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Abstract

The gsDesign package supports group sequential clinical trial design. While there is a strong
focus on designs using α- and β-spending functions, Wang-Tsiatis designs, including O’Brien-
Fleming and Pocock designs, are also available. The ability to design with non-binding futility
rules is an important feature to control Type I error in a manner acceptable to regulatory
authorities.

The routines are designed to provide simple access to commonly used designs using default
arguments. Standard, published spending functions are supported as well as the ability to
write custom spending functions. A gsDesign class is defined and returned by the gsDesign()

function. A plot function for this class provides a wide variety of plots: boundaries, power,
estimated treatment effect at boundaries, conditional power at boundaries, spending function
plots, expected sample size plot, and B-values at boundaries. Using function calls to access
the package routines provides a powerful capability to derive designs or output formatting that
could not be anticipated through a gui interface. This enables the user to easily create designs
with features they desire, such as designs with minimum expected sample size.

In addition to straightforward group sequential design, the gsDesign package provides tools
to effectively adapt clinical trials during execution. First, the spending function approach to
design allows altering timing of analyses during the course of the trial. Information-based timing
of analyses allows adaptation of sample size or number of events to ensure adequate power for
a trial. Finally, gsDesign provides a routine that enable design adaptation using conditional
power.

Version 2.2 adds high-quality plots using the ggplot2 package and additional calculations
available for Bayesian calculation such as predictivce power and computing probability of success
by averaging power over a prior distribution for treatment effect. A GUI interface is also available
throuh the gsDesignExplorer R package that is available separately (not on CRAN); a separate
manual is also available.

Version 2.3 provides boundary summary functions gsBoundSummary and xtable.gsDesign.
The provide many summary values for design boundaries for on-screen (gsBoundary) and latex
(xtable.gsDesign) output. Fixes for plotting for one-sided designs are also made in this version.

In summary, the intent of the gsDesign package is to easily create, fully characterize, and
even optimize routine group sequential trial designs, as well as to provide a tool to derive and
evaluate innovative designs.
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1 Introduction

1.1 Overview

The gsDesign package is intended to provide a flexible set of tools for designing and analyzing group
sequential trials. There are other adaptive methods that can also be supported using this underlying
toolset. This manual is intended as an introduction to gsDesign. Many users may just want to apply
basic, standard design methods. Others will be interested in applying the toolset to very ambitious
adaptive designs. We try to give some orientation to each of these sets of users, and to distinguish
between the material needed by each.

The remainder of this overview provides a quick review of topics covered in this manual. The
introduction continues with some basic theory behind group sequential design to provide background
for the routines. There is no attempt to fully develop the theory for statistical tests or for group
sequential design in general since many statisticians will already be familiar with these and there
are excellent texts available such as Jennison and Turnbull [10] and Proschan, Lan and Wittes [19].

The introduction continues with a simple outline of the main routines provided in the gsDesign
package followed by motivational examples that will be used later in the manual. Basic sample size
calculations for 2-arm binomial outcome trials using the nBinomial() function and 2-arm time-to-
event endpoint trials using nSurvival() are shown, including an example of a non-inferiority trial.
Both superiority and noninferiority trials are considered.

Further material is arranged by topic in subsequent sections. Section 2 provides a minimal
background in asymptotic probability theory for group sequential testing. The basic calculations
involve computing boundary crossing probabilities for correlated normal random variables. We
demonstrate the gsProbability() routine to compute boundary crossing probabilities and expected
sample size for group sequential designs

Setting boundaries for group sequential designs, particularly using spending functions is the main
point of emphasis in the gsDesign package. Sections 3 through 7 of the manual present the design
and evaluation of designs for group sequential trials using the gsDesign() routine.

Default parameters for gsDesign() are demonstrated for the motivational examples in Section
3. Basic computations for group sequential designs using boundary families and error spending
are provided in Section 4. The primary discussion of Wang-Tsiatis [24] boundary families (e.g.,
O’Brien-Fleming [16] and Pocock [18] designs) is provided here in Section 4.2.

Next we proceed to a short discussion in Section 5 of gsDesign() parameters for setting Type
I and II error rates and the number and timing of analyses. The section also explains how to use
a measure of treatment effect to size trials, with specific discussion of event-based computations for
trials with time-to-event analyses.

The basics of standard spending functions are provided in Section 6. Subsections defining spend-
ing functions and spending function families are followed by a description of how to use built-in
standard Hwang-Shih-DeCani [9] and power [11] spending functions in gsDesign(). Section 6.4
shows how to reset timing of interim analyses using gsDesign().

The final section on spending functions is Section 7 which presents details of how spending
functions are defined for gsDesign() and other advanced topics that will probably not be needed by
many users. The section will be of use to those interested in investigational spending functions and
optimized spending function choice. Recently published spending function families by Anderson and
Clark [2] providing additional flexibility to standard one-parameter spending functions are detailed
as part of a comprehensive list of built-in spending functions. This is followed by examples of how
to derive optimal designs and how to implement new spending functions.

Next comes Section 8 on the basic analysis of group sequential trials. This includes computing
stagewise and repeated p-values as well as repeated confidence intervals.

Conditional power and B-values are presented in Section 9. These are methods used for evaluating
interim trends in a group sequential design, but may also be used to adapt a trial design at an interim
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analysis using the methods of Muller and Schaffer [15]. The routine gsCP() provides the basis for
applying these adaptive methods.

We end with a discussion of Bayesian computions in Section 10. The gsDesign package can quite
simply be used with decision theoretic methods to derive optimal designs. We also apply Bayesian
computations to update the probability of succes a trial based on knowing a bound has not been
crossed, but without knowledge of unblinded treatment results.

Future extenstions of the manual could further discuss implementation of information-based
designs and additional adaptive design topics.

1.2 Quick start: installation and online help

This brief section is meant to get you up and going. Those who really do not like manuals may read
just this section and then use the online help files for futher instruction.

The package comes in a binary format for a Windows platform in the file gsDesign-2.3.zip (may be
updated to fix bugs in a file such as gsDesign-2.3-1.zip). This file includes a copy of this manual in the
file gsDesignManual.pdf. Binaries are also available for OS/X. For other platforms the source code
is in the file gsDesign-2.3.tar.gz (may be updated to fix bugs in a file such as gsDesign-2.3-1.tar.gz).

Following are basic instructions for installing the binary version on a Windows machine. It
is assumed that a ‘recent’ version of R is installed. From the Windows interface of R, select the
Packages menu line and from this menu select Install packages from local zip files. . . . Browse to
select gsDesign-2.3.zip. Once installed, you need to load the package by selecting the Packages menu
line, selecting Load package. . . from this menu, and then selecting gsDesign. You are now ready to
use the routines in the package. The most up-to-date version of this manual and the code is also
available at http://r-forge.r-project.org.

Online help can be obtained by entering the following on the command line:

> help(gsDesign)

There are many help topics covered there which should be sufficient information to keep you from
needing to use this document for day-to-day use or if you just generally prefer not using a manual.

1.3 Installation qualification

This brief note is for more advanced users. Installation qualification routines are included in the
package subdirectory inst/unitTests. While these tests were originally intended to run at the
time the package is checked for an operating system, the initiating file doRUnit.R was removed from
the tests directory so that the tests would not run automatically at CRAN where the duration of
package checking is an issue due to the large number of packages there that are recompiled frequently.
If the file doRUnit.R is be moved to the tests directory for the package prior to running R CMD

check gsDesign, the tests run automatically.

1.4 The primary routines in the gsDesign package

As an overview to the R package, 3 R functions are supplied to provide basic computations related
to designing and evaluating group sequential clinical trials:

1. The gsDesign() function provides sample size and boundaries for a group sequential design
based on treatment effect, spending functions for boundary crossing probabilities, and relative
timing of each analysis. Standard and user-specified spending functions may be used. In
addition to spending function designs, the family of Wang-Tsiatis designs—including O’Brien-
Fleming and Pocock designs—are also available.
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2. The gsProbability() function computes boundary crossing probabilities and expected sample
size of a design for arbitrary user-specified treatment effects, bounds, and interim analysis
sample sizes.

3. The gsCP() function computes the conditional probability of future boundary crossing given
a result at an interim analysis. The gsCP() function returns a value of the same type as
gsProbability(). The related function gsBoundCP provides conditional power calculations
assuming interim test statistics at the boundaries of a design.

The package design strategy should make its tools useful both as an everyday tool for simple
group sequential design as well as a research tool for a wide variety of group sequential design prob-
lems. Both print() and plot() functions are available for both gsDesign() and gsProbability().
With version 2.3 the functions gsBoundSummary() and xtable.gsDesign() add the capability to
summarize many boundary characteristics, including conditional power, treatment effect approxima-
tions and B-values. With xtable.gsDesign() it becomes particularly simple to put these boundary
summaries into latex documents using Sweave which is now used to generate many sections of this
manual.

The most extensive set of supportive routines enables design and evaluation of binomial trials.
We use the Farrington and Manning [6] method for sample size estimation in nBinomial() and the
corresponding Miettinen and Nurminen [14] method for testing, confidence intervals and simulation.
We also provide a basic Lachin and Foulkes [12] for sample size for survival studies. The examples
we present apply these methods to group sequential trial design for binomial and time-to-event
endpoints. Version 2.3 enables plotting and printing capabilities specific to designs for binomial and
time-to-event endpoints.

Functions are set up to be called directly from the R command line. Default arguments and
output for gsDesign() are included to make initial use simple. Sufficient options are available,
however, to make the routine very flexible.

Simple examples provide the best overall motivation for group sequential design. This manual
does not attempt to comprehensively delineate all that the gsDesign package may accomplish. The
intent is to include enough detail to demonstrate a variety of approaches to group sequential design
that provide the user with a useful tool and the understanding of ways that it may be applied and
extended. Examples that will reappear throughout the manual are introduced here.

