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1 Introduction

Grammatical evolution (GE) is an evolutionary search algorithm, similar to genetic programming (GP). It is
typically used to generate programs with syntax defined through a grammar. The original author’s website
[1] is a good resource for a formal introduction to this technique:

� http://www.grammatical-evolution.org/

This document serves as a quick and informal tutorial on GE, with examples implemented using the
gramEvol package in R.

2 Grammatical Evolution

The goal of using GE is to automatically generate a program that minimises a cost function:

1. A grammar is defined to describe the syntax of the programs.

2. A cost function is defined to assess the quality (the cost or fitness) of a program.

3. An evolutionary algorithm, such as GA, is used to search within the space of all programs definable by
the grammar, in order to find the program with the lowest cost.

Notice that by a program, we refer to any sequence of instructions that perform a specific task. This
ranges from a single expression (e.g., sin(x)), to several statements with function declarations, assignments,
and control flow.

The rest of this section will describe each component in more details.

2.1 Grammar

A grammar is a set of rules that describe the syntax of sentences and expressions in a language. While
grammars were originally invented for studying natural languages, they are extensively used in computer
science for describing programming languages.

2.1.1 Informal introduction to context-free grammars

GE uses a context-free grammar to describe the syntax of programs.
A grammar in which the rules are not sensitive to the sentence’s context is called a context-free grammar

(CFG), and is defined using a collection of terminal symbols, non-terminal symbols, production rules, and a
start symbol [2]:

� Terminal symbols are the lexicon of the language.

1

http://www.grammatical-evolution.org/


� Non-terminal symbols are used to describe the class of words in the language, or variables that can
take different values. For example, a <subject>, a <verb>, or an <object>.

� A production rule defines what symbols replace a non-terminal. For example, each of the four following
lines is a production rule:

〈sentence〉 ::= <subject> <verb> <object>. | <subject> <verb>. (1.a), (1.b)

〈subject〉 ::= I | You | They (2.a), (2.b), (2.c)

〈verb〉 ::= read | write | check (3.a), (3.b), (3.c)

〈object〉 ::= books | stories | academic papers (4.a), (4.b), (4.c)

In each rule, the “|” symbol separates different replacement possibilities; such as <subject>, that can
be replaced with “I”, “You” or “They”. One must note that a non-terminal symbol can be replaced with
ther non-terminals as well as terminal symbols, such as in the example’s <sentence>.

This style of notation, including the use of angle brackets (< and >) is known as the Backus–Naur
Form (BNF).

� A start symbol determines a non-terminal where the generation of the expression starts. For example:

– Start: <sentence>

Informally, only the start symbol and the production rules are required to define a grammar.

2.1.2 Formal definition of a context-free grammar

In formal language theory, a context-free grammar is a formal grammar where every production rule, for-
malized by the pair (n, V ), is in form of n→ V . The CFG is defined by the 4-tuple (T ,N ,R,S), where T is
the finite set of terminal symbols, N is the finite set of non-terminal symbols, R is the production rule set,
S ∈ N is the start symbol.

A production rule n→ V is realized by replacing the non-terminal symbol n ∈ N with the symbol v ∈ V ,
where V ∈ (T ∪ N )∗ is a sequence of terminal and/or non-terminal symbols.

For more details on CFGs, their relation to context-free languages, parsing, compilers and other related
topics refer to [2] or Wikipedia:

� https://en.wikipedia.org/wiki/Context-free_grammar

2.1.3 From grammar to an expression

Notice that each rule in the grammar of Section 2.1.1 is numbered. Using these numbers, one can precisely
refer to a certain expression. This is performed by replacing the first non-terminal symbol with the nth rule
of that non-terminal, starting with the start symbol.

For example, the sequence [2, 3, 1] selects rules (1.b), (2.c) and (3.a) in the following four-step sequence:

Step Sequence Rule Current state
0 Start <sentence>.
1 2 (1.b) <subject> <verb>.
2 3 (2.c) They <verb>.
3 1 (3.a) They read.

2.2 Evolutionary optimisation

Evolutionary optimisation algorithms are a class of optimisation techniques inspired by natural evolution.
They are used in cases where:
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� The solution to the problem can be represented by a certain structure. For example, the solution is an
array of binary variables, or integer numbers.

