimated, whether all
of them or only one. Combinations of equating lines, referred to here as composite functions,
are also discussed.

The goal of equating is to summarize the difficulty difference between X to Y . As shown
below, each equating type makes certain assumptions regarding this difference and how it
does or does not change across the X and Y score scales. These assumptions are always
expressed in the form of a line within the coordinate system for the X and Y scales.

3.1. Identity functions

Linear functions are appropriate when test form difficulties change linearly across the score
scale, by a constant b and rate of change a. Scores on X are related to Y as

y = ax+ b. (1)

In the simplest application of Equation (1), the scales of X and Y define the line. Coordinates
for scores of x and y are found based on their relative positions within each scale:

x− x1
x2 − x1

=
y − y1
y2 − y1

. (2)

Here, (x1, y1) and (x2, y2) are coordinates for any two points on the line defined by the
scales of X and Y , for example, the minimum and maximum possible scale values. Solving
Equation (2) for y results in the identity linking function:

idY (x) = y =
∆Y

∆X
x+ y1 −

∆Y

∆X
x1, (3)

where ∆Y = y2 − y1 and ∆X = x2 − x1,

a =
∆Y

∆X
, (4)

and

b = y1 −
∆Y

∆X
x1. (5)
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The intercept b can also be defined using the slope a and any pair of X and Y coordinates
(xj , yk):

b = yk − axj , (6)

where j = 1, 2, . . . , J indexes the points on scale X and k = 1, 2, . . . ,K indexes the points on
scale Y . The identity linking function is then expressed as

idY (x) =
∆Y

∆X
x+ yk −

∆Y

∆X
xj . (7)

When the scales of X and Y are the same, a = 1 and b = 0, and Equation (7) reduces to the
identity equating function:

ideY (x) = x. (8)

3.2. Mean functions

In mean linking and equating, form difficulty differences are estimated by the mean difference
µY − µX . Equation (7) is used to define a line that passes through the means of X and Y ,
rather than the point (xj , yk). The intercept from Equation (6) is expressed as

b = µY − aµX . (9)

The mean linking function is then

meanY (x) = ax+ µY − aµX , (10)

where a is found using Equation (4). When the scales of X and Y are the same, the slope a
is 1, which leads to the mean equating function:

meaneY (x) = x+ µY − µX . (11)

In mean equating, coordinates for the line are based on deviation scores:

x− µX = y − µY . (12)

In mean linking, coordinates are based on deviation scores relative to the scales of X and Y :

x− µX
∆X

=
y − µY

∆Y
. (13)

3.3. Linear functions

The linear linking and equating functions also assume that the difficulty difference between
X and Y changes by a constant amount a across the score scale. However, in linear equating
the slope is estimated using the standard deviations of X and Y as

a =
σY
σX

. (14)

The linear linking and equating functions are defined as

linY (x) =
σY
σX

x+ µY −
σY
σX

µX . (15)
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In both the linear linking and equating functions, coordinates for the line are based on stan-
dardized deviation scores:

x− µX
σX

=
y − µY
σY

. (16)

3.4. General linear functions

The identity, mean, and linear linking and equating functions presented above can all be
obtained as variations of a general linear function glinY (x) (Albano 2015). The general linear
function is defined based on Equation (1) as

glinY (x) =
αY

αX
x+ βY −

αY

αX
βX , (17)

where

a =
αY

αX
(18)

and

b = βY −
αY

αX
βX . (19)

Here, α is a general scaling parameter that can be estimated using σ, ∆, another fixed
value, or weighted combinations of these values. β is a general centrality parameter that
can be estimated using µ, xj or yk, other values, or weighted combinations of these values.
Applications of the general linear function are discussed below and in Albano (2015).

3.5. Equipercentile functions

Equipercentile linking and equating define a nonlinear relationship between score scales by
setting equal the cumulative distribution functions for X and Y : F (x) = G(y). Solving for y
produces the equipercentile linking function:

equipY (x) = G−1[F (x)], (20)

which is also the equipercentile equating function equipeY (x). When the score scales are dis-
crete, which is often the case, the cumulative distribution function can be approximated using
percentile ranks. This is a simple approach to continuizing the discrete score distributions
(for details, see Kolen and Brennan 2014, ch. 2). Kernel equating, using Gaussian kernels,
offers a more flexible approach to continuization (von Davier, Holland, and Thayer 2004),
but differences between the methods tend to be negligible. The percentile rank method is
currently used in the equate package. The equipercentile equivalent of a form-X score on
the Y scale is calculated by finding the percentile rank in X of a particular score, and then
finding the form-Y score associated with that form-Y percentile rank.

Equipercentile equating is appropriate when X and Y differ nonlinearly in difficulty, that is,
when difficulty differences fluctuate across the score scale, potentially at each score point.
Each coordinate on the equipercentile curve is estimated using information from the distri-
butions of X and Y . Thus, compared to identity, mean, and linear equating, equipercentile
equating is more susceptible to sampling error because it involves the estimation of as many
parameters as there are unique score points on X.
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Smoothing methods are typically used to reduce irregularities due to sampling error in ei-
ther the score distributions or the equipercentile equating function itself. Two commonly
used smoothing methods include polynomial loglinear presmoothing (Holland and Thayer
2000) and cubic-spline postsmoothing (Kolen 1984). The equate package currently supports
loglinear presmoothing via the glm function. Details are provided below.

3.6. Circle-arc functions

Circle-arc linking and equating (Livingston and Kim 2009) also define a nonlinear relationship
between score scales; however, they utilize only three score points in X and Y to do so: the
low and high points, as defined above for the identity function, and a midpoint (xj , yk). On
their own, the low and high points define the identity linking function idY (x), a straight line.
When (xj , yk) does not fall on the identity linking line, it can be connected to (x1, y1) and
(x2, y2) by the circumference of a circle with center (xc, yc) and radius r.

There are multiple ways of solving for (xc, yc) and r based on the three known points (x1, y1),
(xj , yk), and (x2, y2). For example, the center coordinates can be found by solving the follow-
ing system of equations:

(x1 − xc)2 + (y1 − yc)2 = r2 (21)

(xj − xc)2 + (yk − yc)2 = r2 (22)

(x2 − xc)2 + (y2 − yc)2 = r2. (23)

Subtracting Equation (23) from (21) and (22) and rearranging terms leads to the following
linear system:

2(x1 − x2)xc + 2(y1 − y2)yc = x21 − x22 + y21 − y22 (24)

2(xj − x2)xc + 2(yk − y2)yc = x2j − x22 + y2k − y22. (25)

The center coordinates can then be obtained by plugging in the known values for (x1, y1),
(xj , yk), and (x2, y2) and again combining equations. The center and any other coordinate
pair, e.g., (x1, y1), are then used to find the radius:

r =
√

(xc − x1)2 + (yc − y1)2. (26)

Finally, solving Equation (26) for y results in the circle-arc linking function:

circY (x) = yc ±
√
r2 − (x− xc)2, (27)

where the second quantity, under the square root, is added to yc when yk > idY (xj) and
subtracted when yk < idY (xj). The circle-arc equating function circeY (x) is obtained by
using ideY (xj) in place of idY (xj) above.