1.5 The CAPTURE trial: binary endpoint example

The CAPTURE investigators [3] presented the results of a randomized trial in patients with unstable
angina who required treatment with angioplasty, an invasive procedure where a balloon is inflated in
one or more coronary arteries to reduce blockages. In the process of opening a coronary artery, the
balloon can injure the artery which may lead to thrombotic complications. Standard treatment at the
time the trial was run included treatment with heparin and aspirin before and during angioplasty to
reduce the thrombotic complications such as the primary composite endpoint comprising myocardial
infarction, recurrent urgent coronary intervention and death over the course of 30 days. This trial
compared this standard therapy to the same therapy plus abciximab, a platelet inhibitor. While the
original primary analysis used a logrank statistic to compare treatment groups, for this presentation
we will consider the outcome binary. Approximately 15% of patients in the control group were
expected to experience a primary endpoint, but rates from 7.5% to 20% could not be ruled out.
There was an expectation that the experimental treatment would reduce incidence of the primary
endpoint by at least 1/3, but possibly by as much as 1/2 or 2/3. Since a 1/3 reduction was felt
to be conservative, the trial was planned to have 80% power. Given these various possibilities, the
desirable sample size for a trial with a fixed design had over a 10-fold range from 202 to 2942; see
Table 1.
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Table 1: Fixed design sample size possibilities for the CAPTURE trial by control group event rate
and relative treatment effect.

Control Event rate reduction
rate 1/3 1/2 2/3
7.5% 2942 1184 594
10% 2158 870 438
15% 1372 556 282
20% 980 398 202

80% power, α = .05, 2-sided

The third line in the above table can be generated using the call

nBinomial(p1=.15, p2=.15 * c(2/3, 1/2, 1/3), beta=.2)

and rounding the results up to the nearest even number. The function nBinomial() in the gsDesign
package is designed to be a flexible tool for deriving sample size for two-arm binomial trials for both
superiority and non-inferiority. Type help(nBinomial) at the command prompt to see background
on sample size, simulation, testing and confidence interval routines for fixed (non-group sequential)
binomial trials. These routines will be used with this and other examples throughout the manual.

1.6 A time to event endpoint in a cancer trial

As a second example we consider comparing a new treatment to a standard treatment for a cancer
trial. Lachin and Foulkes [12] provide a method of computing sample size assuming the following
distributions are known:

• the time to a primary endpoint in each treatment group,

• the time until dropout in each group,

• enrollment over time.

Statistical testing is performed using the logrank test statistic. The methods allow different as-
sumptions in different strata. Enrollment time and total study duration are assumed fixed, and the
sample size and number of events required during those periods, respectively, to achieve a desired
power and Type I error are computed. Here we apply the simplest form of this method, assuming an
expontential distribution in each case with no stratification. The routine nSurvival can be used to
derive the sample size and number of events required. This routine works with failure rates rather
than distribution medians or dropout rates per year. An exponential distribution with failure rate
λ has cumulative probability of failure at or before time t of

F (t) = 1− e−λt. (1)

If the cumulative failure rate is known to be p0 at time t0 then the value of λ is

λ = − ln(1− p0)/t0. (2)

We assume for the trial of interest that the primary endpoint is the time from randomization
until the first of disease progression or death (progression free survival or PFS). Patients on the
standard treatment are assumed to have an exponential failure rate with a median PFS of 6 months,
yielding λC = − ln(.5)/6 = .1155 with t measured in months. The trial is to be powered at 90%
to detect a reduction in the hazard rate for PFS of 30% in the experimental group compared to
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standard treatment. This yields an experimental group failure rate of λE = .7λC = .0809. Patients
are assumed to drop out at a rate of 5% per year of follow-up which implies an exponential rate
η = − ln(.95)/12 = .00427. Enrollment is assumed to be uniform over 30 months with patients
followed for a minimum of 6 months, yielding a total study time of 36 months.

The function nSurvival() is included in the package to compute sample size using the Lachin
and Foulkes [12] method. The code

x <- nSurvival(lambda.0=-log(.5) / 6, lambda.1=-log(.5) / 6 * .7,

eta=-log(.95)/12, Tr=30 ,Ts=36, type="rr", entry="unif")

x$Sample.size

x$Num.events

shows that 418 patients and 330 events are required to obtain 90% power with a 2.5% one-sided
Type I error. A major issue with this type of study is that many experimental cancer therapies have
toxic side-effects and, at the same time, do not provide benefit. For such drugs, it is desirable to
minimize the number of patients exposed to the experimental regimen and further to minimize the
duration of exposure for those who are exposed. Thus, it is highly desirable to do an early evaluation
of data to stop the trial if no treatment benefit is emerging during the course of the trial. Such an
evaluation must be carefully planned to 1) avoid an unplanned impact on the power of the study,
and 2) to allow a realistic assessment of the emerging treatment effect.

1.7 A non-inferiority study for a new drug

The nBinomial() function presented above was specifically designed to work for noninferiority trial
design as well as superiority designs. We consider a new treatment that is to be compared to a stan-
dard that has a successful treatment rate of 67.7%. An absolute margin of 7% is considered an ac-
ceptable noninferiority margin. The trial is to be powered at 90% with 2.5% Type I error (one-sided)
using methods presented by Farrington and Manning [6]. The function call nBinomial(p1=.677,
p2=.677, delta0=.07) shows that a fixed sample size of 1874 is adequate for this purpose. There
are some concerns about these assumptions, however. First, the control group event rate may be
incorrect. As the following code using event rates from .55 to .75 demonstrates, the required sample
size may range from 1600 to over 2100.

> p <- c(.55, .6, .65, .7, .75)

> ceiling(nBinomial(p1=p,p2=p,delta0=.07))

[1] 2117 2054 1948 1800 1611

More importantly, if the experimental group therapy does not work quite as well as control, there is
a considerable dropoff in power to demonstrate non-inferiority. Thus, there may be value in planning
an interim futility analysis to stop the trial if the success rate with experimental therapy is trending
substantially worse than with control.

1.8 A diabetes outcomes trial example

Current regulatory standards for chronic therapies of diabetes require ensuring that a new drug
in a treatment class does not have substantially inferior cardiovascular outcomes compared to an
approved treatment or treatments [7]. While we do not claim the designs for this example presented
here would be acceptable to regulators, the specifics of the guidance provide a nice background for
the use of the gsDesign package to derive group sequential designs that fit a given problem. The
initial reason for presenting this example is that there is likely to be a genuine public health interest
in showing any of the following for the two treatment arms compared:

• The two treatment arms are similar (equivalence).
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• One arm is similar to or better than the other (non-inferiority).

• Either arm is superior to the other (2-sided testing of no difference).

The example is somewhat simplified here. We assume patients with diabetes have a risk of a
cardiovascular event of about 1.5% per year and a 15% dropout rate per year. If each arm has the
same cardiovascular risk as the other, we would like to have 90% power to rule out a hazard ratio
of 1.3 in either direction. Type I error if one arm has an elevated hazard ratio of 1.3 compared
to the other should be 2.5%. The trial is to enroll in 2 years and have a minimum follow-up of 4
years, leading to a total study time of 6 years. The sample size routine nSurvival() is currently set
up to have no treatment difference as the null hypothesis, whereas here we wish to use this as the
alternative hypothesis. Thus, in using nSurvival() we switch the role of Type I error alpha and
Type II error beta

x <- nSurvival(lambda.0=-log(.985), lambda.1=-log(.985) * 1.3, eta=-log(.85),

alpha=.2, beta=.025, Tr=2, Ts=6, type="rr", entry="unif")

x$Sample.size

x$Num.events

Since the default in nSurvival() is 2-sided testing we have set alpha=.2 to ensure there is a
10% probability of rejecting no difference when there is a hazard ratio of 1.3 or 1/1.3 for control
versus experimental treatment. The above code suggests 10,800 patients should be enrolled and
final analysis conducted when 617 cardiovascular events have been observed. Generally, a confidence
interval for the hazard ratio of experimental to control is used to express treatment differences at
the end of this type of trial. A confidence interval will rule out the specified treatment differences
consistently with testing if, for example, the same proportional hazards regression model is used
for both the a Wald test and the corresponding confidence interval. The terminology of ”control”
and ”experimental” is generally inappropriate when both therapies are approved. However, for this
example it is generally the case that a new therapy is being compared to an established one and
there may be some asymmetry when considering the direction of inference. Various questions arise
concerning early stopping in a trial of this nature:

• While it would be desirable to stop early if the new therapy has a significantly lower cardio-
vascular event rate, a minimum amount of follow-up may be valuable to ensure longer-term
safety and general acceptance of the results.

• If a trend emerges in favor of the experimental treatment, it will likely be possible to demon-
strate non-inferiority prior to being able to demonstrate superiority. If the trial remains blinded
until superiority is demonstrated or until the final planned analysis, full acceptance of a useful
new therapy may be delayed. As noted above, the value of long-term safety data may be more
important than an early stop based on ”short-term” endpoint.

• From a sponsor’s standpoint, it may be desirable to stop the trial if it becomes futile to
demonstrate the experimental therapy is non-inferior to control; that is, there is an interim
trend favoring control. However, if both treatment groups represent marketed products then
from a public health standpoint it may be desirable to continue the trial to demonstrate a
statistically significant advantage for the control treatment.

2 Group sequential design theory and notation in brief

We begin by defining the distribution theory for the joint set of statistics used for testing in a group
sequential design. While the primary purpose of the gsDesign package is to design group sequential
trials, computing boundary crossing probabilities is the essential next step. This is followed by a brief
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description of subdensity functions used for computing group sequential design boundary crossing
probabilities, which are then applied to computation of a posterior distribution for the parameter of
interest. This posterior distribution will later be applied to predictive probability computation for
a positive group sequential trial given an interim test statistic for a group sequential design.

Finally, we discuss the expected sample size (ASN or average sample number) of a group sequen-
tial design, a useful design property for comparing alternative group sequential designs.

2.1 Distributional assumptions

We illustrate the distribution theory with a sequence of normal random variates. Let X1, X2,... be
independent and identically distributed normal random variables with mean θ and variance 1. For
some positive integer k, let n1 < n2... < nk represent fixed sample sizes where data will be analyzed
and inference surrounding θ will be examined. This is referred to as a group sequential design. The
first k − 1 analyses are referred to as interim analyses, while the kth analysis is referred to as the
final analysis. For i = 1, 2, ...k consider the test statistic

Zi =
ni∑
j=1

Xj/
√
ni.