– Typically the array size is fixed and each unique value arrangement is considered a candidate
solution.

– Using biological terminology, this structure is referred to as the chromosome or genotype.

� There exist a cost function which can quickly return the cost or fitness of any candidate solution.

� Solving the problem using gradient descent techniques is hard or impossible, because the cost function
is non-smooth, or has multiple local optimas, or is simply discrete, like the travelling salesman problem
(or in hindsight, the grammar).

It most be noted that the stochastic nature of GA does not guarantee the optimal solution, since most
practical problems involve very large search spaces, and it is often not computationally feasible to search the
whole space.

The oldest and simplest of these algorithms is the genetic algorithm (GA), which optimises a vector of
binary variables. In this vignette, when referring to GA, we refer to an extended GA which handles integers
numbers.

For an in depth introduction, readers are referred to Wikipedia:

� https://en.wikipedia.org/wiki/Evolutionary_algorithm

2.2.1 Optimising a grammar by evolution

GA only optimises numeric arrays. By mapping an integer array to a program using a grammar, GA can be
readily applied to evolve programs:

1. The solution is represented by an array of integers.

2. The array is mapped to a program through the grammar using the technique explained is Section 2.1.3.

� Using biological terminology, the program is called a phenotype, and the mapping is referred to
as genotype to phenotype mapping.

3. The cost function measures the fitness of the program.

4. Any evolutionary optimisation technique is applied on the integer array.

2.3 Applications of grammatical evolution

Any application which needs a program, definable by grammar is creatable in GE. Using a grammar allows
integration of domain knowledge and a custom program syntax, which adds flexibility and precision to GE
compared to other techniques such as GP.

Applications of GE include computational finance, music, and robotic control, among others. See http:

//www.grammatical-evolution.org/pubs.html for a collection of publications in this area.

3 gramEvol Package

The package gramEvol simplifies defining a grammar and offers a GA implementation. gramEvol hides
many details, including the grammar mapping and GA parameters, and the only things the user has to do
is to:

1. Define a grammar using CreateGrammar.

2. Define a cost function. It should accept one (or more) R expression(s) and return a numeric value.
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3. Call GrammaticalEvolution.

In this section, examples are used to demonstrate its usage.

3.1 Rediscovery of Kepler’s law by symbolic regression

Symbolic regression is the process of discovering a function, in symbolic form, which fits a given set
of data. Evolutionary algorithms such as GP and GE are commonly used to solve Symbolic Regres-
sion problems. For more information, visit https://en.wikipedia.org/wiki/Symbolic_regression or
http://www.symbolicregression.com/.

Rediscovery of Kepler’s law has been used as a benchmark for symbolic regression [3, 4, 5]. Here, the
goal is to find a relationship between orbital periods and distances of solar system planets from the sun. The
distance and period data, normalised to Earth, is shown in Table 1.

Planet Distance Period

Venus 0.72 0.61
Earth 1.00 1.00
Mars 1.52 1.84
Jupiter 5.20 11.90
Saturn 9.53 29.40
Uranus 19.10 83.50

Table 1: Orbit period and distance from the sun for planets in solar system.

Kepler’s third law states:
period2 = constant× distance3 (1)

3.1.1 Defining a grammar

To use grammatical evolution to find this relationship from the data, we define a grammar as illustrated in
Table 2. Here S denotes the starting symbol and R is the collection of production rules.

S = <expr>

Production rules : R

〈expr〉 ::= 〈expr〉〈op〉〈expr〉 | 〈sub-expr〉 (1.a), (1.b)

〈sub-expr〉 ::= 〈func〉(〈var〉) | 〈var〉 | 〈var 〉̂ 〈n〉 (2.a), (2.b), (2.c)

〈func〉 ::= log | sqrt | sin | cos (3.a), (3.b), (3.c), (3.d)

〈op〉 ::= + | - | × (4.a), (4.b), (4.c)

〈var〉 ::= distance | distancê 〈n〉 | 〈n〉 (5.a), (5.b), (5.c)

〈n〉 ::= 1 | 2 | 3 | 4 (6.a), (6.b), (6.c), (6.d)

Table 2: Grammar for discovering Kepler’s equation.