Livingston and Kim (2010) refer to the circle connecting (x1, y1), (xj , yk), and (x2, y2) as
symmetric circle-arc equating. They also present a simplified approach, where the circle-arc
function is decomposed into the linear component defined by (x1, y1) and (x2, y2), which is
the identity function, and the circle defined by the points (x1, y1−idY (x1)), (xj , yk−idY (xj)),
and (x2, y2− idY (x2)). These low and high points reduce to (x1, 0) and (x2, 0), and the center
coordinates can then be found as

x∗c =
(x22 − x21)
2(x2 − x1)

, (28)
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and

y∗c =
(x21)(x2 − xj)− (x2j + y∗2k )(x2 − x1) + (x22)(xj − x1)

2[y∗k(x1 − x2)]
, (29)

where y∗k = yk− idY (xj). Equation (26) is used to find the radius. Then, the simplified circle-
arc function is the combination of the resulting circle-arc circ∗Y (x) and the identity function:

scircY (x) = circ∗Y (x) + idY (x). (30)

3.7. Composite functions

The circle-arc linking and equating functions involve a curvilinear combination of the identity
and mean functions, where the circle-arc overlaps with the identity function at the low and
high points, and with the mean function at the midpoint (µX , µY ). A circle then defines the
coordinates that connect these three points. This is a unique example of what is referred to
here as a composite function.

The composite linking function is the weighted combination of any linear and/or nonlinear
linking or equating functions:

compY (x) =
∑
h

whlinkhY (x), (31)

where wh is a weight specifying the influence of function linkhY (x) in determining the com-
posite.

Equation (31) is referred to as a linking function, rather than an equating function, because
it will typically not meet the symmetry requirement of equating. For symmetry to hold, the
inverse of the function that links X to Y must be the same as the function that links Y to
X, that is, comp−1Y (x) = compX(y), which is generally not true when using Equation (31).
Holland and Strawderman (2011) show how symmetry can be maintained for any combination
of two or more linear functions. The weighting system must be adjusted by the slopes for the
linear functions being combined, where the adjusted weight Wh is found as

Wh =
wh(1 + aph)−1/p∑
h

wh(1 + aph)−1/p
. (32)

Here, ah is the slope for a given linear function linkh, and p specifies the type of Lp-circle
with which symmetry is defined. For details, see Holland and Strawderman (2011).

4. Equating methods

The linking and equating functions presented above are defined in terms of a single target
population T , and they are assumed to generalize to this population. A subscript, e.g., XT , is
omitted for simplicity; it is presumed that X = XT and Y = YT . In the nonequivalent-groups
design, scores come from two distinct populations, referred to here as populations P and Q.
Because the target population is not directly sampled, the linking and equating functions are
redefined in terms of a weighted combination of P and Q, where T = wPP + wQQ and wP
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and wQ are proportions that sum to 1. This mixture of P and Q is referred to as the synthetic
population (Braun and Holland 1982).

Linear equating is presented for the synthetic population first. All of the means and standard
deviations in Equation (15) are estimated as weighted combinations of estimates from P and
Q, where

µX = wPµXP
+ wQµXQ

, (33)

µY = wPµYP
+ wQµYQ

, (34)

σ2X = wPσ
2
XP

+ wQσ
2
XQ

+ wPwQ(µXP
− µXQ

)2, (35)

and

σ2Y = wPσ
2
YP

+ wQσ
2
YQ

+ wPwQ(µYP
− µYQ

)2. (36)

Because X is not administered to Q and Y is not administered to P , the terms µXQ
, µYP

,
σ2XQ

, and σ2XQ
in Equations (33) through (36) are obtained using available information for

X, Y , and the anchor test V . This results in the following synthetic parameter estimates (for
details, see Kolen and Brennan 2014):

µX = µXP
− wQγP (µVP

− µVQ
), (37)

µY = µYQ
+ wPγQ(µVP

− µVQ
), (38)

σ2X = σ2XP
− wQγ

2
P (σ2VP

− σ2VQ
) + wPwQγ

2
P (µVP

− µVQ
)2, (39)

and

σ2Y = σ2YQ
+ wPγ

2
Q(σ2VP

− σ2VQ
) + wPwQγ

2
Q(µVP

− µVQ
)2. (40)

The γ terms in Equations (37) through (40) represent the relationship between total scores on
X and Y and the respective anchor scores on V . γP and γQ are used along with the weights
to adjust the observed µ and σ2 for X and Y in order to obtain corresponding estimates for
the synthetic population. For example, when wP = 0 and wQ = 1, µY = µYQ

, and conversely
µXQ

will be adjusted the maximum amount when obtaining µX . The same would occur with
the estimation of synthetic variances. Furthermore, the adjustments would be completely
removed if populations P and Q did not differ in ability, where µVP

= µVQ
and σ2VP

= σ2VQ
.

A handful of techniques have been developed for estimating the linear γ terms required by
Equations (37) through (40), and the terms required for equipercentile equating, as de-
scribed below. These techniques all make certain assumptions about the relationships be-
tween total scores and anchor scores for populations P and Q. The techniques are referred
to here as equating methods. The equate package supports the Tucker, nominal weights,
Levine observed-score, Levine true-score, Braun/Holland, frequency estimation, and chained
equating methods (although chained equating does not rely on γ, it does make assump-
tions about the relationship between total and anchor scores). The Tucker, nominal weights,
Braun/Holland, and frequency estimation methods are also available for use with multiple an-
chor tests; see Appendix A. Table 1 shows the supported methods that apply to each equating
type.
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Method
Type nominal tucker levine braun frequency chained

mean
√ √ √ √ √

linear
√ √ √ √

general linear
√ √ √ √

equipercentile
√ √

circle-arc
√ √ √ √ √

Multiple anchors
√ √ √ √

Table 1: Applicable equating types and methods.
Note: Text in R code font shows how the equating types and methods are specified in the
equate function. Multiple anchors and covariates are currently supported for all equating
types but not all methods.

4.1. Tucker

In Tucker equating (Levine 1955) the relationship between total and anchor test scores is
defined in terms of regression slopes, where γP is the slope resulting from the regression of X
on V for population P , and γQ the slope from a regression of Y on V for population Q:

γP =
σXP ,VP

σ2VP

and γQ =
σYQ,VQ

σ2VQ

. (41)

The Tucker method assumes that across populations: 1) the coefficients resulting from a
regression of X on V are the same, and 2) the conditional variance of X given V is the same.
These assumptions apply to the regression of Y on V and the covariance of Y given V as well.
They also apply to the regression of X or Y on multiple anchor tests and external covariates
(e.g., Angoff 1984); see Appendix A.1 for details.

4.2. Nominal weights

Nominal weights equating is a simplified version of the Tucker method where the total and
anchor tests are assumed to have similar statistical properties and to correlate perfectly within
populations P and Q. In this case the γ terms can be approximated by the ratios

γP =
KX

KV
and γQ =

KY

KV
, (42)

where K is the number of items on the test. See Babcock, Albano, and Raymond (2012)
for a description and examples with a single anchor. When using multiple anchor tests, a
γ term is again estimated for each anchor test, as in the multi-anchor Tucker method; see
Appendix A.2.

4.3. Levine

Assumptions for the Levine (Levine 1955) observed-score method are stated in terms of true
scores (though only observed scores are used), where, across both populations: 1) the corre-
lation between true scores on X and V is 1, as is the correlation between true scores on Y



10 equate: An R Package for Observed-Score Linking and Equating

and V ; 2) the coefficients resulting from a linear regression of true scores for X on V are the
same, as with true scores for Y on V ; and 3) measurement error variance is the same (across
populations) for X, Y , and V . These assumptions make possible the estimation of γ as

γP =
σ2XP

σXP ,VP

and γQ =
σ2YQ

σYQ,VQ

, (43)

which are the inverses of the respective regression slopes for V on X and V on Y . The Levine
true-score method is based on the same assumptions as the observed-score method; however,
it uses a slightly different linear equating function in place of Equation (15):

linY (x) =
γQ
γP
X(x− µXP

) + µYQ
+ γQ(µVP

− µVQ
), (44)

with γ defined by Equation (43). Hanson (1991) and Kolen and Brennan (2014) provide
justifications for using the Levine true-score method.

