
Unpublished Manuscript , 1–16 DOI: see foootnote

18 September 2009

Confidence Intervals that Match Fisher’s Exact or Blaker’s Exact Tests1

Michael P. Fay

National Institute of Allergy and Infectious Diseases,

Bethesda, MD 20892-7609, U.S.A.

email: mfay@niaid.nih.gov

Summary:

The two-sided Fisher’s exact test is one of the most common tests for testing independence in a 2

by 2 table, or equivalently, of testing that the odds ratio is different from one. We desire a confidence

interval on the odds ratio that contains the null odds ratio if and only if the test fails to reject the

null. Unfortunately, the confidence set created by inverting the family of two-sided Fisher’s exact

tests may consist of more than one interval. Even if we create the smallest interval that contains this

confidence set, the resulting “matching” interval is not the usual confidence interval reported for

odds ratios conditional on the marginals of the table. This usual interval matches with a different

implementation of Fisher’s exact test, the typically less powerful but more directionally balanced

test that rejects if the minimum of two one-sided Fisher’s exact tests reject at one half the nominal

significance level. We discuss these two exact two-sided tests and a third one suggested by Blaker

(2000, Canadian Journal of Statistics, 783-798), and study the matching confidence intervals for each

test. The R package exact2x2 is provided to calculate all three tests and their matching intervals.
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1. Introduction

We begin with a motivating data example. Lim, et al (2009) explore whether a certain genetic

modification (CCR5 Defficiency) effects the probability of having clinical symptoms given

infection with West Nile virus. They first show that there was a highly significant effect on the

number of symptoms. Then Lim, et al (2009) present a table with 16 specific symptoms, and

test each symptom for significance using a two-sided Fisher’s exact test based on a genetic

recessive model. They also show odds ratios with the 95% confidence limits based on the

asymptotic normality of the log transformed odds ratio (see e.g., Agresti, 1990). We show 3

of the 16 symptoms in Table 1. Notice that Tremors where not significant at the 0.05 level by

Fisher’s exact test, but the 95% confidence interval does not contain 1 implying a significant

effect. Thus, the same 2 × 2 table for a specific symptom gives conflicting indications of

significance.

One might think that using the exact confidence intervals on the odds ratios would solve

this problem; however, if the usual exact confidence intervals are used, we obtain conflicting

significance for two other symptoms in the table, Vomitting/Diarrehea and Abdominal

Pain. Thus, in this case the asymptotic confidence intervals have fewer conflicts with the

two-sided Fisher’s exact p-values than the usual exact ones. This usual exact confidence

interval was derived by Cornfield (1956, see also Agresti and Min, 2001) and will be called

the exact conditional tail interval (ECTI). It is the only exact confidence interval for this

situation of which we are aware from standard statistical software; in particular, it is the

only one given by SAS (version 9.2, Proc Freq), StatXact (StatXact 8 Procs), or in the

base implementation of R (version 9.1, see fisher.test). The exact2x2 R package, developed

concurrently with this paper, allows other exact confidence intervals, and here we discuss

the theoretical implications, algorithms, and bounds on those other intervals.

Theoretically, a simple way to avoid these conflicts is to define a confidence set by inverting
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the family of hypothesis tests (see e.g., Casella and Berger, 2002, p. 431). Applying this idea

to the example, we consider the family of hypothesis test where each member tests the null

hypothesis H0 : β = β0 for a different odds ratio β0. Because Fisher’s exact test can be

extended for β0 ̸= 1, the 95% confidence set is easily defined as the set of all β0 for which

the resulting p-value from the two-sided extended Fisher’s exact test fails to reject at the

0.05 level. The problem is that the resulting confidence set may be the union of two disjoint

intervals. Even if we define the “matching” confidence interval as the smallest one that

contains all members of the confidence set of the inversion, the calculation of this interval is

not straightforward. That calculation is a main topic of this paper.

[Table 1 about here.]