The variance of X̄i is 1/ni and the corresponding statistical information is its reciprocal: Ii = ni,
i = 1, 2, . . . , k. The test statistics Z1, Z2,...,Zk follow a multivariate normal distribution with, for
1 ≤ j ≤ i ≤ k,

E{Zi} = θ
√
Ii (3)

Cov(Zj , Zi) =
√
Ij/Ii (4)

Jennison and Turnbull [10] refer to (3) and (4) as the canonical form and present several types
of outcomes for which test statistics for comparing treatment groups take this form asymptotically.
Specific examples in this manual consider 2-arm trials with binary or time-to-event outcomes. Note
that when θ = 0, the mulitivariate normal distribution expressed in (3) and (4) depends only on
Ii/Ik, i = 1, 2, . . . , k − 1.

Computational methods for the gsDesign package related to the above multivariate normal
distribution are described in Chapter 19 of Jennison and Turnbull [10] and are not provided here.
Note that other software programs such as EAST and the University of Wisconsin software use this
distributional assumption for group sequential design computations.

2.2 Hypotheses and testing

We assume that the primary test the null hypothesis H0: θ = 0 against the alternative H1: θ = δ
for a fixed δ > 0. The value of θ will be referred to as a treatment effect here since that is what
clinical trials are normally set up to examine. We have arbitrarily assume that θ > 0 represents a
treatment benefit and will refer to this case as a positive treatment effect. We assume further that
there is interest in stopping early if there is good evidence to reject one hypothesis in favor of the
other. For i = 1, 2, . . . , k − 1, interim cutoffs li < ui are set; final cutoffs lk ≤ uk are also set. For
i = 1, 2, . . . , k, the trial is stopped at analysis i to reject H0 if lj < Zj < uj , j = 1, 2, . . . , i − 1 and
Zi ≥ ui. If the trial continues until stage i, H0 is not rejected at stage i, and Zi ≤ li then H1 is
rejected in favor of H0, i = 1, 2, . . . , k. Thus, 3k parameters define a group sequential design: li, ui,
and Ii, i = 1, 2, . . . , k. Note that if lk < uk there is the possibility of completing the trial without
rejecting H0 or H1. We will generally restrict lk = uk so that one hypothesis is rejected.

10



2.3 Boundary crossing probabilities: gsProbability()

2.3.1 One-sided testing

We begin with a one-sided test. In this case there is no interest in stopping early for a lower bound
and thus li = −∞, i = 1, 2, . . . , k. The probability of first crossing an upper bound at analysis i,
i = 1, 2, . . . , k, is

α+
i (θ) = Pθ{{Zi ≥ ui} ∩i−1

j=1 {Zj < uj}} (5)

The Type I error is the probability of ever crossing the upper bound when θ = 0. The value
α+
i (0) is commonly referred to as the amount of Type I error spent at analysis i, 1 ≤ i ≤ k. The

total upper boundary crossing probability for a trial is denoted in this one-sided scenario by

α+(θ) ≡
k∑
i=1

α+
i (θ) (6)

and the total Type I error by α+(0). Assuming α+(0) = α the design will be said to provide a
one-sided group sequential test at level α.

As an example, assume k = 3, ni = 100 × i, and ui = Φ−1(.975) = 1.96, i = 1, 2, 3. Thus,
we are testing 3 times at a nominal .025 level at three equally spaced analyses. The function
gsProbability() is designed to compute the probability of crossing the upper boundary at each
analysis as follows. gsProbability() requires a lower bound; we let li = −20, i = 1, 2, 3 to
effectively make the probability of crossing a lower bound 0.

> x <- gsProbability(k = 3, theta = 0, n.I = c(100, 200, 300),

+ a = array(-20, 3), b = array(qnorm(0.975), 3))

> x

Lower bounds Upper bounds

Analysis N Z Nominal p Z Nominal p

1 100 -20 0 1.96 0.025

2 200 -20 0 1.96 0.025

3 300 -20 0 1.96 0.025

Boundary crossing probabilities and expected sample size assume

any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0 0.025 0.0166 0.0121 0.0536 293.3

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0 0 0 0 0

In the table at the top of the output, we see the sample size at each test along with the upper
boundary of 1.96 that is used for each test and its associated nominal significance level of .025. The
lower part of the output shows the actual probabilities of first crossing the upper boundary at each
test. Recall first that since theta=0 we would get the same boundary crossing probabilities whether
the statistical information n.I=c(1,2,3) or n.I=c(100,200,300). That is, the boundary crossing
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probabilities under the null hypothesis depend only on the correlation structure of Zi, i = 1, 2, . . . , k.
When the nominal .025 upper bound was used repeatedly at 3 equally spaced intervals in group
sequential testing, the first test had a probability of α+

1 (0) = .025 of crossing the upper bound.
The probability computed for crossing the upper bound at the second test excludes cases where the
boundary was crossed at the first test and is thus α+

2 (0) = .0166 < .025. The total probability of
crossing the upper bound using all 3 tests is α+(0) = .053 > .025 which illustrates the multiplicity
issue of testing multiple times at the overall significance level normally specified for a test. The
expected sample size indicated in the lower part of the output will be discussed in detail in section
2.4 below.

A Bonferroni adjustment maintains a Type I error of ≤ .025. For i = 1, 2, 3 this would use the
upper bound ui = Φ−1(1 − .025/3). Substituting qnorm(1-.025/3) for qnorm(.975) in the above
call to gsProbability() yields an upper bound of 2.39 and total Type I error of .0192. Thus, the
Bonferroni adjustment is overly conservative for this case. We will return to this example later to
show how to set equal bounds that yield a total Type I error of .025.

In the above code, the call to gsProbability() returned a value into x which was then printed.
The command class(x) following the above code will indicate that x has class gsProbability.
The elements of this class are displayed as follows:

> summary(x)

Length Class Mode

k 1 -none- numeric

theta 1 -none- numeric

n.I 3 -none- numeric

lower 2 -none- list

upper 2 -none- list

en 1 -none- numeric

r 1 -none- numeric

Briefly, k is k, theta a vector of θ-values, and n.I is a vector containing Ii, i = 1, 2, . . . ,K. The
value in r is a positive integer input to gsProbability that is used to define how fine of a grid is
used for numerical integration when computing boundary crossing probabilities; this is the same as
input and will normally not be changed from the default of 18. The value of en will be discussed
below in Section 2.4. This leaves the lists lower and upper, which have identical structure. We
examine upper by

> x$upper

$bound

[1] 1.959964 1.959964 1.959964

$prob

[,1]

[1,] 0.02500000

[2,] 0.01655891

[3,] 0.01207016

to see that it contains a vector bound which contains the values for ui and upper boundary
crossing probabilities in prob[i,j] for analysis i and the θ-value in theta[j] for i=1,2,...,k and
j from 1 to the length of theta. Further documentation is in the online help file displayed using
help(gsProbability).
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2.3.2 Two-sided testing

With both lower and upper bounds for testing and any real value θ representing treatment effect
we denote the probability of crossing the upper boundary at analysis i without previously crossing
a bound by

αi(θ) = Pθ{{Zi ≥ ui} ∩i−1
j=1 {lj < Zj < uj}}, (7)

i = 1, 2, . . . , k. The total probability of crossing an upper bound prior to crossing a lower bound is
denoted by

α(θ) ≡
k∑
i=1

αi(θ). (8)

Next, we consider analogous notation for the lower bound. For i = 1, 2, . . . , k denote the proba-
bility of crossing a lower bound at analysis i without previously crossing any bound by

βi(θ) = Pθ{{Zi ≤ li} ∩i−1
j=1 {lj < Zj < uj}}. (9)

For symmetric testing for analysis i we would have li = −ui, βi(0) = αi(0), i = 1, 2, . . . , k. The

total lower boundary crossing probability in this case is written as β(θ) =
k∑
i=1

βi(θ). The total lower

boundary crossing probability for a trial is denoted by

β(θ) ≡
k∑
i=1

βi(θ). (10)

To extend the one-sided example using repeated testing at a .025 level to two-sided testing at
the .05 level, try the commands

b<-array(qnorm(.975),3)

x2<-gsProbability(k=3, theta=0, n.I=c(100, 200, 300), a=-b, b=b)

x2

The fact that a lower bound can be crossed before crossing an upper bound means that after the
first interim analysis the upper boundary crossing probability here should be less than it was for the
one-sided computation performed previously. To examine this further, we print the upper boundary
crossing probability at each analysis for the above one-sided and two-sided examples, respectively,
to see that there is a small difference:

> x$upper$prob

[,1]

[1,] 0.02500000

[2,] 0.01655891

[3,] 0.01207016

Group sequential designs most often employ more stringent bounds at early interim analyses
than later. We modify the above example to demonstrate this.

> b <- qnorm(0.975)/sqrt(c(1, 2, 3)/3)

> b

[1] 3.394757 2.400456 1.959964
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> x2b <- gsProbability(k = 3, theta = 0, n.I = c(100, 200, 300),

+ a = -b, b = b)

> x2b

Lower bounds Upper bounds

Analysis N Z Nominal p Z Nominal p

1 100 -3.39 0.0003 3.39 0.0003

2 200 -2.40 0.0082 2.40 0.0082

3 300 -1.96 0.0250 1.96 0.0250

Boundary crossing probabilities and expected sample size assume

any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0 3e-04 0.008 0.0195 0.0279 298.3

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0 3e-04 0.008 0.0195 0.0279

By setting the interim boundaries to be substantially higher than Φ−1(.975) = 1.96 we have
drastically reduced the excess Type I error caused by multiple testing while still testing at the
nominal .05 (2-sided) level at the final analysis. Thus, minimal adjustment to the final boundary
should be required when employing such a strategy. Precise control of Type I error when using either
equal bounds or adjusting relative sizes of bounds using the square root of sample size is discussed
further in section 4.2.