4.4. Frequency estimation

The frequency estimation or poststratification method is used in equipercentile equating under
the nonequivalent-groups design. It is similar to the methods described above in that it
involves a synthetic population. However, in this method full score distributions for the
synthetic population taking forms X and Y are required. When the assumptions are made
that 1) the conditional distribution of total scores on X for a given score point in V is the
same across populations, and 2) the conditional distribution of total scores on Y for a given
score point in V is the same across populations, the synthetic distributions can be obtained
as

Pr(x) = wP PrP (x) + wQ

∑
PrP (x|v) PrQ(v) (45)

and
Pr(y) = wQ PrQ(y) + wP

∑
PrQ(y|v) PrP (v). (46)

Here, Pr(x), Pr(y), and Pr(v) denote the distribution functions for forms X, Y , and V
respectively. Percentile ranks can be taken for the cumulative versions of Equations (45)
and (46) to obtain Equation (20). The frequency estimation method can also accommodate
multiple anchors and external covariates; see Appendix A.3.

4.5. Braun/Holland

As a kind of extension of the frequency estimation method, the Braun/Holland method (Braun
and Holland 1982) defines a linear function relating X and Y that is based on the means and
standard deviations of the synthetic distributions obtained via frequency estimation. Thus
the full synthetic distributions are estimated, as with frequency estimation, but only in order
to obtain their means and standard deviations.

4.6. Chained

Finally, chained equating (Livingston, Dorans, and Wright 1990) can be applied to both
linear and equipercentile equating under the nonequivalent-groups with anchor test design.
The chained method differs from all other methods discussed here in that it does not explicitly
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reference a synthetic population. Instead, it introduces an additional equating function in the
process of estimating score equivalents; see Appendix B for details. For both linear and
equipercentile equating the steps are as follows:

1. Define the function relating X to V for population P, linkVP
(x),

2. Define the function relating V to Y for population Q, linkYQ
(v),

3. Equate X to the scale of Y using both functions, where

chainY (x) = linkYQ
[linkVP

(x)].

Chained methods are based on the assumptions that 1) the equating of X to V is the same
for P and Q, and 2) the equating of V to Y is the same for P and Q.

4.7. Methods for the general linear function

The general linear equating function can be utilized with any combination of weighted means
and standard deviations from Equations 33 through 36. Thus, any methods for nonequivalent
groups that estimate means or means and standard deviations for the synthetic population can
be implemented within the general linear function. In the equate package, these methods are
currently Tucker, nominal-weights, Levine observed-score, and Braun/Holland. See Albano
(2015) for examples. Composites of these methods can also be obtained.

4.8. Methods for the circle-arc function

As discussed above, the circle-arc equating function combines a linear with a curvilinear
component based on three points in the X and Y score distributions. Although all three
points can be obtained using the general linear function, the first and third of these points are
typically determined by the score scale whereas the midpoint is estimated. Equating methods
used with circle-arc equating in the nonequivalent-groups design apply only to estimation of
this midpoint. Livingston and Kim (2009) demonstrated chained linear equating of means,
under a nonequivalent-groups design. The midpoint could also be estimated using other linear
methods, such as Tucker or Levine.

Note that circle-arc equating is defined here as an equating type, and equating methods are
used to estimate the midpoint. When groups are considered equivalent (i.e., an anchor test
is not used) equating at the midpoint is simply mean equating, as mentioned above (replace
x with µX in Equation (15) to see why this is the case). With scores on an anchor test, both
Tucker and Levine equating at the midpoint also reduce to mean equating. However, chained
linear equating at the midpoint differs from chained mean (see Appendix B).

5. Using the equate package

5.1. Sample data

The equate package includes three sample data sets. The first, ACTmath, comes from two
administrations of the ACT mathematics test, and is used throughout Kolen and Brennan
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(2014). The test scores are based on an equivalent-groups design and are contained in a
three-column data frame where column one is the 40-point score scale and columns two and
three are the number of examinees for X and Y obtaining each score point.

The second data set, KBneat, is also used in Kolen and Brennan (2014). It contains scores
for two forms of a 36-item test administered under a nonequivalent-groups design. A 12-item
anchor test is internal to the total test, where anchor scores contribute to an examinee’s total
score. The number of non-anchor items that are unique to each form is 24, and the highest
possible score is 36. KBneat contains a separate total and anchor score for each examinee. It
is a list of length two where the list elements x and y each contain a two-column data frame
of scores on the total test and scores on the anchor test.

The third data set, PISA, contains scored cognitive item response data from the 2009 ad-
ministration of the Programme for International Assessment (PISA). Four data frames are
included in PISA: PISA$students contains scores on the cognitive assessment items in math,
reading, and science for all 5233 students in the USA cohort; PISA$booklets contains in-
formation about the structure of the test design, where multiple item sets, or clusters, were
administered across 13 test booklets; PISA$items contains the cluster, subject, maximum
possible score, item format, and number of response options for each item; and PISA$totals

contains a list of cluster total scores for each booklet, calculated using PISA$students and
PISA$booklets. For additional details, see the PISA help file which includes references to
technical documentation.

5.2. Preparing score distributions

The equate package analyzes score distributions primarily as frequency table objects with
class ’freqtab’. For example, to equate the ACTmath forms, they must first be converted to
frequency tables as follows.

R> library("equate")

R> act.x <- as.freqtab(ACTmath[, 1:2])

R> act.y <- as.freqtab(ACTmath[, c(1, 3)])

The ’freqtab’ class stores frequency distributions as table arrays, with a dimension for each
of the variables included in the distribution. The function as.freqtab is used above because
ACTmath already contains tabulated values; this code simply restructures the scales and counts
for the two test forms and gives them the appropriate attributes. When printed to the console,
’freqtab’ objects are converted to data.frames. They are summarized with the summary

method.

R> head(act.x)

total count

1 0 0

2 1 1

3 2 1

4 3 3

5 4 9

6 5 18
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R> rbind(x = summary(act.x), y = summary(act.y))

mean sd skew kurt min max n

x 19.85239 8.212585 0.3751416 2.301379 1 40 4329

y 18.97977 8.940397 0.3525667 2.145331 1 40 4152

The constructor freqtab creates a frequency table from a vector or data frame of observed
scores. With an anchor test, this becomes a bivariate frequency table. Bivariate distributions
contain counts for all possible score combinations for the total and anchor scores. Multivariate
distributions, e.g., containing scores on multiple anchor tests and external covariates, are also
supported.

R> neat.x <- freqtab(KBneat$x, scales = list(0:36, 0:12))

R> neat.y <- freqtab(KBneat$y, scales = list(0:36, 0:12))

Finally, freqtab can also be used to sum scored item responses, and then tabulate the result-
ing total scores. In this case, the list items must contain vectors of the columns over which
total scores should be calculated. For example, the following syntax creates a frequency table
using four reading clusters from PISA booklet 6, with clusters R3 and R6 containing the
unique items and clusters R5 and R7 containing the anchor items. The design argument
is used to specify the single-group equating design, as the default when creating a bivariate
frequency table is the nonequivalent-groups design.