This is a general purpose grammar, and it can create different expressions corresponding to different
formulas which can explain the data.

The first step for using gramEvol is loading the grammar:
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R> library("gramEvol")

R> ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),

+ func = grule(sin, cos, log, sqrt),

+ op = grule(`+`, `-`, `*`),

+ var = grule(distance, distance^n, n),

+ n = grule(1, 2, 3, 4))

R> grammarDef <- CreateGrammar(ruleDef)

Here, the BNF notation is implemented in R:

� Rules are defined as list.

� Each rule is defined using non.terminal.name = grule(replacement1, replacement2, ...) for-
mat.

� CreateGrammar is used to load the list and create

The print function reproduces the grammar in a format similar to Table 2:

R> print(grammarDef)

<expr> ::= <op>(<expr>, <expr>) | <func>(<expr>) | <var>

<func> ::= `sin` | `cos` | `log` | `sqrt`

<op> ::= `+` | `-` | `*`

<var> ::= distance | distance^<n> | <n>

<n> ::= 1 | 2 | 3 | 4

Note that ‘+‘ and op(expr, expr) are used in the code above because grule expects R expressions,
and expr op expr is not valid in R. As it is tedious to convert between the functional form and the operator
form, the package also provides gsrule (or grammar string rule), which accepts string with <>:

R> ruleDef <- list(expr = gsrule("<expr><op><expr>", "<func>(<expr>)", "<var>"),

+ func = gsrule("sin", "cos", "log", "sqrt"),

+ op = gsrule("+", "-", "*"),

+ var = grule(distance, distance^n, n),

+ n = grule(1, 2, 3, 4))

R> CreateGrammar(ruleDef)

<expr> ::= <expr><op><expr> | <func>(<expr>) | <var>

<func> ::= sin | cos | log | sqrt

<op> ::= + | - | *

<var> ::= distance | distance^<n> | <n>

<n> ::= 1 | 2 | 3 | 4

Note that gsrule and grule can be mixed, as in the example above.

3.1.2 Defining a cost function

We use the following equation to normalise the error, adjusting its impact on small values (e.g., Venus) versus
large values (e.g., Uranus):

e =
1

N

∑
log(1 + |p− p̂|) (2)

where e is the normalised error, N is the number of samples, p is the orbital period and p̂ is the result of
symbolical regression. We implement this as the fitness function SymRegFitFunc:

5



R> planets <- c("Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus")

R> distance <- c(0.72, 1.00, 1.52, 5.20, 9.53, 19.10)

R> period <- c(0.61, 1.00, 1.84, 11.90, 29.40, 83.50)

R> SymRegFitFunc <- function(expr) {

+ result <- eval(expr)

+

+ if (any(is.nan(result)))

+ return(Inf)

+

+ return (mean(log(1 + abs(period - result))))

+ }

Here, the SymRegFitFunc receives an R expression and evaluates it. It is assumed that the expression

uses distance to estimate the period. Invalid expressions are handled by returning a very high cost (infinite
error). Valid results are compared with the actual period according to (2) to compute the expression’s fitness.

3.1.3 Evolving the grammar

GrammaticalEvolution can now be run. All of the parameters are determined automatically. To avoid
wasting time, and as the best possible outcome and its error are known (because we know the answer), a
terminationCost is computed and set to terminate GE when the Kepler’s equation is found.

R> ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc,

+ terminationCost = 0.021)

R> ge

Grammatical Evolution Search Results:

No. Generations: 11

Best Expression: sqrt(distance^3)

Best Cost: 0.0201895728693592

Now that the result is found, it can be used in production. Here we only use it in a simple comparison:

R> best.expression <- ge$best$expression

R> data.frame(distance, period, Kepler = sqrt(distance^3),

+ GE = eval(best.expression))

distance period Kepler GE

1 0.72 0.61 0.6109403 0.6109403

2 1.00 1.00 1.0000000 1.0000000

3 1.52 1.84 1.8739819 1.8739819

4 5.20 11.90 11.8578244 11.8578244

5 9.53 29.40 29.4197753 29.4197753

6 19.10 83.50 83.4737743 83.4737743

3.1.4 Monitoring evolution

As a real-world optimisation may take a long time, a feedback of the state of optimisation is desirable.
GrammaticalEvolution allows monitoring this status using a callback function. This function, if provided
to the parameter monitorFunc, receives an object similar to the return value of GrammaticalEvolution.
For example, the following function prints the current generation, the best individual’s expression, its error
and produces a plot:
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R> customMonitorFunc <- function(results){

+ cat("-------------------\n")

+ print(results)

+ }

R> ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc,

+ terminationCost = 0.021,

+ monitorFunc = customMonitorFunc)

or even using the print function directly:

R> ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc,

+ terminationCost = 0.021,

+ monitorFunc = print)

which prints:

Grammatical Evolution Search Results:

No. Generations: 1

Best Expression: distance

Best Cost: 1.60700784338907

Grammatical Evolution Search Results:

No. Generations: 2

Best Expression: distance

Best Cost: 1.60700784338907

. . . until:

Grammatical Evolution Search Results:

No. Generations: 9

Best Expression: distance + distance

Best Cost: 1.54428158317392

Grammatical Evolution Search Results:

No. Generations: 10

Best Expression: 1 - distance + (cos(distance) - 1) * sin(distance^2) + distance + (log(distance) + distance + (cos(distance) - 1) * sin(distance^2) + distance)

Best Cost: 1.4186428597461

Grammatical Evolution Search Results:

No. Generations: 11

Best Expression: sqrt(distance^3)

Best Cost: 0.0201895728693592

3.2 Discovering Regular Expressions

A regular expressions (RE) is a string that determines a character pattern. REs are more expressive and
precise in determining sub-string matches compared to wildcards, and are widely used in many string pattern
matching tasks, such as searching through log files or parsing a program’s output. See the Wikipedia entry
at https://en.wikipedia.org/wiki/Regular_expression for an in-depth introduction to REs.

Creating a regular expressions requires careful assembly of symbols and operators to match the desired
pattern. While this is usually performed by an expert programmer, it is possible to use evolutionary opti-
misation techniques to infer a RE from examples [6].

In this example, we demonstrate how gramEvol can be used to learn REs.

3.2.1 Regular expression in R

In formal language theory, a regular expression is a sequence of symbols and operators that describes a
character pattern. REs are translated by RE processors into a non-deterministic finite automaton (NFA)
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and subsequently into a deterministic finite automaton (DFA). The DFA can then be executed on any
character string to recognize sub-strings that match the regular expression. For a theoretical introduction
to REs, including their relationship with context-free grammars, readers are referred to [2].

R supports standard regular expression with both the POSIX and the Perl syntax. In addition, the rex
Package [7] offers a functional interface for creating REs in R.

3.2.2 Matching a decimal real number

Consider matching a decimal real number in the form of [±]nnn[.nnn], where [ ] means optional and nnn
denotes one or more digits. The following table compares this notation with the syntax of Perl, POSIX, and
rex:

One digit n \d [[:digit:]] number

One or more digits nnn \d+ [[:digit:]]+ numbers

Optional presence of X [X] X? X? maybe(X)

alternate presence of X or Y X|Y X|Y X|Y or(X, Y)

Plus sign + \+ \+ "+"

Minus sign - - - "-"

Dot . \. \. "."

Using the above table, [±]nnn[.nnn] is translated to:

� Perl: (\+|-)?\d+(\.\d+)?

� POSIX: (\+|-)?[[:digit:]]+(\.[[:digit:]]+)?