2.4 Expected sample size

We denote the sample size at analysis i by ni, i = 1, 2, . . . , k and the sample size at the time a
boundary is crossed by N . The average sample number (ASN) or expected sample size is defined by

ASN(θ) = Eθ{N} =

k∑
i=1

ni × (αi(θ) + βi(θ)). (11)

Values of ASN(θ) corresponding to θ-values input to gsProbability in theta are output in the
vector en returned by that function. In the one- and two-sided examples above we only had a
single element 0 in theta and the expected sample sizes rounded to 293 and 286, respectively; these
were labeled E{N} in the printed output. Since the probability of crossing a boundary at an interim
analysis was small, the trial usually proceeds to the final analysis with 300 observations. We consider
an additional θ-value to demonstrate that the average sample number can be substantially smaller
than the maximum sample size:

> x2c<-gsProbability(k=3, theta=c(0,.3), n.I=c(100, 200, 300), a=-b, b=b)

> x2c

Lower bounds Upper bounds

Analysis N Z Nominal p Z Nominal p

1 100 -3.39 0.0003 3.39 0.0003

2 200 -2.40 0.0082 2.40 0.0082
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3 300 -1.96 0.0250 1.96 0.0250

Boundary crossing probabilities and expected sample size assuming any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0.0 0.0003 0.0080 0.0195 0.0279 298.3

0.3 0.3465 0.6209 0.0320 0.9994 168.6

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0.0 3e-04 0.008 0.0195 0.0279

0.3 0e+00 0.000 0.0000 0.0000

Thus, assuming a positive treatment effect, the average sample number was approximately 169
compared to almost 300 when there was no treatment difference.

3 Applying the default group sequential design

3.1 Default parameters

We are now prepared to demonstrate derivation of group sequential designs using default param-
eters with the gsDesign() function. Along with this, we discuss the gsDesign class returned by
gsDesign() and its associated standard print and plot functions. We then apply this default group
sequential design to each of our motivational examples. The main parameters in gsDesign() will
be explained in more detail in sections 4 through 6.

The main parameter defaults that you need to know about are as follows:

1. Overall Type I error (α, one-sided): alpha = 0.025

2. Overall Type II error (β = 1− power): beta = 0.1

3. Two interim analyses equally spaced at 1/3 and 2/3 of the way through the trial plus the final
analysis: k=3

4. test.type=4, which specifies all of the following:

• Asymmetric boundaries, which means we may stop the trial for futility or superiority at
an interim analysis

• β-spending is used to set the lower stopping boundary. This means that the spending
function controls the incremental amount of Type II error at each analysis, βi(δ), i =
1, 2, . . . ,K.

• Non-binding lower bound. Lower bounds are sometimes considered as guidelines, which
may be ignored during the course of the trial. Since Type I error is inflated if this is the
case, regulators often demand that the lower bounds be ignored when computing Type I
error. That is, Type I error is computed using α+(θ) from (5) and (6) rather than α(θ)
from (7) and (8).

5. Hwang-Shih-DeCani spending functions for the upper bound (sfu=sfHSD) with γ-paramater
sfupar = -4 and lower bound (sfl=sfHSD) with γ-parameter sflpar=-2. This provides a
conservative, O’Brien-Fleming-like superiority bound and a less conservative lower bound.
Spending functions will be discussed in detail in Section 6.
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6. The following parameters are related to numerical accuracy and will not be discussed further
here as they generally would not be changed by the user: tol=0.000001, r=18. Further
information is in the help file.

7. The input variable endpoint (default is NULL) at present impacts default options for plots
approximating the treatment effect at a boundary. If endpoint="binomial" then the y-axis
will change to a default label p̂C − p̂E ; see also the delta0 and delta1 arguments below.
Another option is to set endpoint="survival" which will cause the treatment effect plot to
be on a hazard ratio scale.

8. delta1 (default 1) indicates the alternative hypothesis value on a scale of interest to you that
is a linear transformation of the scale used for theta. This is used to scale the treatment effect
plot.

9. delta0 is also a value on a linearly transformed scale from theta used to scale a plot of treat-
ment effect. Generally, this will be 0, but may be changed if you are testing for noninferiority.

10. nFixSurv (defaul of 0) is used to indicate the sample size for a fixed design for a survival
trial. In this case n.fix would indicate the number of endpoints for this trial to be powered
as specified. By providing nFixSurv, printed output from a gsDesign object will include the
total sample size as well as the number of events at interim and final analysis.

11. The following parameters are used to reset bounds when timing of analyses are changed from
the original design and will be discussed in 6.4:

• maxn.IPlan = 0, if resetting timing of analyses, this contains the statistical informa-
tion/sample size/number of events at the originally planned final analysis.

• n.I = 0, if maxn.IPlan > 0 this is a vector of length k containing actual statistical
information/sample size/number of events at each analysis.

3.2 Sample size ratio for a group sequential design compared to a fixed
design.

In Section 2 and its subsections we gave distributional assumptions, defined testing procedures
and denoted probabilities for boundary crossing. Consider a trial with a fixed design (no interim
analyses) with power 100(1–β) and level α (1-sided). Denote the sample size as Nfix and statistical
information for this design as Ifix. For a group sequential design as noted above, we denote the
information ratio (inflation factor) comparing the information planned for the final analysis of a
group sequential design compared to a fixed design as

r = Ik/Ifix = nk/Nfix. (12)

This ratio is independent of the θ-value δ for which the trial is powered as long as the information
(sample size) available at each analysis increases proportionately with Ifix and the boundaries for
the group sequential design remain unchanged; see, for example, Jennison and Turnbull [10]. Because
of this, the default for gsDesign() is to print the sample size ratios ri = Ii/Ik, i = 1, 2, . . . , k rather
than an actual sample size at each interim analysis. This is implemented through by the default
value of 1 for the input parameter n.fix. We demonstrate in the following subsections how to set
n.fix to apply to our motivating examples.
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3.3 The default call to gsDesign()

We begin with the call x <- gsDesign() to generate a design using all default arguments. The next
line prints a summary of x; this produces the same effect as print(x) or print.gsDesign(x). Note
that while the total Type I error is 0.025, this assumes the lower bound is ignored if it is crossed;
looking lower in the output we see the total probability of crossing the upper boundary at any analysis
when the lower bound stops the trial is 0.0233. Had the option x <- gsDesign(test.type=3) been
run, both of these numbers would assume the trial stops if the lower bound stopped and thus would
both be 0.025.

> x <- gsDesign()

> x

Asymmetric two-sided group sequential design with

90 % power and 2.5 % Type I Error.

Upper bound spending computations assume

trial continues if lower bound is crossed.

Sample

Size ----Lower bounds---- ----Upper bounds-----

Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++

1 0.357 -0.24 0.4057 0.0148 3.01 0.0013 0.0013

2 0.713 0.94 0.8267 0.0289 2.55 0.0054 0.0049

3 1.070 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250

+ lower bound beta spending (under H1):

Hwang-Shih-DeCani spending function with gamma = -2

++ alpha spending:

Hwang-Shih-DeCani spending function with gamma = -4

* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size

assume any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0.0000 0.0013 0.0049 0.0171 0.0233 0.6249

3.2415 0.1412 0.4403 0.3185 0.9000 0.7913

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0.0000 0.4057 0.4290 0.1420 0.9767

3.2415 0.0148 0.0289 0.0563 0.1000

> plot(x)
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Above we have seen standard output for gsDesign(). To access individual items of informa-
tion about what is returned from the above, use summary(x) to list the elements of x. Type
help(gsDesign) to get full documentation of the class gsDesign returned by the gsDesign() func-
tion. To view an individual element of x type, for example, x$delta. Other elements of x can
be accessed in the same way, and we will use these to display aspects of designs in further exam-
ples. Of particular interest are the elements upper and lower. These are both objects containing
multiple variables concerning the upper and lower boundaries and boundary crossing probabilities.
Type summary(x$upper) to show what these variables are. The upper boundary can be shown
with the command x$upper$bound. For additional plots, enter plot(x, plottype=2)) for a power
plot. The argument plottype can run from 1 (the default) to 7. The options not already noted
plot effect sizes at boundaries (plottype=3), conditional power at boundaries (plottype=4)), α-
and β-spending functions (plottype=5)), expected sample size by underlying treatment difference
(plottype=6), and B-values at boundaries (plottype=7).

3.4 Applying the default design to the CAPTURE example

The sample size ratios from (12) can be obtained as follows:

> x <- gsDesign()

> x$n.I

[1] 0.3566277 0.7132555 1.0698832
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These will be applied to each of our examples. Recall from the CAPTURE trial that we had
a binomial outcome and wished to detect a reduction in the primary endpoint from a 15% event
rate in the control group to a 10% rate in the experimental group. While we consider 80% power
elsewhere, we stick with the default of 90% here. A group sequential design with 90% power and
2.5% Type I error has the same bounds as shown previously. The sample size at each analysis is
obtained as follows (continuing the code just above):

> n.I <- nBinomial(p1 = 0.15, p2 = 0.1)

> n.I

[1] 1834.641

> n.I * x$n.I

[1] 654.284 1308.568 1962.852

Rounding up to an even number in each case, we see from the above that a while a fixed
design requires 1836 patients, employing the default group sequential design inflates the sample
size requirement to 1964. Interim analyses would be peformed after approximately 654 and 1308
patients.

The group sequential design can be derived directly by replacing the input parameter n.fix with
the sample size from a fixed design trial as follows:

> n.I <- nBinomial(p1 = 0.15, p2 = 0.1)

> x <- gsDesign(n.fix = n.I)

> x$n.I

[1] 654.2839 1308.5678 1962.8518

Printing this design now replaces the sample size ratio with the actual sample sizes at each
analysis. The only other difference from the design above in Section 3 is the second value of theta
below.

> x

Asymmetric two-sided group sequential design with

90 % power and 2.5 % Type I Error.

Upper bound spending computations assume

trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----

Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 655 -0.24 0.4057 0.0148 3.01 0.0013 0.0013

2 1309 0.94 0.8267 0.0289 2.55 0.0054 0.0049

3 1963 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250

+ lower bound beta spending (under H1):

Hwang-Shih-DeCani spending function with gamma = -2

++ alpha spending:

Hwang-Shih-DeCani spending function with gamma = -4

Boundary crossing probabilities and expected sample size

assume any cross stops the trial
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Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0.0000 0.0013 0.0049 0.0171 0.0233 1146.4

0.0757 0.1412 0.4403 0.3185 0.9000 1451.7

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0.0000 0.4057 0.4290 0.1420 0.9767

0.0757 0.0148 0.0289 0.0563 0.1000

3.5 Applying the default design to the noninferiority example

The fixed noninferiority design for a binomial comparison is the same as above, only changing the
nBinomial() call to

> n.fix <- nBinomial(p1 = 0.677, p2 = 0.677, delta0 = 0.07)

> ceiling(gsDesign(n.fix = n.fix)$n.I)

[1] 668 1336 2004

Testing at each analysis can be peformed using the Miettinen and Nurminen [14] method. Sim-
ulation to verify the normal approximation is adequate for comparing binomial event rates can be
performed using the functions simBinomial and testBinomial.