R> attach(PISA)

R> r3items <- paste(items$itemid[items$clusterid == "r3a"])

R> r6items <- paste(items$itemid[items$clusterid == "r6"])

R> r5items <- paste(items$itemid[items$clusterid == "r5"])

R> r7items <- paste(items$itemid[items$clusterid == "r7"])

R> pisa <- freqtab(students[students$book == 6, ],

+ items = list(c(r3items, r6items), c(r5items, r7items)),

+ scales = list(0:31, 0:29), design = "sg")

R> round(data.frame(summary(pisa),

+ row.names = c("r3r6", "r5r7")), 2)

mean sd skew kurt min max n

r3r6 17.45 7.20 -0.18 2.01 1 31 396

r5r7 18.19 6.05 -0.65 2.72 1 29 396

A basic plot method is provided in the ’freqtab’ class. Univariate frequencies are plotted
as vertical lines for the argument x, similar to a bar chart, and as superimposed curves for
the argument y. When y is a matrix, each column of frequencies is added to the plot as a
separate line. This feature is useful when examining smoothed frequency distributions, as
demonstrated below. When x is a bivariate frequency table, a scatter plot with marginal
frequency distributions is produced. See Figure 1 for an example of a univariate plot, and
Figure 2 for an example of a bivariate plot.

R> plot(x = act.x, lwd = 2, xlab = "Score", ylab = "Count")

R> plot(neat.x)
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Figure 1: Univariate plot of ACTmath total scores for form X.
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Figure 2: Bivariate plot of KBneat total and anchor distributions.
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5.3. Presmoothing

The distributions in Figures 1 and 2 contain irregularities in their shapes that likely result,
to some extent, from sampling error. The population distributions that these samples es-
timate are expected to be smoother, with less jaggedness between adjacent scores. Three
methods are available for smoothing sample distributions with the objective of reducing these
irregularities. The first, frequency averaging (Moses and Holland 2008) replaces scores falling
below jmin with averages based on adjacent scores. This is implemented with smoothmethod

= "average" in the presmoothing function. The second, adds a small relative frequency
(again, jmin) to each score point while adjusting the probabilities to sum to one (as described
by Kolen and Brennan 2014, p. 46). This is implemented using smoothmethod = "bump" in
the presmoothing function.

The third method of reducing irregularities in sample distributions is polynomial loglinear
smoothing. Appendix C contains details on the model formula itself. In the equate package,
loglinear models are fit using the presmoothing function with smoothmethod = "loglinear",
which calls on the generalized linear model (glm) function in R. Models can be fit in three
different ways. The first way is with a formula object, as follows.

R> presmoothing(~ poly(total, 3, raw = T) + poly(anchor, 3, raw = T) +

+ total:anchor, data = neat.x)

This is similar to the approach used in other modeling functions in R, but with two restrictions:
1) the dependent variable, to the left of the ~, is set to be the score frequencies contained in
data, and it does not need to be specified in the formula; and 2) the intercept is required and
will be added if it has been explicitly removed in the formula.

The formula smoothing method is efficient to write for simpler models, but it can be cum-
bersome for more complex models containing multiple interaction terms. The second way to
specify the model is with a matrix of score functions (scorefun) similar to a model.matrix

in R, where each column is a predictor variable in the model, as follows.

R> neat.xsf <- with(as.data.frame(neat.x), cbind(total, total^2,

+ total^3, anchor, anchor^2, anchor^3, total*anchor))

R> presmoothing(neat.x, smooth = "loglinear", scorefun = neat.xsf)

The object neat.xsf is a matrix containing the total and anchor score scales to the first,
second, and third powers, and the interaction between the two. The presmoothing results
based on this score function are the same as those for the formula method above. One benefit
of creating the score function externally is that it can be easily modified and used with other
models. It can also include variables not contained within the raw frequency table, neat.x,
in this example. The formula interface is limited in this respect, as the data argument must
be a frequency table, and it cannot include variables besides the total and anchor scores.

The most efficient approach to specify a loglinear model in the presmoothing function is
by including the degrees of the highest polynomial terms for each variable at each level of
interaction. For example, in the formula and score function methods above, terms are included
for both the total and anchor tests up to the third power and for the two-way interaction
to the first power. This is specified compactly using degrees = list(c(3, 3), c(1, 1)),
which can be reduced to degrees = list(3, 1).
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R> neat.xs <- presmoothing(neat.x, smooth = "log", degrees = list(3, 1))

This functionality extends to multivariate distributions. For example, three way interactions
would be specified by including a third vector in the degrees list.

For the bivariate example, the smoothed distributions in Figure 3 can be compared to the
unsmoothed ones in Figure 2. Figure 4 superimposes the smoothed frequencies on the un-
smoothed marginal distributions for a more detailed comparison of the different models. De-
scriptive statistics show that the smoothed distributions match the unsmoothed in the first
three moments.

R> neat.xsmat <- presmoothing(neat.x, smooth = "loglinear",

+ degrees = list(3, 1), stepup = TRUE)

R> plot(neat.xs)

R> plot(neat.x, neat.xsmat, ylty = 1:4)

R> round(rbind(x = summary(neat.x), xs = summary(neat.xs)), 2)

mean sd skew kurt min max n

x.total 15.82 6.53 0.58 2.72 2 36 1655

x.anchor 5.11 2.38 0.41 2.76 0 12 1655

xs.total 15.82 6.53 0.58 3.22 0 36 1655

xs.anchor 5.11 2.38 0.41 2.97 0 12 1655

The presmoothing function is used above to compare results from a sequence of nested
models. The argument stepup = TRUE returns a matrix of fitted frequencies for models based
on subsets of columns in scorefun, where the columns for each model can be specified with
the argument models. The presmoothing function can also infer nested models when the
degrees argument is used. In this case, terms are added sequentially for all variables within
each level of interaction. For the example above, the first model in neat.xsmat includes the
total and anchor scales to the first power, the second additionally includes both scales to the
second power, and the third includes both to the third power. A fourth model contains the
interaction term. The smoothed curves in the marginal distributions of Figure 4 show the
loglinear smoothing results for each nested model that is fit in neat.xsmat. The legend text
defines each smoothing curve using two numbers, the first for the level of interaction (1 for
the first three models, and 2 for the fourth), and the second for the highest power included
in a model (1, 2, and 3 for the main effects, and 1 for the interaction).

Using the argument compare = TRUE in presmoothing, an ANOVA table of deviance statis-
tics is returned for sequentially nested models. Model fit is compared using functions from
the base packages in R (R Core Team 2016), which provide AIC (Akaike’s Information Cri-
terion), BIC (Bayesian Information Criterion), and likelihood ratio χ2 tests. In the output
below, AIC and BIC are smallest for the most complex model, labeled “Model 4”, which also
results in the largest decrease in deviance. The models being compared are the same as those
contained in neat.xsmat.

R> presmoothing(neat.x, smooth = "loglinear",

+ degrees = list(c(3, 3), c(1, 1)), compare = TRUE)

Analysis of Deviance Table
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Figure 3: Bivariate plot of smoothed KBneat total and anchor distributions.
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Model 1: f ~ `1.0` + `0.1`
Model 2: f ~ `1.0` + `0.1` + `2.0` + `0.2`
Model 3: f ~ `1.0` + `0.1` + `2.0` + `0.2` + `3.0` + `0.3`
Model 4: f ~ `1.0` + `0.1` + `2.0` + `0.2` + `3.0` + `0.3` + `1.1`
Resid. Df Resid. Dev AIC BIC Df Deviance Pr(>Chi)

1 478 4574.1 5208.2 5220.8

2 476 2699.7 3337.8 3358.7 2 1874.38 < 2.2e-16

3 474 2551.9 3194.1 3223.3 2 147.78 < 2.2e-16

4 473 333.8 977.9 1011.4 1 2218.12 < 2.2e-16

Finally, with choose = TRUE, the presmoothing function will automatically select the best
fitting model and return a smoothed frequency distribution based on that model. The deviance
statistic for selection is indicated in the argument choosemethod, with options chi-square
("chi"), AIC ("aic"), and BIC ("bic"). For "aic" and "bic", the model with the smallest
value is chosen. For "chi", the most complex model with p-value less than the argument chip
is chosen, with default of 1− (1− .05)(1/(#models− 1)). This automatic model selection is
useful in simulation and resampling studies where unique presmoothing models must be fit
at each replication.