� rex: maybe(or("+", "-")), numbers, maybe(".", numbers)

To use a RE, the expression has to be wrapped in a start and stop symbol (^...$ in POSIX and Perl,
and rex(start, ..., end) for rex):

R> re <- "^(\\+|-)?[[:digit:]]+(\\.[[:digit:]]+)?$"

grepl can be used to check if a string matches the RE pattern or not:

R> grepl(re, "+1.1")

[1] TRUE

R> grepl(re, "1+1")

[1] FALSE

Some matching and non-matching examples are listed below:

R> matching <- c("1", "11.1", "1.11", "+11", "-11", "-11.1")

R> non.matching <- c("a", "1.", "1..1", "-.1", "-", "1-", "1.-1",

+ ".-1", "1.-", "1.1.1", "", ".", "1.1-", "11-11")

3.2.3 Inferring a regular expression

In this section, we use gramEvol to learn a RE that matches a decimal real number, as explained in the
previous section.
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Defining a cost function: The objective is to infer a RE that matches the decimal numbers in the vector
matching, but not in the non.matching. Consequently, the score of any RE is determined by counting the
number of matches and non-matches:

R> re.score <- function(re) {

+ score <- sum(sapply(matching, function(x) grepl(re, x))) +

+ sum(sapply(non.matching, function(x) !grepl(re, x)))

+ return (length(matching) + length(non.matching) - score)

+ }

The fitness function in gramEvol receives an R expression, which has to be evaluated before being
passed to re.score:

R> fitfunc <- function(expr) re.score(eval(expr))

Defining a grammar: We use rex RE functions to create a grammar. The grammar only includes the
functions explored in Section 3.2.1, and is designed such that the search space is reduced:

R> library("rex")

R> library("gramEvol")

R> grammarDef <- CreateGrammar(list(

+ re = grule(rex(start, rules, end)),

+ rules = grule(rule, .(rule, rules)),

+ rule = grule(numbers, ".", or("+", "-"), maybe(rules))))

R> grammarDef

<re> ::= rex(start, <rules>, end)

<rules> ::= <rule> | <rule>, <rules>

<rule> ::= numbers | "." | or("+", "-") | maybe(<rules>)

� The first rule, <re>, creates a valid rex command that uses <rules> for pattern matching.

� The second element, <rules>, is recursive and can create a collection of rules by repeating itself, e.g.,
<rule>, <rule>, <rule>. The .() allows using a comma inside a grule definition, where otherwise
it would have been interpreted as another replacement rule in the list.

� The last element, <rule>, expands to a RE function or character pattern. These include numbers and
maybe from rex, a decimal point, and + or –.

Evolving the grammar: The last step is to perform a search for a regular expression that minimises
the score function. Here the minimum terminationCost is known (i.e., zero error), and max.depth is
increased to allow for more expansion of the recursive <rules>. We use GrammaticalExhaustiveSearch to
exhaustively search for the answer among all possible combinations of the grammar:

R> GrammaticalExhaustiveSearch(grammarDef, fitfunc, max.depth = 7, terminationCost = 0)

GE Search Results:

Expressions Tested: 6577

Best Chromosome: 0 1 3 0 2 1 3 1 0 0 1 1 0 0 3 0 0

Best Expression: rex(start, maybe(or("+", "-")), maybe(numbers, "."), numbers, maybe(numbers), end)

Best Cost: 0

The result, while correct, is different from what we expected: [±][nnn.]nnn[nnn], which is true for any
real number. Furthermore, the search takes a considerable amount of time:
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R> system.time(GrammaticalExhaustiveSearch(grammarDef, fitfunc,

+ max.depth = 7, terminationCost = 0))

user system elapsed

380.469 17.022 392.637

which was measured a 3.40 GHz Intel Core i7-2600 CPU.
In conclusion, one might find it easier to design REs by hand in real-world scenarios, rather than using

evolutionary optimisation techniques.

4 Other gramEvol functionality

In this section, some of the other functionalities of the gramEvol are introduced. Here, all of the examples
are demonstrated using the following grammar:

R> grammarDef <- CreateGrammar(list(

+ expr = gsrule("(<expr>)<op>(<expr>)", "<coef>*<var>"),

+ op = gsrule("+", "-", "*", "/"),

+ coef = gsrule("c1", "c2"),

+ var = gsrule("v1", "v2")))

R> grammarDef

<expr> ::= (<expr>)<op>(<expr>) | <coef>*<var>

<op> ::= + | - | * | /

<coef> ::= c1 | c2

<var> ::= v1 | v2

4.1 Manual mapping

To map a numeric sequence to an expression manually, GrammarMap is used:

R> GrammarMap(c(0, 1, 0, 0, 1, 1, 0, 0), grammarDef)

(c1 * v1) - (c1 * v1)

The sequence is zero-indexed (the first rule is zero). To see the step by step mapping, use the verbose

parameter option:

R> GrammarMap(c(0, 1, 0, 0, 1, 1, 0, 0), grammarDef, verbose = TRUE)

Step Codon Symbol Rule Result

0 starting: <expr>

1 0 <expr> (<expr>)<op>(<expr>) (<expr>)<op>(<expr>)

2 1 <expr> <coef>*<var> (<coef>*<var>)<op>(<expr>)

3 0 <coef> c1 (c1*<var>)<op>(<expr>)

4 0 <var> v1 (c1*v1)<op>(<expr>)

5 1 <op> - (c1*v1)-(<expr>)

6 1 <expr> <coef>*<var> (c1*v1)-(<coef>*<var>)

7 0 <coef> c1 (c1*v1)-(c1*<var>)

8 0 <var> v1 (c1*v1)-(c1*v1)

Valid Expression Found

(c1 * v1) - (c1 * v1)

If the length of a sequence is insufficient for the mapping process, such that a few non-terminal elements
still remain in the resulting expression, a wrapping of up to wrappings is performed. For example:
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R> GrammarMap(c(0, 1, 0, 0, 1, 1), grammarDef, verbose = TRUE)

Step Codon Symbol Rule Result

0 starting: <expr>

1 0 <expr> (<expr>)<op>(<expr>) (<expr>)<op>(<expr>)

2 1 <expr> <coef>*<var> (<coef>*<var>)<op>(<expr>)

3 0 <coef> c1 (c1*<var>)<op>(<expr>)

4 0 <var> v1 (c1*v1)<op>(<expr>)

5 1 <op> - (c1*v1)-(<expr>)

6 1 <expr> <coef>*<var> (c1*v1)-(<coef>*<var>)

Non-terminal expression

Wrapping string to position 0

Step Codon Symbol Rule Result

7 0 <coef> c1 (c1*v1)-(c1*<var>)

8 1 <var> v2 (c1*v1)-(c1*v2)

9 0 <var> v2 (c1*v1)-(c1*v2)

Valid Expression Found

(c1 * v1) - (c1 * v2)

4.2 Examining a grammar

gramEvol offers several functions to examine grammar definitions.
summary reports a summary of what grammar presents:

R> summary(grammarDef)

Start Symbol: <expr>

Is Recursive: TRUE

Tree Depth: Limited to 4

Maximum Rule Choices: 4

Maximum Sequence Length: 18

Maximum Sequence Variation: 2 2 2 2 4 4 2 2 2 4 2 2 2 2 4 2 2 2

No. of Unique Expressions: 18500

Many of these properties are available through individual functions:
GetGrammarDepth computes the depth of grammar tree. The parameter max.depth is used to limit recur-

sion in cyclic grammars. For example, this grammar is cyclic because of rule <expr>→<expr><op><expr>,
i.e., replacing a <expr> with other <expr>s. By default GetGrammarDepth limits recursion to the number
of symbols defined in the grammar:

R> GetGrammarDepth(grammarDef)

[1] 4

R> GetGrammarDepth(grammarDef, max.depth = 10)

[1] 10

For grammars without recursion, the value returned by GetGrammarDepth is the actual depth of the tree:

R> grammarDef2 <- CreateGrammar(list(

+ expr = gsrule("(<subexpr>)<op>(<subexpr>)"),

+ subexpr = gsrule("<coef>*<var>"),

+ op = gsrule("+", "-", "*", "/"),

+ coef = gsrule("c1", "c2"),

+ var = gsrule("v1", "v2")))

R> GetGrammarDepth(grammarDef2)
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[1] 3

GetGrammarDepth also supports computing the depth from any symbol:

R> GetGrammarDepth(grammarDef2, startSymb = "<subexpr>")

[1] 2

R> GetGrammarDepth(grammarDef2, startSymb = "<coef>")

[1] 1

GetGrammarMaxRuleSize returns the maximum number of production rules per symbol. Here, <op> has
the highest number of production rules:

R> GetGrammarMaxRuleSize(grammarDef)

[1] 4

GetGrammarNumOfExpressions returns the number of possible expressions existing in the grammar space.
This function also uses the optional argument max.depth to limit the number of recursions and startSymb

to set the starting symbol:

R> GetGrammarNumOfExpressions(grammarDef)

[1] 18500

R> GetGrammarNumOfExpressions(grammarDef, max.depth = 2)

[1] 4

R> GetGrammarNumOfExpressions(grammarDef, startSymb = "<coef>")

[1] 2

Here, the only expressions with depth of 2 or less are constructed if rule (<coef >×<var>) is applied first,
creating 4 expressions (i.e., c1 × v1, c1 × v2, c2 × v1 and c2 × v2). Also if <coef > is chosen as the starting
symbol, the expressions are limited to c1 and c2.

GetGrammarMaxSequenceLen computes the length of integer sequence required for iterating through the
grammar space without wrapping. As with the previous functions, max.depth is set to the number of symbols
defined in the grammar.

R> GetGrammarMaxSequenceLen(grammarDef)

[1] 18

R> GetGrammarMaxSequenceLen(grammarDef, max.depth = 3)

[1] 8

R> GetGrammarMaxSequenceLen(grammarDef2, startSymb = "<subexpr>")

[1] 3
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4.3 Grammatical evolution options

GrammaticalEvolution is defined as follows:

GrammaticalEvolution(grammarDef, evalFunc,

numExpr = 1,

max.depth = GrammarGetDepth(grammarDef),

startSymb = GrammarStartSymbol(grammarDef),

seqLen = GrammarMaxSequenceLen(grammarDef, max.depth, startSymb),

wrappings = 3,

suggestions = NULL,

optimizer = c("auto", "es", "ga"),

popSize = 8, newPerGen = "auto", elitism = 2,

mutationChance = NA,

iterations = 1000, terminationCost = NA,

monitorFunc = NULL,

plapply = lapply, ...)

max.depth and startSymb determine recursive grammar limitations, similar to what was explained in
the previous section.

The rest of the parameters are the evolutionary optimisation options:

� GrammaticalEvolution evolves a population of popSize chromosomes for a number of iterations.

� if optimizer is set to “auto”, using the information obtained about the grammar (e.g., number of
possibles expressions and maximum sequence length), GrammaticalEvolution uses a heuristic algo-
rithm based on [8] to automatically determine a suitable value for popSize (i.e., the population size)
iterations (i.e., the number of iterations) parameters.

� The ordinary cross-over operator of GA is considered destructive when homologous production rules
are not aligned, such as for cyclic grammars [9]. Consequently, GrammaticalEvolution automatically
changes cross-over parameters depending on the grammar to improve optimisation results. A user can
turn this off by manually setting the optimizer.

� The first generation is made from the suggestions in form of integer chromosomes, and randomly
generated individuals.

� Each integer chromosome is mapped using the grammar, and its fitness is assessed by calling evalFunc.

� For each generation, the top n scoring chromosomes where n = elitism are directly added to the next
generation’s population. The rest of the population is created using cross-over of chromosomes selected
with roulette selection operator.

� Each chromosome may mutate by a probability of mutationChance.

� After reaching a termination criteria, e.g., the maximum number of iterations or the desired terminationCost,
the algorithm stops and returns the best expression found so far.

� GrammaticalEvolution supports multi-gene operations, generating more than one expression per chro-
mosome using the numExpr parameter.

� The number of integer codons in the chromosome is determined by seqLen times numExpr (i.e., the
sequence length per expression, times the number of expressions).

� monitorFunc is then called with information and statistics about the current status of the population.
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� plapply is used for parallel processing.

� GrammaticalEvolution automatically filters non-terminal expressions (i.e., expressions that don’t yield
a terminal expression even after times of wrappings). Therefore the end-user does not need to worry
about them while using gramEvol.

4.4 Parallel processing option

Processing expressions and computing their fitness is often computationally expensive. The gramEvol
package can utilise parallel processing facilities in R to improve its performance. This is done through the
plapply argument of GrammaticalEvolution function. By default, lapply function is used to evaluate all
individuals in the population.