Blaker (2000) and Agresti and Min (2001) both give excellent discussions of the formation

and properties of two-sided confidence intervals for all kinds of discrete data in many more

situations than the 2 × 2 table, but neither paper explicitly examines the confidence set

that is an inversion of Fisher’s two-sided exact test. We do that in this paper. Additionally,

we apply the general acceptability function of Blaker (2000) to create an exact test with

confidence intervals for the 2× 2 table, which we call Blaker’s exact test.

Blaker (2000) gives an algorithm for calculating confidence intervals using the acceptability

function applied to a single binomial parameter, but we show here that the bounds on

the precision from algorithms of that type are not clear. Baptista and Pike (1977) give

an algorithm for calculating the confidence interval that is the inversion of the two-sided

Fisher’s exact test, although they did not mention the cases when the confidence set is not

an interval, and their algorithm will have similar precision ambiguity. In this paper, we give

an algorithm for which we may calculate the confidence interval to within some prespecified

tolerance level.

Here is an outline of the paper. In Section 2 we introduce notation and outline the general
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problem. In Section 3 we review three different exact tests for this situation. Section 4

we describe the difficulty in getting precision on the matching confidence intervals for two

of those three tests, and propose an algorithm. In Section 5 we explore the extent of the

conflicting inferences problem described above for general 2 × 2 tables, and show that it is

not a rare problem. In Section 6 we return to the application of Table 1 and compare the

three tests.

2. Outline of the Problem

For the 2× 2 table, we use the model with X = [X0, X1], where Xi ∼ Binomial(ni, πi) and

are independent of each other and the ni are fixed and known. There are other models for the

2× 2 table but for most it is reasonable to condition on the marginals so that inferences can

be calculated from Fisher’s noncentral hypergeometric distribution as we do here (see e.g.,

Lehmann and Romano, 2005, or Yates, 1984). Unconditional tests are not discussed in this

paper, and for a comparison of the two types of tests see Agresti (2001) and the references

cited there. For this paper the parameter of interest is the odds ratio, β = π1(1−π0)
π0(1−π1)

, and the

nuisance parameter is ψ = π0 + π1. The distribution of X is completely described by the

parameter vector θ = [β, ψ].

We are interested in confidence intervals about β, so we consider the family of two-sided

hypothesis tests indexed by β0 where the hypotheses are:

H0 : β = β0

H1 : β ̸= β0.

The usual application only considers the case where β0 = 1. In Section 3 we discuss three

families of tests associated with these hypotheses. For any of these three families, let pβ0(x)

be the two-sided p-value associated the null H0 : β = β0, where we reject when pβ0(x) 6 α.

A conceptually simple way to create confidence sets from any family is to invert the tests,
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so that the 100(1− α)% confidence set is (see e.g., Casella and Berger, 2002):

C(x, 1− α) = {β : pβ(x) > α}. (1)

The confidence set given by equation 1 is said to be strongly consistent with the family of

tests, since the 100(1−α)% confidence interval does not contain β0 if and only if the α-level

test corresponding to H0 : β = β0 rejects. We call this confidence set the inversion of the

family of tests. Since the inversion is not guaranteed to be an interval (see Blaker, 2000 or

Section 4.1), following Blaker (2000) we use the smallest interval which contains all of the

parameter values of the inversion (i.e., it fills in the holes of the inversion if they exist). We

call this interval the matching confidence interval to the family of tests (or to one member

of that family).

3. Three Two-Sided Exact Conditional Tests for 2× 2 Tables

3.1 Preliminaries

Each of the null hypotheses in the family of hypotheses described by equation 1 is a point

hypothesis in terms of β. If we condition on X0 +X1, the sufficient statistic for ψ, then we

obtain a likelihood without ψ terms:

Pr[X1 = x|β] = fβ(x) =

 n1

x


 n0

k − x

 βx

xmax∑
i=xmin

 n1

i


 n0

k − i

 βx

, for x ∈ [xmin, xmax],

where k = x0+x1, xmin = max(0, n0−k) and xmax = min(k, n1). This distribution is Fisher’s

non-central hypergeometric distribution (see e.g., Fog, 2008).