5.4. The equate function

Most of the functionality of the equate package can be accessed via the function equate, which
integrates all of the equating types and methods introduced above. The equivalent-groups
design provides a simple example: besides the X and Y frequency tables, only the equating
type, i.e., the requested equating function, is required.

R> equate(act.x, act.y, type = "mean")

Mean Equating: act.x to act.y

Design: equivalent groups

Summary Statistics:

mean sd skew kurt min max n

x 19.85 8.21 0.38 2.30 1.00 40.00 4329

y 18.98 8.94 0.35 2.15 1.00 40.00 4152

yx 18.98 8.21 0.38 2.30 0.13 39.13 4329

Coefficients:

intercept slope cx cy sx sy

-0.8726 1.0000 20.0000 20.0000 40.0000 40.0000

The nonequivalent-groups design is specified with an equating method, and smoothing with
a smoothmethod.

R> neat.ef <- equate(neat.x, neat.y, type = "equip",

+ method = "frequency estimation", smoothmethod = "log")
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Table 1 lists the equating methods that apply to each equating type in the nonequivalent-
groups design. Levine true-score equating (lts) is performed by including the additional
argument lts = TRUE.

An equating object such as neat.ef contains basic information about the type, method,
design, smoothing, and synthetic population weighting for the equating, in addition to the
conversion table of equated scores and the original frequency distributions given for x and y.
The summary method creates separate tables for all of the frequency distributions utilized in
the equating, and calculates descriptive statistics for each one.

R> summary(neat.ef)

Frequency Estimation Equipercentile Equating: neat.x to neat.y

Design: nonequivalent groups

Smoothing Method: loglinear presmoothing

Synthetic Weighting for x: 0.5025812

Summary Statistics:

mean sd skew kurt min max n

x.count 15.821 6.530 0.579 2.718 2.00 36.00 1655.000

x.smooth 15.821 6.530 0.579 2.718 0.00 36.00 1655.000

x.synth 16.726 6.761 0.438 2.456 0.00 36.00 1646.544

y.count 18.673 6.881 0.205 2.300 3.00 36.00 1638.000

y.smooth 18.673 6.881 0.205 2.300 0.00 36.00 1638.000

y.synth 17.742 6.805 0.338 2.413 0.00 36.00 1646.544

yx.obs 16.834 6.594 0.475 2.621 2.19 36.29 1655.000

xv.count 5.106 2.377 0.411 2.765 0.00 12.00 1655.000

xv.smooth 5.106 2.377 0.411 2.765 0.00 12.00 1655.000

xv.synth 5.481 2.444 0.259 2.565 0.00 12.00 1646.544

yv.count 5.863 2.452 0.107 2.507 0.00 12.00 1638.000

yv.smooth 5.863 2.452 0.107 2.507 0.00 12.00 1638.000

yv.synth 5.481 2.444 0.259 2.565 0.00 12.00 1646.544

The equate function can also be used to convert scores from one scale to another based on
the function defined in a previous equating. For example, scores on Y for a new sample of
examinees taking KBneat form X could be obtained.

R> cbind(newx = c(3, 29, 8, 7, 13),

+ yx = equate(c(3, 29, 8, 7, 13), y = neat.ef))

newx yx

[1,] 3 3.276225

[2,] 29 29.814745

[3,] 8 8.696398

[4,] 7 7.614016

[5,] 13 14.125088
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Here, the argument y passed to equate is the frequency estimation equipercentile equating
object from above, which is an object of class ’equate’. Since the equating function from
neat.ef relates scores on X to the scale of Y , anchor test scores are not needed for the
examinees in newx. This feature provides a quick way to convert a score vector of any
size from X to Y . Because this feature does not rely on the discrete concordance table
(i.e., conversion table) within the equating output, it can also be utilized with scores on X
that were not specified in the original equating, for example, non-integer values on X. The
discrete concordance table can also be obtained. For some equating designs and methods, the
concordance table will additionally include analytic standard errors.

R> head(neat.ef$concordance)

scale yx

1 0 0.04288325

2 1 1.11109348

3 2 2.18987042

4 3 3.27622528

5 4 4.36895117

6 5 5.46596150

Finally, composite linkings are created using the composite function. For example, the
identity and Tucker linear functions equating neat.x to neat.y could be combined as a
weighted average.

R> neat.i <- equate(neat.x, neat.y, type = "ident")

R> neat.lt <- equate(neat.x, neat.y, type = "linear",

+ method = "tucker")

R> neat.comp <- composite(list(neat.i, neat.lt), wc = .5,

+ symmetric = TRUE)

R> plot(neat.comp, addident = FALSE)

neat.comp represents what Kim, von Davier, and Haberman (2008) refer to as synthetic linear
linking. The argument symmetric = TRUE is used to adjust the weighting system so that the
resulting function is symmetric. Figure 5 shows the composite line in relation to the identity
and linear components.

5.5. Linking with different scale lengths and item types

Procedures for linking scales of different lengths and item types are demonstrated here using
PISA data. A frequency table containing four clusters, or item sets, from the PISA reading
test was created above as pisa. This frequency table combines total scores on two item sets
to create one form, R3R6, and total scores on two other item sets to create another form,
R5R7. Because the same group of examinees took all of the item sets, the forms are contained
within a single bivariate frequency table.

The two forms differ in length and item type. R3R6 contains 30 items, one of which has a max-
imum possible score of 2, and the remainder of which are scored dichotomously. This results in
a score scale ranging from 0 to 31. However, 14 of the 30 items in R3R6 were multiple-choice,
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Figure 5: Identity, Tucker linear, and a composite of the two functions for equating KBneat.
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mostly with four response options. The remaining items were either constructed-response or
complex multiple-choice, where examinees were unlikely to guess the correct response. Thus,
the lowest score expected by chance for R3R6 is 14/4 = 3.5. R5R7 contains 29 items, all of
which are scored dichotomously. Eight of these items are multiple-choice with four response
options and the remainder are constructed-response or complex multiple-choice, resulting in
a lowest expected chance score of 8/4 = 2. The summary statistics above show that, despite
having a slightly smaller score scale, the mean for R5R7 is slightly higher than for R3R5.

Results for linking R3R6 to R5R7 are compared here for five linking types: identity, mean,
linear, circle-arc, and equipercentile with loglinear presmoothing (using the default degrees).
By default, the identity linking component of each linear function is based on the minimum
and maximum possible points for each scale, that is, (0, 0) and (31, 29). The low points were
modified to be (3.5, 2) to reflect the lowest scores expected by chance.

R> pisa.i <- equate(pisa, type = "ident", lowp = c(3.5, 2))

R> pisa.m <- equate(pisa, type = "mean", lowp = c(3.5, 2))

R> pisa.l <- equate(pisa, type = "linear", lowp = c(3.5, 2))

R> pisa.c <- equate(pisa, type = "circ", lowp = c(3.5, 2))

R> pisa.e <- equate(pisa, type = "equip", smooth = "log",

+ lowp = c(3.5, 2))

R> plot(pisa.i, pisa.m, pisa.l, pisa.c, pisa.e, addident = FALSE,

+ xpoints = pisa, morepars = list(ylim = c(0, 31)))

The identity, mean, linear, circle-arc, and equipercentile linking functions are plotted in Fig-
ure 6. With a single-group design the linking lines can be plotted over the observed total
scores for each form. In this way, the results can be compared in terms of how well each link-
ing captures the observed difficulty difference from R3R6 to R5R7. Based on the scatterplot
in Figure 6, scores on R5R7 tend to be higher, but this difference is not linear across the
score scale. Instead, the difficulty difference appears curvilinear. Circle-arc linking appears
to underestimate this nonlinearity, whereas equipercentile linking appears to estimate it well.

