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Abstract

ftsa 4.7 enhances the previous versions by adding tests for stationarity of functional time
series and another method for their prediction. A new data set of particulate pollution curves
has been added.
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1. Testing stationarity of functional time series

A functional time series is a sequence of curves X1(t), X2(t), . . . , XN (t). Each curve is defined on
the same grid of points in an interval [T1, T2]. We use N to denote the size of the sample of functions
because t is used as the argument of the functions, i.e. a point in the interval [T1, T2]. In Functional
Data Analysis, each function Xi is viewed as an element of a function space, the most general of such
spaces is the space of square integrable functions, denoted L2 = L2([T1, T2]) (see e.g., Horváth and
Kokoszka 2012, Chapter 2). Just like for scalar and vector time series, many procedures developed
for functional time series require that these series be stationary. Function T_stationary implements
two tests of stationarity developed by Horváth, Kokoszka, and Rice (2014). The null hypothesis of
these tests is that the series is stationary, in the strict sense, i.e. that for any h and any n

(X1+h, X2+h, . . . , Xn+h)
d
= (X1, X2, . . . , Xn), (1)

where the equality in distribution refers to the equality of distributions in the product space
L2 × L2 × . . .× L2 (n times). The alternative hypothesis is that the sequence of functions Xi is not
stationary in the above sense. For example, it can contain change points, trends, or random walk
components. We emphasize, that each function t 7→ Xi(t) is typically a realization of a continuous
time nonstationary process observed at some discrete points tj . The stationarity refers to the
sequence of functions X1, X2, . . . , XN . This point is illustrated in Figure 1. The top panel shows
price curves on five consecutive days. Each of these curves can be denoted Xi, and only N = 5
curves are shown. In typical applications, N is much larger, from several dozen to several thousand.
The sequence of price curves is in general not stationary. Even for the five displayed curves an
upward trend is seen, such a trending or random walk behavior is much more pronounced for longer
series. The Bottom panel of Figure 1 shows the same curves, but suitably normalized. Even though
each curve is a realization of a nonstationary stochastic process, such normalized curves, known as
cumulative intraday return curves (see Kokoszka, Miao, and Zhang 2015, and references therein),
form a stationary functional time series.
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Figure 1: Top: IBM price curves on five consecutive trading days. Bottom: Cumulative intraday
returns on these prices.

We illustrate the application of the tests using the functional time series pm_10_GR_sqrt which has
been added to ftsa 4.7 (Hyndman and Shang 2015). The data set pm_10_GR contains half–hourly
measurements of the concentration of particulate matter less than 10um (pm10) in Graz, Austria
from October 1, 2010 to March 31, 2011. This is a functional time series with N = 182 daily curves.
To stabilize variability of these functions, square root of each half–hourly observation is computed;
the functional time series so transformed is available as pm_10_GR_sqrt. The call

require(ftsa)

T_stationary(pm_10_GR_sqrt$y)

produces the following output

Monte Carlo test of stationarity of a functional time series

null hypothesis: the series is stationary

p-value = 0.082

N (number of functions) = 182

number of MC replications = 1000

The p–value of 8.2% indicates that the series can be treated as stationary. Since the p-value is less
than 10%, using a larger sample size might reveal some nonstationarity due to seasonal effects. The
null distribution of this test does not have a closed form; it must be approximated by a Monte Carlo
distribution. The last line indicates that one thousand replications were used, the default value.
The call

T_stationary(pm_10_GR_sqrt$y, J = 100, MC_rep = 5000, h = 20, pivotal = TRUE)
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produces the output

Pivotal test of stationarity for a functional time series

null hypothesis: the series is stationary

p-value = 0.1188

N (number of functions) = 182

number of MC replications = 5000

The main difference relative to the previous call is that the argument pivotal = TRUE indicating
that a different tests statistic is used, which has a pivotal asymptotic distribution. Nevertheless, the
distribution of the test statistic is still approximated by a Monte Carlo distribution to ensure a more
accurate empirical size. If pivotal = FALSE, the statistic TN defined in Section 2.1 of Horváth
et al. (2014) is used; if pivotal = TRUE, their statistic T 0

N (d) defined in Section 2.2 is used. The
argument J is the truncation level used to approximate the limit distribution defined by an infinite
series, only the first J terms of this series are used. The distribution so truncated is used in Monte
Carlo replications. The argument h is the kernel bandwidth. Both are defined in Section 4.1 of
Horváth et al. (2014). The help file of the function T_stationary explains other tuning parameters
used in that paper, which are provided as arguments.