Once we condition on the marginals, the table is completely described by x1, and smaller

values of x1 suggest smaller odds ratios. Since we are only considering non-randomized tests,

there is only one commonly used exact one-sided test, the one-sided Fisher’s exact test, and
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it is based on the ordering of x1. The exact versions of other non-randomized historical one-

sided tests are constructed this way and are all equivalent (see Davis, 1986 or StatXact 8

Procs Manual, 2007).

3.2 Central Fisher’s Exact Test

The one-sided Fisher’s exact tests have p-values of either

p
(lte)
β (x) =

∑
i:i6x1

fβ(i)

or (2)

p
(gte)
β (x) =

∑
i:i>x1

fβ(i),

and we can create a two-sided test with p-value equal to

pβ(x) = min
[
1, 2 ∗min

{
p
(lte)
β (x), p

(gte)
β (x)

}]
(3)

This doubling of the one-sided p-value is a common and simple method for defining the

two-sided p-value (Gibbons and Pratt, 1975).

The inversion of this test is an interval because the one-sided p-values given in equations 2

are unimodal in β. Unimodality follows from the monotonicity in β of each side (see the

Appendix of Mehta, Patel, and Gray, 1985) and equation 3. The matching interval is the

exact conditional tail interval (ECTI) mentioned previously. Specifically, let the ECTI be

C(x, 1− α) = [L(x1), U(x1)] which are the solutions to (see e.g., StatXact 8 Procs Manual):

L(x1) =


0 if x1 is xmin

{β :
∑

i:i>x1
fβ(i) = α/2} otherwise

(4)

U(x1) =


∞ if x1 is xmax

{β :
∑

i:i6x1
fβ(i) = α/2} otherwise

This is a central interval meaning that we can bound the probability that the true β is less

than the lower interval by α/2 and similarly for the upper interval. Because of this property
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we call the test associated with the pβ(x) of equation 3 the central Fisher’s exact test. The

test is also known as twice the one-sided Fisher’s exact test.

3.3 Two-sided Fisher’s Exact Test

The usual p-value associated with the two-sided Fisher’s exact test is not the central one

mentioned in the previous subsection but,

pβ(x) =
∑

i:fβ(i)6fβ(x1)

fβ(i) (5)

This p-value uses the “principal of minimum likelihood”, which has little formal motivation

and can lead to absurd inferences in some situations (Gibbons and Pratt, 1975). However,

in the case of the conditional test on the 2 × 2 table, the principle of minimum likelihood

gives reasonable answers because for fixed β the non-central hypergeometric distribution is

unimodal in the x1 values so that the values of x1 in which we fail to reject will always be a

set of consecutive integers (see e.g., Liao and Rosen, 2001).

Based on common current usage (see R help for fisher.test, SAS help for Proc Freq, and

StatXact manual), we will call this test the two-sided Fisher’s exact test, despite the fact

that Fisher himself appeared to prefer the central Fisher’s exact test (Yates, 1984, p. 444).

The inversion of this test may not be an interval, because of the p-value function of

equation 5 may not be unimodal in β (see Section 4 below).

3.4 Blaker’s Exact Test

An alternative method for creating a two-sided p-value is to add to the smaller of the one-

sided p-values “an attainable probability in the other tail which is as close as possible to

the one tailed P-value obtained” (Gibbons and Pratt, 1975). To maximize power, we define

the Blaker p-value (see Blaker, 2000) as the two-sided p-value which adds to the smaller

one-sided one the largest tail probability in the opposite tail which is less than or equal to

the observed tail (see equations 6 or 7). We call the resulting test, Blaker’s exact test. From
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first principles, this is as reasonable if not more reasonable (see Gibbons and Pratt, 1975)

as using the principle of minimum likelihood as is done with Fisher’s two-sided exact test.

In the 2 × 2 table case the two-sided Fisher exact p-values will for many null hypotheses

in the family coincide with the Blaker p-values. When the two p-values do not coincide,

and when the principle of minimum likelihood may lead the two-sided Fisher to add more

probability in the opposite tail than the observed one, it is hard to see how this is desired

over the smaller p-values of Blaker. We know of no commonly used statistical property for

which the two-sided Fisher’s exact test performs better than Blaker’s exact test, and the

greatest reasons for using the former test may be tradition and ease of explanation.