Multi-core systems simply benefit from using mclapply from package parallel, which is a drop-in re-
placement for lapply on POSIX compatible systems. The following code optimises evalFunc on 4 cores:

R> library("parallel")

R> options(mc.cores = 4)

R> ge <- GrammaticalEvolution(grammarDef, evalFunc,

+ plapply = mclapply)

To run gramEvol on a cluster, clusterapply functions can be used instead. The gramEvol package
must be first installed on all machines and the fitness function and its data dependencies exported before
GE is called. The following example demonstrates a four-process cluster running on the local machine:

R> library("parallel")

R> cl <- makeCluster(type = "PSOCK", c("127.0.0.1",

+ "127.0.0.1",

+ "127.0.0.1",

+ "127.0.0.1"))

R> clusterEvalQ(cl, library("gramEvol"))

R> clusterExport(cl, c("evalFunc"))

R> ge <- GrammaticalEvolution(grammarDef, evalFunc,

+ plapply = function(...) parLapply(cl, ...))

R> stopCluster(cl)

It must be noticed that in any problem, the speed-up achieved depends on the overhead of communication
compared with the fitness functions’ computational complexity.

4.5 Generating more than one expression

gramEvol supports generation and evaluation of multiple expressions:

� numExpr in GrammaticalEvolution is used to pass a list of more than one R expression to the fitness
function.

� EvalExpressions offers a simpler interface for evaluating multiple expressions.

The following example show cases EvalExpressions: It uses a dataset for variables defined in the gram-
mar, and evaluates a GE expression object along with a string:

R> df <- data.frame(c1 = c(1, 2),

+ c2 = c(2, 3),

+ v1 = c(3, 4),

+ v2 = c(4, 5))

R> quad.expr <- expression(c1 * v1, c1 * v2, c2 * v1, c2 * v2)

R> EvalExpressions(quad.expr, envir = df)
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expr1 expr2 expr3 expr4

1 3 4 6 8

2 8 10 12 15

This is useful in applications when more than one expression is required, or the collective power of several
simple expressions outperform a single complex program. For example in [10], the authors have used GE for
electricity load forecasting; instead of using a complex machine learning algorithm, pools of string expressions
were generated in a guided manner and were used as features in a simpler machine learning algorithm to
obtain better results.

4.6 Alternative optimisation algorithms

gramEvol also provides a random search and an exhaustive search. Their syntax is similar to the GrammaticalEvolution:

R> result1 <- GrammaticalExhaustiveSearch(grammarDef, evalFunc)

R> result2 <- GrammaticalRandomSearch(grammarDef, evalFunc)

4.7 Using commas and assignments in rules

There are two ways to use commas and assignments in gramEvol rules:

1. Rules are defined in character string form using gsrule.

2. Rules are wrapped in .() and defined using grule.

For example, the consider the following rules:
<assignment> ::= A = B | A = C
<comma> ::= A, B | B, C

Their definition using gramEvol is as follows:

R> CreateGrammar(list(assignment = gsrule("A = B", "A = C"),

+ comma = gsrule("A, B", "B, C")))

<assignment> ::= A = B | A = C

<comma> ::= A, B | B, C

or

R> CreateGrammar(list(assignment = grule(.(A = B), .(A = C)),

+ comma = grule(.(A, B), .(B, C))))

<assignment> ::= A = B | A = C

<comma> ::= A, B | B, C

5 Conclusion

GE offers a flexible yet powerful framework for automatic program generation. The syntax and the structure
of the programs are described using a context-free grammar, and their objective is determined by a cost
function. An evolutionary search is performed on the grammar to find the program that minimises the cost
function.

gramEvol implements GE in R. It allows a grammar to be defined using R expressions, as well as
in custom string formats. A GE program generator using gramEvol only requires a grammar definition
and a cost function, and other steps including the evolutionary search and selecting its optimal parameters
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are handled automatically by the package. It also supports parallel computing, and includes facilities for
exhaustive and random search.

In this tutorial, some of the functionalities of gramEvol were explored. Furthermore, two examples were
used to demonstrate the flexibility of GE and gramEvol.
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