3.6 Applying the default design to the cancer trial example

For trials with time-to-event outcomes, the variable n.fix in gsDesign() needed is the number of
events from a fixed design trial. The reader may wish to refer to Jennison and Turnbull [10] for
further background; we also discuss distributional assumptions further in Section 5.3.2. We begin
with the code from the fixed design trial for the cancer trial example from 1.6. Next, we call to
gsDesign() with n.fix equal to the number of events for a fixed trial design. The value ssratio,
the sample size ratio at each analysis compared to the fixed design sample size is then shown. Note
that the values are the same as shown in the first output of this example above. The inflation in the
total sample size is the same as for the number of events required; that is, the sample size required
for a group sequential design with the default interim analysis plan is inflated to 595 (or 596 for an
even number) from 557 (or 558) from that of a fixed design by multiplying by 1.07.

> x <- nSurvival(lambda1 = log(2)/6, lambda2 = log(2)/6 * 0.7,

+ eta = -log(0.95)/12, Tr = 30, Ts = 36, type = "rr", entry = "unif")

> ceiling(x$n)

[1] 417

> ceiling(x$nEvents)

[1] 330

> y <- gsDesign(n.fix = x$nEvents, nFixSurv = x$n)

> ceiling(y$n.I)

[1] 118 235 353
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> ssratio <- (y$n.I/x$Num.events)

> ssratio

numeric(0)

> ceiling(ssratio[3] * x$Sample.size)

numeric(0)

> y

Group sequential design sample size for time-to-event outcome

with sample size 446. The analysis plan below shows events

at each analysis.

Asymmetric two-sided group sequential design with

90 % power and 2.5 % Type I Error.

Upper bound spending computations assume

trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----

Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 118 -0.24 0.4057 0.0148 3.01 0.0013 0.0013

2 235 0.94 0.8267 0.0289 2.55 0.0054 0.0049

3 353 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250

+ lower bound beta spending (under H1):

Hwang-Shih-DeCani spending function with gamma = -2

++ alpha spending:

Hwang-Shih-DeCani spending function with gamma = -4

Boundary crossing probabilities and expected sample size

assume any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0.0000 0.0013 0.0049 0.0171 0.0233 205.6

0.1787 0.1412 0.4403 0.3185 0.9000 260.4

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 Total

0.0000 0.4057 0.4290 0.1420 0.9767

0.1787 0.0148 0.0289 0.0563 0.1000

3.7 Using gsProbability() following gsDesign()

We reconsider the default design and obtain the properties for a larger set of θ values than in the
standard printout for gsDesign() shown previously. The first two lines of code below demonstrates
a group sequential design generated by gsDesign() can be input to gsProbability() to obtain
boundary crossing probabilities for an extended set of parameter values. The theta values in the
output make more sense in this case when they are computed relative to the effect size x$delta for
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which the trial is powered; this is more easily seen in the plot of expected sample size shown here
since the x-axis uses this scale. Note that the y-axis shows the expected sample size relative to a
fixed design trial when the sample size ratio is computed; if we had input a fixed design sample size,
the y-axis would show the actual expected sample size. Note further that the plot() function for
the gsDesign class (used here) is an extension of the standard plot() function, and thus allows
use of many of its parameters, such as line width (lwd), line type (lty), plot titles and axis labels.
This plot demonstrates the ability of a group sequential design to appropriate adapt sample size to
come to an appropriate conclusion depending on the true treatment effect. If the effect size is twice
that for which the trial is powered, the expected sample size is about 40% of that for a fixed design,
compared to over 80% in some cases when the true treatment effect is between the hypothesized
values for the efficacy parameter θ.

> x <- gsDesign()

> y <- gsProbability(theta = x$delta * seq(0, 2, 0.25), d = x)

> y

Asymmetric two-sided group sequential design with

90 % power and 2.5 % Type I Error.

Upper bound spending computations assume

trial continues if lower bound is crossed.

Sample

Size ----Lower bounds---- ----Upper bounds-----

Analysis Ratio* Z Nominal p Spend+ Z Nominal p Spend++

1 0.357 -0.24 0.4057 0.0148 3.01 0.0013 0.0013

2 0.713 0.94 0.8267 0.0289 2.55 0.0054 0.0049

3 1.070 2.00 0.9772 0.0563 2.00 0.0228 0.0188

Total 0.1000 0.0250

+ lower bound beta spending (under H1):

Hwang-Shih-DeCani spending function with gamma = -2

++ alpha spending:

Hwang-Shih-DeCani spending function with gamma = -4

* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size

assume any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 Total E{N}

0.0000 0.0013 0.0049 0.0171 0.0233 0.6249

0.8104 0.0058 0.0279 0.0872 0.1209 0.7523

1.6208 0.0205 0.1038 0.2393 0.3636 0.8520

2.4311 0.0595 0.2579 0.3636 0.6810 0.8668

3.2415 0.1412 0.4403 0.3185 0.9000 0.7913

4.0519 0.2773 0.5353 0.1684 0.9810 0.6765

4.8623 0.4574 0.4844 0.0559 0.9976 0.5701

5.6727 0.6469 0.3410 0.0119 0.9998 0.4868

6.4830 0.8053 0.1930 0.0016 1.0000 0.4266

Lower boundary (futility or Type II Error)

Analysis

22



Theta 1 2 3 Total

0.0000 0.4057 0.4290 0.1420 0.9767

0.8104 0.2349 0.3812 0.2630 0.8791

1.6208 0.1138 0.2385 0.2841 0.6364

2.4311 0.0455 0.1017 0.1718 0.3190

3.2415 0.0148 0.0289 0.0563 0.1000

4.0519 0.0039 0.0054 0.0097 0.0190

4.8623 0.0008 0.0006 0.0009 0.0024

5.6727 0.0001 0.0001 0.0000 0.0002

6.4830 0.0000 0.0000 0.0000 0.0000

> plot(y, plottype = 6, lty = 2, lwd = 3)

Expected sample size relative to fixed design
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4 Deriving group sequential designs

There are many ways to specify a group sequential design to obtain a desired power and Type I
error. For planning purposes, the number, k and relative timing 0 < t1 < ... < tk = 1 of interim
analyses are fixed. Given these values, there are two general approaches to deriving boundaries for
a group sequential trial:

• The error spending approach. Specify boundary crossing probabilities at each analysis
and derive a sample size and boundary values based on these values. This is most commonly
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Table 2: Boundary crossing probabilities used to set boundaries in gsDesign() by test.type.
test.type Upper bound Lower bound

1 α+
i (0) None

2 α(0) βi(0)
3 αi(0) βi(δ)
4 α+

i (0) βi(δ)
5 α(0) βi(0)
6 α+(0) βi(0)

done with the error spending function approach proposed by Lan and DeMets [13], which is
discussed at some length in Section 6. We present this method in brief in Section 4.1 and
follow this with simple examples.

• The boundary family approach. Specify how big boundary values should be relative to
each other and adjust these relative values by a constant multiple to control overall error rates.
Sample size adjustment is also part of this derivation. The commonly applied boundary family
approach uses the Wang-Tsiatis [24] family which includes bounds by Pocock [18] and O’Brien
and Fleming [16]. This will be discussed in Section 4.2.

4.1 Boundary derivation using boundary crossing probabilities

4.1.1 Types of error probabilities used: test.type

Before starting a discussion of spending functions, different methods of computing Type I error are
discussed. Boundary crossing probabilities for upper bounds may be specified to gsDesign() using
either αi(0) or α+

i (0), i = 1, 2, . . . , k. In the first case, it is assumed that a trial stops when either a
lower or upper bound is crossed and the only Type I error occurs when the first time a boundary is
crossed it is an upper bound. In the second case, it is assumed that a lower bound may be ignored
if crossed and the Type I error is the probability of ever crossing an upper bound if the trial is
never stopped for crossing a lower bound. As we have seen, the difference between these boundary
crossing probabilities may be small. The differences can be meaningful, however, when agressive
futility bounds are employed to require, say, an early positive treatment effect trend.

For lower bounds, either βi(δ) or βi(0), i = 1, 2, . . . , k, may be specified.
Sample size and boundaries that have appropriate boundary crossing probabilities and power

are derived numerically using computational methods given in detail in Chapter 19 of Jennison and
Turnbull [10]. The gsDesign() parameter test.type specifies which boundary crossing probabilities
are used as outlined in Table 2.

For test.type=1, 2 and 5, boundaries can be computed in a single step just by knowing the
cumulative proportion of the final planned statistical information (sample size/number of events)
at each analysis that is specified using the timing input variable. For test.type=6, the upper
and lower boundaries are computed separately and independently using these same methods. For
test.type=1, 2, 5 or 6 the total sample size is then set to obtain the desired power under the
alternative hypothesis by using a root finding algorithm.

For test.type=3 and 4 sample size and bounds are set simultaneously using an iterative al-
gorithm. This computation is slightly more complex than the above. This does not make any
noticeable difference in normal use of the gsDesign(). However, for user-developed routines that
require repeated calls to gsDesign() (e.g., finding an optimal design), there may be noticeably
slower performance when test.type=3 or 4 is used.
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4.1.2 Specifying boundary crossing probabilities in gsDesign()

We use the CAPTURE example, working with the desired 80% power (β = .2) to demonstrate
deriving bounds with specified boundary crossing probabilities. For simplicity, we will let α+

i (0) =
.025/4 and βi(δ) = .2/4, i = 1, 2, 3, 4. Setting the gsDesign() parameters sfu and sfl to sfLinear,
the vector p below is used to equally allocate the boundary crossing probabilities for each analysis.
Note that sfLinear() requires an even number of elements in param. The first half specify the
timepoints using an increasing set of values strictly between 0 and 1 to indicate the proportion of
information at which the spending function is specified. The second half specify the proportion
of total error spending at each of these points. (Aside: those interested in plotting with special
characters note the special handling of the character + in the argument main to plot().)