Blaker (2000, see also Blaker and Spjøtvoll, 2000) showed that the p-value described above

can be written in the following way. Let Fβ(x) = Pr[X1 6 x | β], F̄β(x) = Pr[X1 > x | β],

and γ(x, β) = min{Fβ(x), F̄β(x)}, then the p-value (also called the acceptability function)

of Blaker (2000) is

pβ(x) = Pr [γ(X1, β) 6 γ(x1, β)] . (6)

As with the two-sided Fisher’s exact test the inversion of the test is a confidence set which

may not be an interval since pβ(x) of equation 6 is not necessarily unimodal in β.

4. Calculation of Intervals for Non-Unimodal P-value Functions

4.1 Motivation

To show the non-unimodality in β of the p-value function for the two-sided Fisher’s exact

test and Blaker’s exact test, consider an invented example of a 2× 2 table where one group

has 7/262=2.67% (i.e., 7 events out of 262 at risk) while the other group has 30/494=6.07%.

We plot the p-values for the three tests in Figure 1. The confidence set created by inverting

the family of two-sided Fisher’s exact tests is not a confidence interval: the resulting 95%

confidence set is {β : β ∈ (0.177, 0.993) or β ∈ (1.006, 1.014)}. Similar observations have
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been made previously (see Blaker, 2000, Vos and Hudson, 2008). We see that for β0 = 1

for the two-sided Fisher’s exact test the p-value is significant at the 0.05 level, p1(x) =

0.04996, but for slightly larger or smaller β0 the p-value is not significant, p1.01(x) = 0.05006

and p0.99(x) = 0.05005. Blaker’s exact test can also have this problem, although in this

case p1.01(x) = 0.0354 for Blaker’s test. The problem is the non-unimodality of the p-value

function. Note that this non-unimodality is not a problem for the central Fisher’s exact test,

and that is why the ECTI are much easier to calculate and have been the default exact

intervals in standard software.

[Figure 1 about here.]

Blaker (2000) gave a simple algorithm for the calculation of the confidence interval for the

single binomial parameter using his acceptability function. We describe a similar algorithm

pictorially applied to the invented data mentioned above, and here we choose α = 0.0501

to demonstrate a potential problem with the algorithm. The algorithm is to calculate pβ(x)

for different values of β at equal intervals, starting from an extreme value, moving towards

β = 1, and stopping when pβ(x) > α. The points in Figure 2 show the two-sided Fisher’s

exact p-value calculated at 1± j ∗ 0.002, j = 0, 1, 2, . . .. The solid points are the ones above

α. Other p-values measured to the right of the last open circle are below the range of the

vertical axis, so that the largest calculated odds ratio that gives p-values greater than α

is 0.986. The actual upper value of the matching confidence interval is 1.0138 since that is

the largest β0 such that pβ0(x) > α. Thus, although the p-values are measured every 0.002

the error in the upper limit calculated this way is over ten times larger than 0.002 since

1.0138− 0.9860 = 0.0278.

[Figure 2 about here.]
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4.2 Algorithm

First consider the Blaker confidence interval. Recall that pβ(x) for Blaker’s exact test is the

sum of two tails of Fisher’s non-central hypergeometric distribution, the observed tail and

the opposite tail that is closest to but not greater than the observed tail. Note that Fβ(x) is

decreasing in β for all fixed x in {xmin, . . . , xmax − 1} (Mehta, Patel, and Gray, 1985), and

it is increasing in x for 0 < β < ∞ and fixed. Since F̄β(x) = 1− Fβ(x− 1), we have similar

relationships but reversed directions for F̄β(x). Thus, we can write pβ(x) for Blaker’s exact

test as a series of segments, each of which is the sum of an increasing function of β plus a

decreasing function of β. This allows us to calculate bounds on pβ(x).

