
rmix()
rmix() can be used to generate random samples from for mixture classification problems. It provides 

a non-linear example to check the performance of classifiers on. 

For the purpose of learning and understanding a new statistical method, simulation can be very 

helpful. We know what the correct result should be and we can generate an unlimited amount of 

data. After we learn about the performance of our method on some simulated examples, we can 

then experiment with real applications.

The green/red classes are generated by a mixture of bivariate normal distributions.  For green and 

red the density functions can be written, 

∑i=1
10 N(μGi, 2 /5)10

∑i=1
10 N(μRi, 2 /5)10

where  (μGi, μRi), i = 1, …, 10 are shown in the plot below,
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Within each class, each of the 10 normal distributions is chosen with equal probability.  Again 100 

from each class are used in the training sample.
i xi,1 xi,2 yi

1 2.14748 1.03185 0
2 3.36832 -0.181137 0
3 -0.247176 2.88748 0
4 1.00591 0.0900456 0
5 1.0272 -0.505474 0
... ... ... ...
196 -0.304882 0.944225 1
197 -0.230113 1.50992 1
198 -0.519905 0.94652 1
199 0.761488 0.388264 1
200 1.07735 1.82401 1

Here the classes are {0, 1} with Y = 0 /1 corresponding to green/red respectively.  Let (x1, x2) and 

(x1, x2) denote the pdf’s for the green and red points.  So 

(x1, x2) =
1

10 ∑i=1
10 ϕx1; g1,i,

1
5
 ϕx2; g2,i,

1
5


where ϕx; μ, σ2 denotes the normal pdf with mean μ and variance σ2 and μGi = (g1,i, g2,i).  Note 



that (x1, x2) and (x1, x2) are the conditional probability densities corresponding to πq(x), q = 0, 1. 

Similarly for (x1, x2).  So the joint distribution may be written,

π(x) = (x1, x2)Pr(Y = 0) + (x1, x2) Pr(Y = 1)

where Y = 0 represents green and Y = 1, red.

Assuming the prior probabilities for green and red are equal,  so π0 =π1 = 1 /2, the posterior probabili-

ties are simply the joint densities divided by 2.  So the Bayes classifier may be written,

(x1, x2) = 
Y = 0 (green) if (x1, x2) ≥ (x1, x2)

Y = 1 (red) if  (x1, x2) < (x1, x2)

The boundary is determined by the contours of  (x1, x2) = (x1, x2).  This plot is constructed using 

ContourPlot[]  in Mathematica.
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Bayes Optimal Decision Boundary

Observed Mis-classification Rate = 21% on training data using the optimal Bayes decision boundary 

given in the above plot.  On the training data, the classifier appears to have slightly weaker perfor-

mance in the red region as shown in the confusion matrix.
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The Bayes error rate is the average or expected misclassfication rate.  This could be estimated by 

simulation.  In some cases we can compute this analytically.

η =  {EPE} =  Y,  (X1, X2) (1)

η = 
ℜ2

(Pr {Y = 0 X = x}×(1, x) + Pr {Y = 1 X = x}×(0, x))π(x)ⅆx (2)

The joint probability density funciton of X is given by

π(x) =π(x1, x2) = (x1, x2 Y = 0)Pr(Y = 0) + (x1, x2 Y = 1) Pr(Y = 1) (3)

Assuming prior probabilties, π(Y = 0) =π(Y = 1) = 1 /2,

π(x1, x2) =
1

2
((x1, x2 Y = 0) + (x1, x2 Y = 1)) (4)

Also we have,
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Pr(Y = 0 X = x) =
g(x)Pr(Y = 0)

g(x)Pr(Y = 0) + r(x)Pr(Y = 1)
=

g(x)

g(x) + r(x)
(5)

and

Pr(Y = 1 X = x) = 1 - Pr(Y = 0 X = x).

The probability that a point is mis-classified is

β(x) = Pr(Y = 0 x)1, Y(x) + Pr(Y = 1 x)0, Y(x) (6)

Evaluating using numerical quadrature,

η = 
ℜ2
β(x)π(x)ⅆx = 20.76% (7)

This is the optimal misclassification rate for the best possible classifer and is called the Bayes rate.  

By comparison on test data with k-NN with N = 2000, the estimated mis-classification rate was 

22.7% with a 95% C.I. (0.2086, 0.2454), so the true parameter is inside this interval.

The plot shows the probability of correct classification 1 - β(x1, x2), where β(x) is given in eqn. (6). 

We see that on the boundary and in the upper area between -1.5 < x1 < 0  and 1.5 < x2 < 2.5, these 

probabilities are lowest.
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Example
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