2. Forecasting functional time series

The package ftsa 4.7 implements a new method of predicting functional time series proposed by
Aue, Norinho, and Hörmann (2015). The main difference between the new forecasting method
implemented in farforecast and the existing method implemented in forecast.ftsm is as follows.
In both methods, the functions Xi are represented as

Xi(t) ≈ µ(t) +

J∑
j=1

ξij v̂j(t), (2)

where the v̂j are the estimated functional principal components, EFPC, (see e.g., Horváth and
Kokoszka 2012, Chapter 3). The function forecast.ftsm treats each series ξ1j , ξ2j , ξ3j , . . . , ξNj

as a univariate time series and computes the predictions of its future values using the automatic
autoregressive integrated moving average algorithm of Hyndman and Khandakar (2008). These
predictions are used to construct the predicted curves using the EFPC decomposition above.
The function farforecast treats the scores as a J-dimensional time series [ξi1, ξi2, . . . ξiJ ], i =
1, 2, 3, . . . , N , and applies a multivariate prediction algorithm assuming that this series is a stationary
vector autoregression. Before using farforecast it is therefore advisable to transform the original
functional time series to a stationary series and verify stationarity using the function T_stationary.
Other arguments of the function farforecast are analogous to the arguments of forecast.ftsm,
and are explained in the help file.

In Figure 2, we compare the differences between multivariate and univariate time-series forecasting
algorithms for predicting one-day-ahead and 30-days-ahead pm10 pollution curves. The following
code produces Figure 2.

# Multivariate time-series prediction algorithm

require(ftsa); require(vars)
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h30_forecast_sqrt_pm10 = farforecast(ftsm(pm_10_GR_sqrt), h = 30, PI = FALSE)

plot(h30_forecast_sqrt_pm10, ylim = c(5.2,7.5),

xlab = "Half hourly intraday time interval",

ylab = "Forecasts", lwd = 2)

h1_forecast_sqrt_pm10 = farforecast(ftsm(pm_10_GR_sqrt), h = 1)

lines(h1_forecast_sqrt_pm10, lwd = 3, lty = 3)

# Univariate time-series prediction algorithm

h30_forecast_sqrt_pm10_ftsm = forecast(ftsm(pm_10_GR_sqrt), h = 30, method = "arima")

plot(h30_forecast_sqrt_pm10_ftsm, ylim = c(5.2,7.5), lwd = 2)

h1_forecast_sqrt_pm10_ftsm = forecast(ftsm(pm_10_GR_sqrt), h = 1, method = "arima")

lines(h1_forecast_sqrt_pm10_ftsm$mean, lwd = 3, lty = 3)
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(a) Multivariate time-series forecasting algorithm
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(b) Univariate time-series forecasting algorithm

Figure 2: Predicted 30–days–ahead pm10 pollution curves; one–day–ahead prediction highlighted
with black dots.

3. Conclusion

This article describes a method in the ftsa package for testing the stationarity of a functional time
series. For a stationary functional time series, a new prediction method is introduced by forecasting
principal component scores via a multivariate time-series forecasting method. Both procedures
are illustrated by an application to the concentration of particulate matter data set. We used the
test to verify its stationarity, and produced one-step-ahead and 30-steps-ahead forecasts via the
new prediction method. To sum up, these two additional methods should be considered when the
interest lies in forecasting future realizations of a time series of functions. The test should be used
before applying any inferential tools that assume stationarity.
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