# Cumulative proportion of spending planned at each analysis

# In this case, this is also proportion of final observations at each interim

p <- c(.25, .5, .75)

t <- c(.25,.5,.75)

# Cumulative spending intended at each analysis (for illustration)

p * 0.025

n.fix <- nBinomial(p1=.15, p2=.1, beta=.2)

x <- gsDesign(k=4, n.fix=n.fix, beta=.2, sfu=sfLinear, sfupar=c(t,p),

sfl=sfLinear, sflpar=c(t,p))

plot(x, main=expression(paste("Equal ", alpha[i]^{"+"}, (0), " and ",

beta[i](delta), " for each analysis")))

x

The printed output from the above is shown below and a plot of the derived boundaries is in
Figure 1. The columns labeled Spend+ and Spend++ show the values βi(δ) and αi(0), respectively,
are equal for each analysis, i = 1, 2, 3, 4. The nominal p-values for the upper bound increase and thus
the bounds themselves decrease for each analysis. That equal error probabilities results in unequal
bounds is because of the correlation between the test statistics used for analysis that was indicated
in (4). Note that the requirement of 1372 patients for the fixed design has now increased to a
maximum sample size of 1786 which is an inflation of 30%. On the other hand, the expected number
of patients when a boundary is crossed is 770 under the assumption of no treatment difference and
1054 under the alternative hypothesis of a 15% event rate in the control group and 10% in the
experimental group. Thus, this redesign seems reasonably effective at controlling the sample size
when the experimental regimen has no underlying benefit. The nominal α−level of .0124 required
for a positive result at the end of the study is almost exactly half that of the overall .025 for the
study. We will propose other designs that will not require such a small final nominal α by setting
higher early efficacy bounds.

Asymmetric two-sided group sequential design with 80 % power and 2.5 % Type I Error.

Upper bound spending computations assume trial continues if lower bound is crossed.

----Lower bounds---- ----Upper bounds-----

Analysis N Z Nominal p Spend+ Z Nominal p Spend++

1 447 -0.05 0.4816 0.05 2.50 0.0063 0.0063

2 893 0.82 0.7953 0.05 2.41 0.0080 0.0063

3 1340 1.53 0.9370 0.05 2.32 0.0101 0.0063
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Figure 1: Boundary plot with equal α+
i (0) and βi(δ), i = 1, 2, 3, 4.

4 1786 2.24 0.9876 0.05 2.24 0.0124 0.0062

Total 0.2000 0.0250

+ lower bound beta spending (under H1): Piecewise linear spending function with

line points = 0.25 0.5 0.75 0.25 0.5 0.75

++ alpha spending: Piecewise linear spending function with

line points = 0.25 0.5 0.75 0.25 0.5 0.75

Boundary crossing probabilities and expected sample size assuming any cross stops the trial

Upper boundary (power or Type I Error)

Analysis

Theta 1 2 3 4 Total E{N}

0.0000 0.0063 0.0062 0.0059 0.0042 0.0225 769.7

0.0757 0.1843 0.2805 0.2253 0.1100 0.8000 1054.1

Lower boundary (futility or Type II Error)

Analysis

Theta 1 2 3 4 Total

0.0000 0.4816 0.3321 0.1299 0.0339 0.9775

0.0757 0.0500 0.0500 0.0500 0.0500 0.2000

Now we display piecewise linear spending functions. The plot resulting from the code below is
in 2.

# Cumulative proportion of spending planned at each analysis

# Now use a piecewise linear spending

p <- c(.05, .2, .5)

p2 <- c(.6,.8,.85)
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Figure 2: Piecewise linear spending functions.

x <- gsDesign(k=4, n.fix=n.fix, beta=.2, sfu=sfLinear, sfupar=c(t,p),

sfl=sfLinear, sflpar=c(t,p2))

plot(x, plottype="sf", main="Piecewise linear spending")

4.2 Deriving group sequential designs using boundary families

The second method of setting boundaries uses the relative z-value for a design cutoff at each interim
analysis, ci > 0, i = 1, 2, . . . , k. We define vectors t ≡ (t1, t2, . . . , tk) and c ≡ (c1, c2, . . . , ck). For
2-sided testing, Wang and Tsiatis [24] defined the boundary function

−ai = bi = C(t, c)ci (13)

where the constant C(t, c) > 0 is chosen to appropriately control Type I error.
Wang and Tsiatis [24] specifically defined the boundary function family

g(t; ∆) = C(t; ∆)t∆−.5. (14)

For i = 1, 2, . . . , k the boundary at analysis i are given by

−ai = bi = C(t; ∆)t∆−.5i .

For 2-sided testing, note that for ∆ = .5 the boundary values are all equal. Thus, this is equivalent
to a Pocock [18] boundary when analyses are equally spaced. The value ∆ = 0 generates O’Brien-
Fleming bounds [16].

Pampalona and Tsiastis [17] derived a related method of using boundary families to set asymmet-
ric bounds; this is not currently implemented in gsDesign(). Using constants c′i > 0, i = 1, 2, . . . , k
and a constant C ′(t; Ik) that along with Ik is used to appropriately control Type II error, they set

ai = δ
√
ti − C ′(t)c′i. (15)
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O’Brien-Fleming, Pocock, or Wang-Tsiatis are normally used with equally-spaced analyses. They
are used only with one-sided (test.type=1) and symmetric two-sided (test.type=2) designs. We
will use the CAPTURE example, again with 80% power rather than the default of 90%. Notice
that this requires specifying beta=.2 in both nBinomial() and gsDesign(). O’Brien-Fleming,
Pocock, or Wang-Tsiatis (parameter of 0.15) bounds for equally space analyses are generated using
the parameters sfu and sfupar below. If you print the Pocock design (xPocock), you will see that
the upper bounds are all equal and that the upper boundary crossing values αi(0) printed in the
Spend column decrease from .0091 for the first analysis to .0041 for the final analysis.

n.fix <- nBinomial(p1=.15, p2=.1, beta=.2)

xOF <- gsDesign(k=4, test.type=2, n.fix=n.fix, sfu="OF", beta=.2)

xPocock <- gsDesign(k=4, test.type=2, n.fix=n.fix, sfu="Pocock", beta=.2)

xWT <- gsDesign(k=4, test.type=2, n.fix=n.fix, sfu="WT", sfupar=.15, beta=.2)

The resulting sample sizes for these designs can be computed using

nOF <- 2 * ceiling(xOF$n.I[4] / 2)

nPocock <- 2 * ceiling(xPocock$n.I[4] / 2)

nWT <- 2 * ceiling(xWT$n.I[4] / 2)

We now present an example of how is fairly simple to produce custom plots using gsDesign() output
and standard R plotting functions. The resulting output is in Figure 3. If you are not familiar with R
plotting, executing the following statements one at a time may be instructive. The call help(plot)
and its ”See also” links (especially par) can be used to find explanations of parameters below. The
legend call below particularly demonstrates a nice strength of R for printing greek characters and
subscripts in plots.

plot(xOF$n.I,xOF$upper$bound,xlim=c(300,1800),ylim=c(1.5,4.5),cex=1.5,lwd=2,

type="b",xlab="N",ylab="Normal critical value (upper bounds)",pch="o",

main="N and upper bounds with Wang-Tsiatis designs")

lines(xPocock$n.I,xPocock$upper$bound,lty=3,lwd=2)

points(xPocock$n.I,xPocock$upper$bound,pch="p",cex=1.5)

lines(xWT$n.I,xWT$upper$bound,lty=2,lwd=2)

points(xWT$n.I,xWT$upper$bound,pch="x",cex=1.5)

legend(x=c(750,1825), y = c(3.7,4.5), lty=c(1,2,3), lwd=2, pch=c("o","x","p"),

cex=1.5,

legend=c(expression(paste(Delta,"=0.0, ",N[4],

"=1404, (O,Brien-Fleming)")),

c(expression(paste(Delta,"=.15, ",N[4],"=1430")),

c(expression(paste(Delta,"=.50, ",N[4],"=1650, (Pocock)"))))))

Figure 3 shows how the upper bounds and sample size change as ∆ changes for Wang-Tsiatis
bounds. For the O’Brien-Fleming design, the final sample size is only inflated to 1402 from the 1372
required for a fixed design. The relatively aggressive early bounds for the the Pocock design result in
sample size inflation to 1650. This design is not frequently used because of the relatively low bounds
at early analyses and the substantial sample size inflation required to maintain the desired power.
Since the nominal p-value required for stopping at the initial analysis for the O’Brien-Fleming de-
sign is .00005 (2-sided), an intermediate design with ∆ = .15 might be of some interest. This has
a relatively small sample size inflation to 1430 in order to maintain power and the nominal p-value
required to stop the trial at the first interim analysis is .0008 (2-sided). Examine the boundary cross-
ing probabilities by reviewing, for example, xOF$upper$spend. Also consider reviewing plot(xWT,

plottype=3) to see the observed treatment effect required at each analysis to cross a boundary.
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Figure 3: Wang-Tsiatis bounds for the CAPTURE example

5 Other gsDesign() parameters

5.1 Setting Type I error and power

Type I error as input to gsDesign() is always one-sided and is set through the parameter alpha.
Type II error (1-power) is set in the parameter beta. A standard design modified to have Type I
error of .05 and Type II error of .2 (80% power) rather than the default of .025 Type I and .1 Type
II error is produced with the command

x <- gsDesign(alpha=.05, beta=.2)

5.2 Number and timing of analyses

The number of analyses is set in gsDesign() through the parameter k>1, which has a default of 3.
The default for timing of analyses is to have them equally-spaced, which is indicated by the default
value of timing=1. This will often not be feasible or desired due to logistical or other reasons. The
parameter timing can be input as a vector of length k or k-1 where 0 < timing[1] < timing[2]

< . . . < timing[k] = 1. It is optional to specify timing[k] since it is always 1. The values in timing

set the proportion of statistical information available for the data analyzed at each interim analysis.
The statistical information is generally proportional to the number of observations analyzed or, for
survival analysis, the number of time-to-event endpoints that have been observed. The following
compares upper bounds, number of observations at each analysis, and average number of observations
at the analysis where a boundary is crossed for the default design (stored in x) versus an alternative
analyzing after 25%and 50% of observations (stored in xt) for the CAPTURE example. You can
see that the upper bounds are more stringent when analyses are done earlier in the trial.