Here are the details. Let

b(xa, xb) = {β : Fβ(xa) = F̄β(xb)}

with b(x1, xmax + 1) ≡ ∞ and b(xmin − 1, x1) ≡ 0, and let Fβ(x) = 0 when x < xmin and

F̄β(x) = 0 when x > xmax. Then we can write Blaker’s p-value function as

pb(x) =



Fb(x) + F̄b(x1) for b(x− 1, x1) < b 6 b(x, x1);x = xmin, . . . , x1 − 1

1 for b(x1 − 1, x1) 6 b 6 b(x1, x1 + 1)

Fb(x1) + F̄b(x) for b(x1, x) 6 b < b(x1, x+ 1);x = x1 + 1, . . . , xmax

(7)

Figure 3 helps to explain the Blaker p-value.

[Figure 3 about here.]

For calculating bounds on the error in estimating pb(x), we first assume that the error in

calculating Fb(x) and F̄b(x) is small enough that it can be ignored, i.e., it is much smaller

than the desired tolerance of the limits denoted δ. Because of the monotonicity in b of both

Fb(x) and F̄b(x), for all b ∈ (a1, a2) where b(x1, x1+ j) < a1 < a2 6 b(x1, x1+ j+1), we have

P(a1, a2) ≡ Fa1(x1) + F̄a2(x1) 6 pb(x) 6 Fa2(x1) + F̄a1(x1) ≡ P̄ (a1, a2)

We can use these bounds to create an algorithm that can either find the confidence limits
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to within some pre-specified tolerance level, δ, or output bounds on those confidence limits.

Here is an outline of an algorithm to calculate the upper 100(1−α) percent Blaker confidence

limit, say U :

(1) Set i = 1, j = xmax, N = Ndiv, where Ndiv is a positive integer greater than 1.

(2) If x1 = xmax then set U = ∞ and stop. Otherwise, calculate blow = b(x1, j). If Fblow(x1) >

α set U equal to the root, b, where Fb(x1) = α, which can be found using a numeric root

function (e.g., uniroot in R).

(3) Let blow = b(x1, j) and calculate bhi = b(x1, j − 1) using a numeric root function.

(4) If bhi − blow < δ, set U = bhi/2 + blow/2 and stop. Otherwise continue.

(5) If P̄ {blow, bhi} 6 α, decrease j by 1 and go to step (3). If P {blow, bhi} > α, set U = bhi

and stop. Otherwise continue.

(6) Divide up the interval (blow, bhi] intoN pieces where the ith piece is (ai−1, ai] and a0 = blow

and aN = bhi. Calculate P̄ and P for each piece. If all the P̄ values are less than or equal

to α decrease j by 1 and go to step (3). If all the P values are greater than α, set U = bhi

and stop. Otherwise continue.

(7) If any P̄ (aℓ−1, aℓ) > α, set bhi equal to the maximum of any aℓ such that P̄ (aℓ−1, aℓ) > α.

If any P(aℓ−1, aℓ) > α set blow equal to the maximum aℓ of any aℓ such that P(aℓ−1, aℓ) >

α, otherwise blow remains unchanged. Increase N to 2N , and increase i by 1. If i < Imax

go to step (6), if not set U = blow/2 + bhi/2 and output (blow, bhi] as bounds on the limit

and if bhi − blow > δ give a warning that the tolerance level was not reached.

A similar algorithm could be used for the lower confidence limit.

For the matching interval to the two-sided Fisher exact test, we follow the same outline,

except b(xa, xb) is defined as

b(xa, xb) = {β : fβ(xa) = fβ(xb)}.

This works because the non-parametric hypergeometric distribution is unimodal in x1 as can
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be shown by writing the ratio fβ(x)/fβ(x + 1) and showing that it is a monotone function

of x (see e.g., Liao and Rosen, 2001).

5. The Extent of the Non-Matching Problem

In the data example from of Lim, et al (2009, see Table 1), there were 2 out of 16 cases

where the two-sided Fisher’s exact p-value implied different inferences at the 0.05 level than

the ECTI. To see if this is a rare occurrence, we systematically check the frequency of this

problem in this section.