5.6. Linking with multiple anchors and covariates

The PISA data are used here to demonstrate linking with multiple anchor tests. As noted
above, the PISA data come from a cluster rotation design, where different groups of students,
organized by test booklet, saw different clusters of math, reading, and science items. Data
from booklet 4 are used here to create two pseudo forms for a NEAT design with an external
covariate. The unique reading items for each form come from clusters R3 and R4, the anchor
comes from reading cluster R2, and the covariate from science cluster S2.

R> pisa.x <- freqtab(totals$b4[1:200, c("r3a", "r2", "s2")],

+ scales = list(0:15, 0:17, 0:18))

R> pisa.y <- freqtab(totals$b4[201:400, c("r4a", "r2", "s2")],

+ scales = list(0:16, 0:17, 0:18))

Note that the first 200 students taking booklet 4 are used in pisa.x and the second 200
students are in pisa.y. One student in pisa.x had missing data and was excluded.

If multiple anchors and/or covariates are contained within a frequency table, they are auto-
matically used by the equate function for any methods that support multi-anchor equating,
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Figure 6: Five functions linking R3R6 to R5R7.
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and they are ignored for methods that do not support them. The following code conducts
linking with covariates using the nominal weights, Tucker, and frequency estimation methods.

R> pisa.mnom <- equate(pisa.x, pisa.y, type = "mean",

+ method = "nom")

R> pisa.mtuck <- equate(pisa.x, pisa.y, type = "linear",

+ method = "tuck")

R> pisa.mfreq <- equate(pisa.x, pisa.y, type = "equip",

+ method = "freq", smooth = "loglin")

Single-anchor linking can also be performed by removing the science test from each frequency
table. The margin function from the equate package is used here to extract only the bivariate
distributions for the total and reading test anchor scales.

R> pisa.snom <- equate(margin(pisa.x, 1:2), margin(pisa.y, 1:2),

+ type = "mean", method = "nom")

R> pisa.stuck <- equate(margin(pisa.x, 1:2), margin(pisa.y, 1:2),

+ type = "linear", method = "tuck")

R> pisa.sfreq <- equate(margin(pisa.x, 1:2), margin(pisa.y, 1:2),

+ type = "equip", method = "freq", smooth = "loglin")

Figure 7, based on the code below, compares the single-anchor functions (solid lines) with the
multi-anchor functions for each method (dashed lines).

R> plot(pisa.snom, pisa.stuck, pisa.sfreq,

+ pisa.mnom, pisa.mtuck, pisa.mfreq,

+ col = rep(rainbow(3), 2), lty = rep(1:2, each = 3))

5.7. Bootstrapping

All but the identity linking and equating functions estimate a statistical relationship between
score scales. Like any statistical estimate, equated scores are susceptible to bias and random
sampling error, for example, as defined in Appendix D. Standard error (SE), bias, and root
mean square error (RMSE) can be estimated in the equate package using empirical and
parametric bootstrapping.

With the argument boot = TRUE, the equate function will return bootstrap standard errors
based on sample sizes of xn and yn taken across reps = 100 replications from x and y. Indi-
viduals are sampled with replacement, and the default sample sizes xn and yn will match those
observed in x and y. Equating is performed at each replication, and the estimated equating
functions are saved. Bias and RMSE can be obtained by including a vector of criterion
equating scores via crit. Finally, the matrix of estimated equatings at each replication can
be obtained with eqs = TRUE.

Parametric bootstrapping involves resampling as described above, but from a smoothed score
distribution that is assumed to produce more reliable results with small samples (Kolen and
Brennan 2014). In simulation studies this smoothed distribution is sometimes treated as a
pseudo-population. Parametric bootstrapping is performed within the equate function by
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providing the optional frequency distributions xp and yp. These simply replace the sam-
ple distributions x and y when the bootstrap resampling is performed. Additionally, the
bootstrap function can be used directly to perform multiple equatings at each bootstrap
replication. SE, bias, and RMSE can then be obtained for each equating function using the
same bootstrap data.

Note that the number of bootstrap replications, specified via the reps argument, can impact
the stability of the results, with error estimates varying noticeably for replications below 100.
Bootstrapping studies vary widely in the number of replications utilized. It is recommended
that no fewer than 100 be used. For more stable results, 500 to 1000 replications may be
necessary, as computing time permits.

Parametric bootstrapping using the bootstrap function is demonstrated here for eight equat-
ings of form X to Y in KBneat: Tucker and chained mean, Tucker and chained linear, fre-
quency estimation and chained equipercentile, and Tucker and chained-linear circle-arc. Iden-
tity equating is also included. Smoothed population distributions are first created. Based on
model fit comparisons, loglinear models were chosen to preserve 4 univariate and 2 bivariate
moments in the smoothed distributions of X and Y . Plots are shown in Figures 8 and 9.

R> neat.xp <- presmoothing(neat.x, "loglinear", degrees = list(4, 2))

R> neat.xpmat <- presmoothing(neat.x, "loglinear", degrees = list(4, 2),

+ stepup = TRUE)

R> neat.yp <- presmoothing(neat.y, "loglinear", degrees = list(4, 2))

R> neat.ypmat <- presmoothing(neat.y, "loglinear", degrees = list(4, 2),

+ stepup = TRUE)

R> plot(neat.x, neat.xpmat)

R> plot(neat.y, neat.ypmat)

Next, the number of replications is set to 100, bootstrap sample sizes are set to 100 for X and
Y , and a criterion equating function is defined, for demonstration purposes, as the chained
equipercentile equating in the population.

R> set.seed(131031)

R> reps <- 100

R> xn <- 100

R> yn <- 100

R> crit <- equate(neat.xp, neat.yp, "e", "c")$conc$yx

Finally, to run multiple equatings in a single bootstrapping study, the arguments for each
equating must be combined into a single object. Here, each element in neat.args is a named
list of arguments for each equating. This object is then used in the bootstrap function, which
carries out the bootstrapping.

R> neat.args <- list(i = list(type = "i"),

+ mt = list(type = "mean", method = "t"),

+ mc = list(type = "mean", method = "c"),

+ lt = list(type = "lin", method = "t"),

+ lc = list(type = "lin", method = "c"),

+ ef = list(type = "equip", method = "f", smooth = "log"),
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Figure 8: Smoothed population distributions for X used in parametric bootstrapping.
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Figure 9: Smoothed population distributions for Y used in parametric bootstrapping.
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+ ec = list(type = "equip", method = "c", smooth = "log"),

+ ct = list(type = "circ", method = "t"),

+ cc = list(type = "circ", method = "c", chainmidp = "lin"))

R> bootout <- bootstrap(x = neat.xp, y = neat.yp, xn = xn, yn = yn,

+ reps = reps, crit = crit, args = neat.args)

A plot method is available for visualizing output from the bootstrap function, as demon-
strated below. Figures 10 through 13 contain the mean equated scores across replications for
each method, the SE, bias, and RMSE. In Figure 10, the mean equated scores appear to be
similar across much of the scale. Chained mean equating (the light orange line) consistently
produces the highest mean equated scores. Mean equated scores for the remaining meth-
ods fall below those of chained mean and above those of identity equating (the black line).
In Figure 11, standard errors tend to be highest for the equipercentile methods, especially
chained equipercentile (the dark blue line), followed by the linear methods (green lines). SE
are lowest for the circle-arc methods (purple and pink), especially in the tails of the score scale
where the identity function has more of an influence. In Figure 12, bias is highest for chained
mean equating, and is negative for the identity function; otherwise, bias for the remaining
methods falls roughly between -0.5 and 0.5. Finally, in Figure 13, RMSE tends to be highest
for chained mean and the linear and equipercentile methods. RMSE for Tucker mean and
the circle-arc methods tended to fall at or below 0.5.