> n.fix <- nBinomial(p1=.15, p2=.1)

> x <- gsDesign(n.fix=n.fix)

> xt <- gsDesign(n.fix=n.fix, timing=c(.25, .5))
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> 2*ceiling(x$n.I/2)

[1] 656 1310 1964

> x$upper$bound

[1] 3.010739 2.546531 1.999226

> x$en

[1] 1146.391 1451.709

> 2*ceiling(xt$n.I/2)

[1] 482 964 1926

> xt$upper$bound

[1] 3.155373 2.818347 1.983563

> xt$en

[1] 1185.173 1547.649

Comparing the designs, we see that the average sample number is lower for the default design with
evenly spaced analyses compared to the design analyzing after 25% and 50% of observations. This
is true both under the null hypothesis (1146 versus 1185) and the alternate hypothesis (1452 versus
1548) in spite of a lower maximum sample size (1926 versus 1964) for the latter design. To understand
this further we look first at the probability of crossing the lower bound at each analysis for each
design below. The columns of the matrices printed correspond to the theta values under the null
and alternate hypotheses, respectively, while rows correspond to the analyses. Thus, the default
design has probability of 41% of crossing the lower bound at the first interim analysis compared to
25% for the design with first analysis at 25% of observations. By examining these probabilities as
well as corresponding upper boundary crossing probabilities (e.g., x$upper$prob) we see that by
moving analyses earlier without changing spending functions we have decreased the probability of
crossing an interim boundary, which explains the smaller expected sample size for the default design
which uses later interim analyses.

> x$lower$prob

[,1] [,2]

[1,] 0.4056598 0.01483371

[2,] 0.4290045 0.02889212

[3,] 0.1420312 0.05627417

> xt$lower$prob

[,1] [,2]

[1,] 0.2546094 0.01015363

[2,] 0.3839157 0.01674051

[3,] 0.3375615 0.07310586

5.3 Standardized treatment effect: delta

5.3.1 Normally distributed data

The “usual” formula for sample size for a fixed design is

n =

(
Z1−α + Z1−β

δ

)2

. (16)

This formula originates from testing the mean of a sample of normal random variables with variance
1. The null hypothesis is that the true mean θ equals 0, while the alternate hypothesis is that θ = δ.
The distribution of the mean of n observations X̄n follows a normal distribution with mean δ and
standard deviation 1/n (i.e., N(δ,1/n)). Assuming δ > 0, the standard statistic for testing this is
Zn =

√
nX̄n ∼N(

√
nδ, 1) which rejects the hypothesis that the true mean is 0 if Zn > Z1−α. The

30



null hypothesis is rejected with probability α when the null hypothesis is true (Type I error), while
the probability of rejecting under the alternate hypothesis (power or one minus Type II error) is

Φ(Z1−α −
√
nδ). (17)

By fixing this probability as 1− β and solving for n, equation (16) is derived.
Assume a set of patients is evaluated at baseline for a measure of interest, then treated with a

therapy and subsequently measured for a change from baseline. Assume the within subject variance
for the change from baseline is 1. Suppose δ = .1. The default group sequential design can be
obtained for such a study using the call gsDesign(delta = .1), yielding a planned maximum
sample size of 1125.

5.3.2 Time to event data

Equations (16) and (17) are used as approximations for many situations where test statistics are
approximated well by the normal distribution as n gets large. A useful example of this approxima-
tion is comparing survival distributions for two groups under the assumption that the hazard rate
(“instantaneous failure rate”) for the control group (λ1(t)) and experimental group (λ2(t)) for any
time t > 0 are proportional as expressed by

λ2(t) = e−γλ1(t). (18)

We have used −γ in the exponent so that a positive value of γ indicates lower risk in the experimental
treatment group. The value e−gamma will be referred to as the hazard ratio and γ as minus the log
hazard ratio.

Note that when γ = 0 there is no difference in the hazard rates between treatment groups. A
common test statistic for the null hypothesis that γ = 0 is the logrank test. We will denote this
by T (d) where d indicates the number of events observed in the combined treatment groups. A
reasonably good approximation for its distribution is

T (d) ∼ N(γ × V (d), V (d)). (19)

For equally sized treatment groups, V (d) is approximately d/4. Thus,

Z = T (d)2/
√
d ∼ N(

√
dγ/2, 1). (20)

For the formulation from Section 2.1 we have θ = γ/2. If γ = µ is the alternative hypothesis to the
null hypothesis γ = 0, then we have δ = µ/2. In fact, Tsiatis [23], Sellke and Siegmund [20] and
Slud and Wei [21] have all shown that group sequential theory may be applied to censored survival
data using this distributional assumption; this is also discussed by Jennison and Turnbull [10]. If we
assume there are k analyses after d1 < d2 < . . . < dk events and let Ii = di/4, i = 1, 2, . . . , k then
we may apply the canonical distribution assumptions from (3) and (4).

For the cancer trial example in Section 1.6 we assumed e−µ = .7 which yields δ = − ln(.7)/2 =
.178. Applying (16) with α = .025 and β = .1 and this value of δ, the number of events required is
calculated as 331 compared to 330 calculated previously using the Lachin and Foulkes [12] method.
We may obtain the default group sequential design by specifying δ rather than the fixed design
number of events as follows: gsDesign(delta = -log(.7)/2).

We also apply this distribution theory to the non-inferiority trial for a new treatment for diabetes.
We wish to rule out a hazard ratio of 1.3 for the experimental group compared to the control group
under the assumption that the risk of cardiovascular events is equal in the two treatment groups.
This implies that our null hypothesis is that γ = ln(1.3) = .262 and the alternate hypothesis is that
γ = 0. Letting θ = (γ − ln(1.3))/2 the null hypothesis is re-framed as θ = 0 and the alternative as
θ = ln(1.3)/2. The test statistic Z = (T (d)− ln(1.3)×d/4)×2/

√
d is then approximately distributed

N(
√
dθ, 1). Substituting δ = ln(1.3)/2, α = .025 and β = .1 in (16) we come up with d = 611. This

is within 1% of the 617 events suggested in Section 1.8.
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6 Spending Functions

6.1 Spending function definitions.

For any given 0 < α < 1 we define a non-decreasing function f(t;α) for t ≥ 0 with α (0) = 0 and for
t ≥ 1, f(t;α) = α. For i = 1, 2, . . . ,K we define ti = Ii/IK and then set αi(0) through the equation

f(ti;α) =

i∑
j=1

αj(0). (21)

We consider a spending function proposed by Lan and DeMets [13] to approximate a Pocock bound.

f(t;α) = α log(1 + (e− 1)t) (22)

This spending function is implemented in the function sfLDPocock. We again consider a 2-sided
design with equally spaced analyses, ti = i/4, i = 1, 2, 3, 4. The values for αi(0) are obtained as
follows:

> sfLDPocock(alpha=.025, t=1:4/4)$spend

[1] 0.00893435 0.01550286 0.02069972 0.02500000

We will discuss the exact nature of this call to sfLDPocock in Section 7 below. We now derive a
design for the CAPTURE study using this spending function

> n.fix <- nBinomial(p1=.15, p2=.1, beta=.2)

> x <- gsDesign(k=4, test.type=2, n.fix=n.fix, sfu=sfLDPocock, beta=.2)

> cumsum(x$upper$prob[,1])

[1] 0.00893435 0.01550287 0.02069973 0.02500001

The boundary crossing probabilities under the assumption of no treatment difference are in x$upper$prob[,1]

and there cumulative totals are produced by the above call to cumsum(). Note that these values
match those produced by the call to sfLDPocock above. Next we compare the bounds produced by
this design with the actual Pocock bounds to see they are nearly identical:

> xPocock <- gsDesign(k=4, test.type=2, n.fix=n.fix, sfu="Pocock", beta=.2)

> x$upper$bound

[1] 2.368328 2.367524 2.358168 2.350030

> xPocock$upper$bound

[1] 2.361298 2.361298 2.361298 2.361298

>

The reader may wish to compare the O’Brien-Fleming design presented in 4.2 using the spend-
ing function sfLDOF, which implements a spending function proposed by Lan and DeMets [13] to
approximate this design:

αi(t) = 2

(
1− Φ

(
Φ−1(α/2)√

t

))
(23)

You will see that this approximation is not as good as the Pocock bound approximation.
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6.2 Spending function families

The function f(t;α) may be generalized to a family f(t;α, γ) of spending functions using one or
more parameters. For instance, the default Hwang-Shih-DeCani spending function family is defined
for 0 ≤ t ≤ 1 and any real γ by

f(t;α, γ) =
α 1−exp(−γt)

1−exp(−γ) , γ 6= 0

αt, γ = 0

The boundary crossing probabilities α+
i (θ) and βi(θ) may be defined in a similar fashion, i =

1, 2, . . . ,K with the same or different spending functions f where:

f(ti;α) =

i∑
j=1

α+
j (0) (24)

f(ti;β(θ)) =

i∑
j=1

βj(θ) (25)

The argument test.type in gsDesign() provides two options for how to use (25) to set lower
bounds. For test.type=2, 5 and 6, lower boundary values are set under the null hypothesis by
specifying β(t; 0), 0 ≤ t. For test.type=3 and 4, we compute lower boundary values under the
alternative hypothesis by specifying β(t; δ), 0 ≤ t. β(t; δ) is referred to as the β-spending function
and the value βi(δ) is referred to as the amount of β (Type II error rate) spent at analysis i,
1 ≤ i ≤ K.

Standard published spending functions commonly used for group sequential design are included
as part of the gsDesign package. Several ‘new’ spending functions are included that are of potential
interest. Users can also write their own spending functions to pass directly to gsDesign(). Available
spending functions and the syntax for writing a new spending function are documented here. We
begin here with simple examples of how to apply standard spending functions in calls to gsDesign().
This may be as far as many readers may want to read. However, for those interested in more esoteric
spending functions, full documentation of the extensive spending function capabilities available is
included. Examples for each type of spending function in the package are included in the online help
documentation.

6.3 Spending Function Basics

The parameters sfu and sfl are used to set spending functions for the upper and lower bounds,
respectively, each having a default value of sfHSD, the Hwang-Shih-DeCani spending function. The
default parameter for the upper bound is γ = −4 to produce a conservative, O’Brien-Fleming-like
bound. The default for the lower bound is γ = −2, a less conservative bound. This design was
presented at some length in 3.