Suppose we are testing H0 : β0 = 1 at the 0.05 level, let Ip be the an indicator of whether

the p-value from a test is less than or equal to 0.05, and let IC be an indicator of whether

the confidence interval does not contain 1 (i.e., implies rejection of H0). Define a mismatch

as any table which has Ip ̸= IC . Let the set of possible 2 × 2 tables for a given n0 and n1

be called an n-set. Within each n-set, we check and see if there are any mismatches, if so we

say that the n-set has a mismatch problem.

First, we consider the situation where for Ip the p-value comes from the two-sided Fisher’s

exact test, and for IC the confidence interval comes from the ECTI. Although this situation

is not recommended, we study it because it appears to be the state of the current readily

available software. We consider the 256 n-sets where n0 and n1 are each in {5, 6, . . . , 20}. Of

these n-sets, 234/256 or 91.4 percent have a mismatch problem. Thus, this problem is not a

rare one.

Now consider the situation where each of the three tests uses its matching confidence

interval. For the central Fisher’s exact test, there will theoretically be no mismatches because

the matching confidence interval is the inversion. For the two-sided Fisher’s exact and

Blaker’s exact tests and the associated matching confidence intervals, we check the 256

n-sets of tables mentioned above through exhaustive search and find no mismatches. Thus,
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although mismatches between p-values and confidence intervals are possible when using the

matching confidence intervals (see Figure 1b), they are not common.

6. Application and Comparison of Methods

In Table 2 we give the odds ratios, two-sided p-values and matching confidence intervals to

the data presented in Table 1. The odds ratios are the conditional maximum likelihood ones,

rather than the sample odds ratios. Note that for α = 0.05 there are no mismatches of infer-

ences between the p-values and matching confidence intervals. Our primary recommendation

for this paper is that when presenting both p-values and confidence intervals, you should use

the matching confidence intervals.

Before giving secondary recommendations we review some properties that all three tests

share. All three tests are exact tests, meaning that the p-values are valid, and the only

conservativeness of the tests is due to the discrete nature of the data. All three tests are

nested, meaning that if a test fails to reject at the α1 level then it must also fail to reject for

all α > α1. The matching confidence intervals are similarly nested (see Blaker, 2000). Because

of the discrete nature of the data, none of the tests are unbiased. Although a randomized

version of the one-side exact test is uniformly most powerful unbiased (Tocher, 1950), as is

typically done in applications, we only consider non-randomized tests.

Whenever the central Fisher’s exact test rejects, then Blaker’s exact test also rejects, but

not vise versa. Thus, Blaker’s exact test is always more powerful than the central Fisher’s

exact test (see Figure 1). Blaker showed this result except with more generality (see Blaker,

2000, Corollary 1). This property does not hold for the two-sided Fisher’s exact test. Although

most of the time p-values from the central Fisher’s exact test are larger than those of the

two-sided Fisher’s exact test, this is not always true (see Figure 1b).

For the central tests and matching intervals, besides the interpretational advantage of

being central intervals, additionally the p-value function of the central test is continuous
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and unimodal in β0. So the calculation of the confidence interval is easier and all matching

confidence sets are intervals.

As one might expect from Figure 1, small changes in the data can have large changes in

the two-sided Fisher’s exact p-value (see Dupont, 1986) or Blaker’s exact p-value. Vos and

Hudson (2008) emphasized a different point for other discrete tests, which we would like to

emphasize for these two tests. It is possible that small changes in the data in the direction

away from the null can lead to less significant tests. Let us modify the invented data so

that 2 more individuals were observed with no events in the first group, giving proportions:

7/264=2.65% and 30/494=6.07%. This is clearly further away from the null than the original

example, since the first group, which had the lower event rate in the original example, has an

even lower one when those two individuals are added. The two-sided Fisher’s exact p-value

moves from significance for the original example (p1(x) = 0.04996) to non-significance with

the 2 added individuals (p1(x) = 0.05005). Although the same phenomena can occur with

Blaker’s exact test and often the Blaker p-values equal those of the two-sided Fisher’s exact

test, in this modified example the Blaker p-value is different, (p1(x) = 0.0356). Unlike the

two-sided Fisher’s exact p-values, the p-values from the central Fisher’s exact test properly

show the ordering, giving a larger p-value for the original data set (p1(x) = 0.0518) than the

modified one (p1(x) = 0.0493).