R> plot(bootout, addident = FALSE, col = c(1, rainbow(8)))

R> plot(bootout, out = "se", addident = FALSE,

+ col = c(1, rainbow(8)), legendplace = "top")

R> plot(bootout, out = "bias", addident = FALSE, legendplace = "top",

+ col = c(1, rainbow(8)), morepars = list(ylim = c(-.9, 3)))

R> plot(bootout, out = "rmse", addident = FALSE, legendplace = "top",

+ col = c(1, rainbow(8)), morepars = list(ylim = c(0, 3)))

A summary method is also available for output from the bootstrap function. Mean SE,
bias, and RMSE, and weighted and absolute means, when applicable, are returned for each
equating. Weighted means are calculated by multiplying the error estimate at each score point
with the corresponding relative frequency in X, and absolute means are based on absolute
error values. The output below summarizes what is shown in Figures 10 through 13: mean SE
is lowest for identity and the circle-arc methods; mean bias is low for a few different methods
but, in terms of absolute bias, it is lowest for chained equipercentile; and mean RMSE is
lowest for Tucker circle-arc. Overall, Tucker circle-arc outperforms the other methods in terms
of error reduction, with mean RMSE of 0.39. Mean RMSE for the remaining methods are
between 0.43 (chained circle-arc) and 1.56 (chained mean).

R> round(summary(bootout), 2)

se w.se bias a.bias w.bias wa.bias rmse w.rmse

i 0.00 0.00 -0.68 0.68 -0.02 0.02 0.68 0.02

mt 0.47 0.01 0.31 0.31 0.01 0.01 0.58 0.01

mc 0.67 0.02 1.40 1.40 0.04 0.04 1.56 0.04

lt 0.76 0.02 0.37 0.37 0.01 0.01 0.88 0.02
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lc 0.80 0.02 0.06 0.20 0.00 0.00 0.83 0.02

ef 0.88 0.02 0.12 0.24 0.01 0.01 0.92 0.02

ec 0.92 0.02 -0.04 0.12 0.00 0.00 0.93 0.02

ct 0.31 0.01 -0.03 0.18 0.00 0.00 0.39 0.01

cc 0.32 0.01 -0.23 0.23 0.00 0.00 0.43 0.01

6. Summary

This paper presents some basic concepts and procedures for observed-score linking and equat-
ing of measurement scales. Linear and nonlinear functions are discussed, and various methods
for applying them to nonequivalent groups are reviewed. Finally, the equate package is intro-
duced, and its basic functionality is demonstrated using three data sets.

The equate package is designed to be a resource for teaching, research, and applied observed-
score linking and equating procedures. A simple interface, via the equate function, can be
used to control most of the necessary functionality, including data preparation, presmooth-
ing, linking and equating, and managing output. Summary and plot methods facilitate the
comparison of results. Future versions of the equate package will be extended to support ad-
ditional procedures, for example, postsmoothing (e.g., Kolen 1991), nonlinear continuization
(von Davier et al. 2004), additional asymptotic standard errors of equating, and new linking
and equating functions as they are developed.
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A. Equating methods for multiple anchors

The assumptions presented above for the Tucker, nominal weights, and frequency estimation
methods are extended here to the total score distributions XP and YQ and two or more anchor
tests V1, V2, . . . , Vm.

A.1. Tucker

Tucker equating with multiple anchor tests involves a linear regression of total scores X or
Y on a matrix of anchor scores V. For population P taking X, the regression model can be
expressed in matrix notation as

xP = δX + VPγX + eXP
, (47)

where xP is an n × 1 column vector of total scores on X for n individuals, the scalar δX
is the intercept, VP is an n × m matrix containing scores across m anchor tests, γX is an
m × 1 column vector of regression slopes, and eXP

is the n × 1 column vector of residuals.
Equation (47) is used here to derive the unobserved components of Equations (37) and (39)
as functions of γX and the observed means and standard deviations on X and V. Similar
procedures are used to derive the unobserved values for Y in P .

Note that in Equation (47) there are no population subscripts on the regression coefficients
δX and γX . The Tucker method assumes that these coefficients are the same in P as in Q.
As a result, the total score means for X can be expressed as

µXP
= δX + µ′VP

γX (48)

and

µXQ
= δX + µ′VQ

γX , (49)

where the means of eXP
and eXQ

are 0. The unobserved mean on X for Q can then be
obtained through substitution and some rearranging as

µXQ
= δX + µ′VQ

γX

= µXP
− µ′VP

γX + µ′VQ
γX

= µXP
+ (µ′VQ

− µ′VP
)γX . (50)

The unobserved mean on Y for P is obtained through a similar process as

µYP
= µYQ

+ (µ′VP
− µ′VQ

)γY . (51)

These values can then be used in Equations (33) and (34) to estimate µX and µY .

http://dx.doi.org/10.1007/b97446
http://dx.doi.org/10.18637/jss.v035.i12
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Next, it is assumed that the residual variance for each regression model is equal across pop-
ulations. With σ2EX

representing the residual variance for both P and Q, assuming these
variances are equal, the total score variances on X can be expressed as

σ2XP
= γ′XΣVP

γX + σ2EX
(52)

and
σ2XQ

= γ′XΣVQ
γX + σ2EX

, (53)

where ΣVP
and ΣVQ

are the m×m variance-covariance matrices for the anchor tests, and γ′X
is the row vector of m anchor test slopes. The unobserved variance on X for Q can then be
obtained through substitution and some rearranging as

σ2XQ
= γ′XΣVQ

γX + σ2EX

= γ′XΣVQ
γX + σ2XP

− γ′XΣVP
γX (54)

= σ2XP
+ γ′X(ΣVQ

−ΣVP
)γX .

The unobserved variance on Y for P can be obtained similarly as

σ2YP
= σ2YQ

+ γ′Y (ΣVP
−ΣVQ

)γY . (55)

Equations (54) and (55) can then be used within Equations (39) and (40) to obtain σ2X and
σ2Y . These derivations for the Tucker method are simple extensions of equations presented for
a single anchor (e.g., Kolen and Brennan 2014). Tucker equating with multiple anchors was
first discussed by Gulliksen (1950).

A.2. Nominal weights

Nominal weights mean equating with a single anchor (Babcock et al. 2012) can also be ex-
tended to accommodate multiple anchor tests. Test X is presented as an example. The
column vector of total scores xP is first expressed as

xP =


µxP 1KX

µxP 2KX
...

µxPnKX

 = µxP
KX , (56)

where xP represents an item response on X, µxP is a mean item score or proportion correct
taken across all items for an individual, and µxP

is a column vector of mean proportion correct
for n individuals. Total scores on the anchor tests are expressed similarly as

VP =


µvP 11KV1 µvP 12KV2 · · · µvP 1mKVm

µvP 21KV1 µvP 22KV2 · · · µvP 2mKVm

...
...

. . .
...

µxPn1KV1 µvPn2KV2 · · · µvPnmKVm



=


µvP 11 µvP 12 · · · µvP 1m

µvP 21 µvP 22 · · · µvP 2m
...

...
. . .

...
µxPn1 µvPn2 · · · µvPnm



KV1 0 · · · 0

0 KV2 · · · 0
...

...
. . .

...
0 0 · · · KVm


= µvP KV , (57)
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where vP represents an item response on V , µvP is an n × m matrix of mean proportion
corrects for n individuals on m anchor tests, and KV is a diagonal matrix containing the
numbers of items on each anchor test.

Next, the mean proportion correct versions of xP and VP in Equations (56) and (57) are used
to obtain the regression slopes in Equation (47). With xP and VP expressed in deviation
scores, solving Equation (47) for γX results in the following familiar equation:

γX = (V′PVP )−1V′PxP . (58)

Substituting Equations (56) and (57) into (58) then results in

γX = (K′V µ
′
vP
µvP KV )−1K′V µ

′
vP
µxP

KX . (59)

The nominal weights method for a single anchor test assumes that, after accounting for the
number of items on the total and anchor tests, mean performance on each test is equal in terms
of proportion correct. This assumption is simply extended here to multiple anchors, where
mean performance in terms of proportion correct is assumed to be equal for each individual
across all anchors and the total test.

Postmultiplying µxP
by a row vector of 1s with length m, denoted by 1′, produces an n×m

matrix where each column contains the mean proportion correct for each individual on X.
Under the assumption of equivalent mean proportion correct, µxP

1′ = µvP , which leads to

γX1′ = (K′V µ
′
vP
µvP KV )−1K′V µ

′
vP
µxP

1′KX

= (K′V µ
′
vP
µvP KV )−1K′V µ

′
vP
µvPKX . (60)

Postmultiplying by KV K−1V then reduces Equation (60) to

γX1′ = (K′V µ
′
vP
µvP KV )−1K′V µ

′
vP
µvP KV K−1V KX

= K−1V KX , (61)

which can be simplified further by postmultiplying by a column vector of length m containing
only 1

m , i.e., 1 1
m , as

γX1′1
1

m
= K−1V 1

KX

m

γX =


KX/(KV1m)
KX/(KV2m)

...
KX/(KVmm)

 . (62)

Equation (62), and the equivalent for Y , provide the nominal weights γ terms needed to
estimate the unobserved means in (50) and (51).

A.3. Frequency estimation

When using frequency estimation with multiple anchors, the multivariate score distribution
of X and V1, V2, . . . , Vm for the synthetic population is obtained as

Pr(x, v1, v2, . . . , vm) = wP PrP (x, v1, v2, . . . , vm) + wQ PrQ(x, v1, v2, . . . , vm), (63)
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and the distribution of Y and V is obtained similarly as

Pr(y, v1, v2, . . . , vm) = wP PrP (y, v1, v2, . . . , vm) + wQ PrQ(y, v1, v2, . . . , vm). (64)

Like in the single anchor case, the distributions PrQ(x, v1, v2, . . . , vm) and PrQ(y, v1, v2, . . . , vm)
are unavailable, and must be estimated indirectly. This estimation is made possible by as-
suming that the conditional distributions of X given the anchors and Y given the anchors are
population invariant. This results in

PrQ(x, v1, v2, . . . , vm) =
PrP (x, v1, v2, . . . , vm)

PrP (v1, v2, . . . , vm)
PrQ(v1, v2, . . . , vm), (65)

and

PrP (y, v1, v2, . . . , vm) =
PrQ(y, v1, v2, . . . , vm)

PrQ(v1, v2, . . . , vm)
PrP (v1, v2, . . . , vm), (66)

which are used in Equations (63) and (64) to obtain the multivariate synthetic distributions.
Note that Equations (65) and (66) are simple generalizations of equations for equating with
one anchor (e.g., Kolen and Brennan 2014; von Davier et al. 2004) and equating with two
(Moses, Deng, and Zhang 2010) and three anchors (Angoff 1984).

B. Chained linear equating

Chained linear equating involves two separate linear functions. In the equations below the
anchor test V is distinguished by population (P taking form X and Q taking form Y ), though
the items on V do not change. The first linear function in slope-intercept form converts X to
the scale of VP :

linkVP
(x) =

σVP

σX
x− σVP

σX
µX + µVP

. (67)

The second function converts VQ to the scale of Y :

linkYQ
(vQ) =

σY
σVQ

vQ −
σY
σVQ

µVQ
+ µY . (68)

These functions are combined, where the first, linkVP
(x), takes the place of vQ in the second

to obtain:

lchainY (x) =
σY
σVQ

[
σVP

σX
x− σVP

σX
µX + µVP

]
− σY
σVQ

µVQ
+ µY , (69)

or, in slope-intercept form, after some rearranging:

lchainY (x) =
σY
σVQ

σVP

σX
x+

σY
σVQ

[
µVP
− σVP

σX
µX − µVQ

]
+ µY . (70)

Finally, for chained mean equating this reduces to:

mchainY (x) = x+ µVP
− µX − µVQ

+ µY . (71)

When used to obtain the midpoint coordinates in circle-arc equating, the chained method
reduces even further, since x is µX . Here, the linear and mean functions simplify to

lchainY (µX) =
σY
σVQ

µVP
− σY
σVQ

µVQ
+ µY , (72)
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and
mchainY (µX) = µVP

− µVQ
+ µY . (73)

C. Loglinear presmoothing

Polynomial loglinear modeling is a flexible procedure for smoothing distributions of various
shapes to varying degrees. The structure of a distribution can either be maintained or ignored
depending on the complexity of the model, where the degree of the polynomial term included
determines the moment of the raw score distribution to be preserved. For example, a model
with terms to the first, second, and third powers would create a smoothed distribution which
matches the raw in mean, variance, and skewness. As shown below, the log of the expected
relative frequency p for score point x is modeled as a function of a normalizing constant (the
intercept β0) and the observed-score value to the first, second, and third powers:

log(p) = β0 + β1x
1 + β2x

2 + β3x
3. (74)

Indicator variables may also be included to preserve specific moments for subsets of score
points. In the next model, the mean and variance of a sub-distribution are preserved, in
addition to the first three moments of the full distribution. When S = 1, score point x is
included in this sub-distribution, and when S = 0, it is ignored:

log(p) = β0 + β1x
1 + β2x

2 + β3x
3 + β0SS + β1Sx

1S + β2Sx
2S. (75)

An acceptable degree of smoothing is typically achieved by comparing multiple models with
different numbers of polynomial terms based on their fit to the data (Kolen and Brennan 2014).
The loglinear function in equate is a wrapper for the glm function in the stats package. It
can be used to fit and compare nested models up to specified maximum polynomial terms.
For additional details, see the presmoothing help file.

D. Error in equating

In simulation and resampling studies, equating functions are typically compared based on
both random and systematic error (or “differences”), where the first is estimated by the
standard error of equating SE and the second by the bias. In the equate package, error is
estimated in terms of the criterion equating function linkY (x) and estimate l̂inkY r(x) for
samples r = 1, 2, . . . , R. Systematic error is estimated as

bias = l̂inkY (x)− linkY (x), (76)

where

l̂inkY (x) =
1

R

R∑
r=1

l̂inkY r(x) (77)

is the average estimated equated score over R samples. The random error is estimated as

SE =

√√√√ 1

R

R∑
r=1

[l̂inkY r(x)− l̂inkY (x)]2. (78)
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Combining both systematic error and random error, the root mean squared error is estimated
as

RMSE =
√
bias2 + SE2. (79)
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