[Table 2 about here.]

7. Discussion

We recommend that whenever confidence intervals for odds ratios are given together with p-

values from a test, that the matching confidence intervals to the family of tests be presented.

Because of the non-unimodality of both Blaker’s exact test and the two-sided Fisher’s exact

test, we cannot create strongly consistent confidence intervals, and there is a small possibility



14 Unpublished Manuscript, 18 September 2009

of rejecting the null that the odds ratio is one but including the value of 1 in the matching

confidence interval. To avoid this problem the central Fisher’s exact test (i.e., the other two-

sided Fisher’s exact test that uses twice the one-sided p-value) could be used. Although this

central test is not as powerful as Blaker’s exact test (nor is it likely to be as powerful as the

usual two-sided Fisher’s exact test), the resulting confidence intervals are central which allow

more natural interpretation than the other two intervals. Finally, although the results of the

hypothesis test are formally binary (reject or fail to reject), often it makes sense to examine

the p-values which give a more nuanced view, allowing us to see that a pair of tables with

p-values of p = 0.0499 and p = 0.0501 are much closer in terms of significance than the pair

with p = 0.0499 and p = 0.0001.
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Figure 1. P-values from the three two-sided exact tests for testing β = β0 for different
values of β0. Solid gray dots (appearing as thick gray lines in Figure a) are two-sided Fisher’s
exact test, black open dots (appearing as thick black lines in Figure a) are Blaker’s exact
test, and gray dots outlined in black (appearing as thick black lines in Figure a) are where
those two p-values are equal. The thin black line is the central Fisher’s exact, the horizontal
gray line is the reference line at 0.05. Figure b is a blow-up of a portion of Figure a.
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Figure 2. Figure to show difficulty with Blaker’s algorithm. P-values evaluated at the
points, 1± j ∗ 0.002, j = 0, 1, . . ..
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Figure 3. Diagram of Blaker p-values for invented table. For example, in the interval
b(7, 8) < b 6 b(7, 9) the p-value is the sum of the Fb(7) (the dotted line in that interval) and
F̄b(9) (the solid black line segment in that interval).



20 Unpublished Manuscript, 18 September 2009

Table 1
Standard Analyses on Data from Lim, et al (2009)

Table Counts 2-sided Odds 95% Asy 95% Exact
Symptom HY∗ WY HN WN p-value Ratio C.I. C.I.

Tremors 1 4 14 615 0.113 10.98 1.15 104.66 0.21 119.89
Vomitting/Diarrhea 5 78 10 541 0.035 3.47 1.16 10.41 0.90 11.46

Abdominal Pain 4 50 11 569 0.032 4.14 1.27 13.47 0.92 14.58

∗ HY=Homozygous for CCR5 deficiency, with symptom; WY= Wild type and
Heterozygous for CCR5 deficiency, with symptom; HN and WN are subjects with genetics
similarly defined but without symptoms. Odds ratio is the sample odds ratio. The p-value
is from the usual two-sided Fisher’s exact test. The 95% asymptotic confidence interval

uses the log transformation and the delta method and the 95% exact confidence interval is
the ECTI.



Confidence Intervals that Match Fisher’s Exact Test 21

Table 2
Exact Two-sided Tests with Matching Confidence Intervals on Data from Lim, et al (2009)

Odds Fisher’s Two-Sided Central Fisher Blaker’s Exact
symptom Ratio∗ p 95% C.I. p 95% C.I. p 95% C.I.

Tremors 10.85 0.113 0.42 89.89 0.226 0.21 119.89 0.113 0.42 89.89
Vomitting/Diarrhea 3.46 0.035 1.11 11.14 0.071 0.90 11.46 0.035 1.11 11.27

Abdominal Pain 4.12 0.032 1.17 14.17 0.063 0.92 14.58 0.032 1.17 14.22

∗ Odds ratio calculated by conditional maximum likelihood.