To change these to −3 (less conservative than an O’Brien-Fleming bound) and 1 (an aggressive
Pocock-like bound), respectively, requires the parameter sfupar for the upper bound and sflpar

for the lower bound: Next we consider some simple alternatives to the default spending function
parameters. The Kim-DeMets function, sfPower(), with upper bound parameter ρ = 3 (a conserva-
tive, O’Brien-Fleming-like bound) and lower bound parameter ρ = 0.75 (an aggressive, Pocock-like
bound) requires resetting the upper bound spending function sfu and the lower bound spending
function sfl. In the first code line following, we replace lower and upper spending function param-
eters with 1 and −2, respectively; the default Hwang-Shih-DeCani spending function family is still
used. In the second line, we specify a Kim-DeMets (power) spending function for both the lower
bound (with the parameters sfl=sfPower and sflpar=2) and the upper bounds (with the param-
eters sfu=sfPower and sfupar=3). Then we compare bounds from the three designs. Bounds for
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the power spending function design are quite comparable to the default design. Generally, choosing
between these two spending function families is somewhat arbitrary. The alternate Hwang-Shih-
DeCani design uses more aggressive stopping boundaries. The last lines below show that sample
size inflation from a fixed design is about 25% for the the design with more aggressive stopping
boundaries compared to about 7% for each of the other designs.

> x <- gsDesign()

> xHSDalt <- gsDesign(sflpar=1, sfupar=-2)

> xKD <- gsDesign(sfl=sfPower, sflpar=2, sfu=sfPower, sfupar=3)

> x$upper$bound

[1] 3.010739 2.546531 1.999226

> xHSDalt$upper$bound

[1] 2.677524 2.385418 2.063740

> xKD$upper$bound

[1] 3.113017 2.461933 2.008705

> x$lower$bound

[1] -0.2387240 0.9410673 1.9992264

> xHSDalt$lower$bound

[1] 0.3989132 1.3302944 2.0637399

> xKD$lower$bound

[1] -0.3497491 0.9822541 2.0087052

> x$n.I[3]

[1] 1.069883

> xHSDalt$n.I[3]

[1] 1.254268

> xKD$n.I[3]

[1] 1.071011

>

Following is example code to plot Hwang-Shih-DeCani spending functions for three values of the γ
parameter. The first two γ values are the defaults for upper bound spending (γ = −4; a conservative
bound somewhat similar to an O’Brien-Fleming bound) and lower bound spending (γ = −2; a less
conservative bound). The third (γ = 1) is included as it approximates a Pocock stopping rule; see
Hwang, Shih and DeCani [9]. The Hwang-Shih-DeCani spending function class implemented in the
function sfHSD() may be sufficient for designing many clinical trials without considering the other
spending function forms available in this package. The three parameters in the calls to sfHSD()

below are the total Type I error, values for which the spending function is evaluated (and later
plotted), and the γ parameter for the Hwang-Shih-DeCani design. The code below yields the plot
in Figure 4 below (note the typesetting of Greek characters!):

> plot(0:100/100, sfHSD(.025, 0:100/100, -4)$spend, type="l", lwd=2,

+ xlab="Proportion of information",

+ ylab=expression(paste("Cumulative \ ",alpha,"-spending")),

+ main="Hwang-Shih-DeCani Spending Functions")

> lines(0:100/100, sfHSD(.025, 0:100/100, -2)$spend, lty=2, lwd=2)

> lines(0:100/100, sfHSD(.025, 0:100/100, 1)$spend, lty=3, lwd=2)

> legend(x=c(.0, .27), y=.025 * c(.8, 1), lty=1:3, lwd=2,

+ legend=c(expression(paste(gamma," = -4")),

+ expression(paste(gamma," = -2")),

+ expression(paste(gamma," = 1"))))
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Figure 4: Hwang-Shih-DeCani spending function example

Similarly, Jennison and Turnbull [10], suggest that the Kim-DeMets spending function is flexible
enough to suit most purposes. To compare the Kim-DeMets family with the Hwang-Shih-DeCani
family just demonstrated, substitute sfPower() instead of sfHSD(); use parameter values 3, 2 and
0.75 to replace the values −4,−2, and 1 in the code shown above:

> plot(0:100/100,sfPower(.025, 0:100/100, 3)$spend, type="l", lwd=2,

+ xlab="Proportion of information",

+ ylab=expression(paste("Cumulative \ ",alpha,"-spending")),

+ main="Kim-DeMets Spending Functions")

> lines(0:100/100, sfPower(.025, 0:100/100, 2)$spend, lty=2, lwd=2)

> lines(0:100/100, sfPower(.025, 0:100/100, 0.75)$spend, lty=3, lwd=2)

> legend(x=c(.0, .27), y=.025 * c(.8, 1), lty=1:3, lwd=2,

+ legend=c(expression(paste(gamma," = 3")),

+ expression(paste(gamma," = 2")),

+ expression(paste(gamma," = 0.75"))))

6.4 Resetting timing of analyses

When designed with a spending function, the timing and number of analyses may be altered during
the course of the trial. This is very easily handled in the gsDesign() routine using the input
arguments n.I and maxn.IPlan. We demonstrate this by example. Suppose a trial was originally
designed with the call:
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> x <- gsDesign(k=5, n.fix=800)

> x$upper$bound

> x$n.I

The second and third lines above show the planned upper bounds and sample sizes at analyses.
Suppose that when executed the final interim was skipped, the first 2 interims were completed on
time, the third interim was completed at 575 patients (instead of 529 as originally planned), the
fourth interim was skipped, and the final analysis was performed after 875 patients (instead of after
882 as originally planned). The boundaries for the analyses can be obtained as follows:

> gsDesign(k=4, n.fix=800, n.I=c(177,353,575,875), maxn.IPlan=x$n.I[x$k])

This design now has slightly higher power (90.4%) than the originally planned 90%. This is
because the final boundary was lowered relative to the original plan when the α-spending planned
for the fourth interim was saved for the final analysis by skipping the final interim. Note that all of
the arguments for the original design must be supplied when the study is re-designed—in addition
to adding n.I, which may have the same number, fewer, or more interim analyses compared to the
original plan. If the sample size for the final analysis is changed, maxn.IPlan should be passed in
as the original final sample size in order to appropriately assign α- and β-spending for the interim
analyses.

7 Advanced spending function details

7.1 Spending functions as arguments

Except for the ”OF”, ”Pocock” and ”WT” examples given in Section 4.2, a spending function passed
to gsDesign() through the arguments sfu (upper bound) and sfl (lower bound) must have the
following calling sequence:

sfname(alpha, t, param)

where sfname is an arbitrary name for a spending function available from the package or written
by the user. The arguments are as follows:

• alpha: a real value (0 < alpha < 1). The total error spending for the boundary to be
determined. This would be replaced with the following values from a call to gsDesign():
alpha for the upper bound, and either beta (for test.type = 3 or 4) or astar (for test.type
= 5 or 6) for the lower bound.

• t: a vector of arbitrary length m of real values, 0 ≤ t1 < t2 < . . . tm ≤ 1. Specifies the
proportion of spending for which values of the spending function are to be computed.

• param: for all cases here, this is either a real value or a vector of real values. One or more
parameters that (with the parameter alpha) fully specify the spending function. This is
specified in a call to gsDesign() with sfupar for the upper bound and sflpar for the lower
bound.

The value returned is of the class spendfn which was described in Section 6, The spendfn Class.
The following code and output demomstrate that the default value sfHSD for the upper and lower

spending functions sfu and sfl is a function:
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> sfHSD

function (alpha, t, param)

{

checkScalar(param, "numeric", c(-40, 40))

t[t > 1] <- 1

x <- list(name = "Hwang-Shih-DeCani", param = param, parname = "gamma",

sf = sfHSD, spend = if (param == 0) t * alpha else alpha *

(1 - exp(-t * param))/(1 - exp(-param)), bound = NULL,

prob = NULL)

class(x) <- "spendfn"

x

}

<environment: namespace:gsDesign>

Table 1 summarizes many spending functions available in the package. A basic description of
each type of spending function is given. The table begins with standard spending functions followed
by two investigational spending functions: sfExponential() and sfLogistic(). These spending
functions are discussed further in Section 7.2, Investigational Spending Functions, but are included
here due to their simple forms. The logistic spending function represented by sfLogistic() has been
used in several trials. It represents a class of two-parameter spending functions that can provide
flexibility not available from one-parameter families. The sfExponential() spending function is
included here as it provides an excellent approximation of an O’Brien-Fleming design as follows:

gsDesign(test.type=2, sfu=sfExponential, sfupar=0.75)

See also subsections below and online documentation of spending functions.

7.2 Investigational spending functions

When designing a clinical trial with interim analyses, the rules for stopping the trial at an interim
analysis for a positive or a negative efficacy result must fit the medical, ethical, regulatory and
statistical situation that is presented. Once a general strategy has been chosen, it is not unreasonable
to discuss precise boundaries at each interim analysis that would be considered ethical for the purpose
of continuing or stopping a trial. Given such specified boundaries, we discuss here the possibility of
numerically fitting α- and β-spending functions that produce these boundaries. Commonly-used one-
parameter families may not provide an adequate fit to multiple desired critical values. We present a
method of deriving two-parameter families to provide some additional flexibility along with examples
to demonstrate their usefulness. This method has been found to be useful in designing multiple trials,
including the CAPTURE trial [3], the GUSTO V trial [22] and three ongoing trials at Merck.

One method of deriving a two-parameter spending function is to use the incomplete beta distri-
bution which is commonly denoted by Ix(a, b) where a > 0, b > 0. We let

α(t; a, b) = αIt(a, b).

This spending function is implemented in sfBetaDist(); developing code for this is also demon-
strated below in Section 7.4, Writing Code for a New Spending Function.

Another approach allows fitting spending functions by solving a linear system of 2 equations in 2
unknowns. A two-parameter family of spending function is defined using an arbitrary, continuously
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Table 3: Spending function definitions and parameterizations.
Function Spending Function Functional Parameter

(parameter) Family Form (sfupar or sflpar)
sfHSD Hwang-Shih- Value in [-40,40).

(gamma) DeCani α 1−exp(−γt)
1−exp(−γ) -4=O’Brien-Fleming like;

1=Pocock-like
sfPower Value in (0,+∞)
(rho) Kim-DeMets αtρ 3=O’Brien-Fleming like

1=Pocock-like
sfLDPocock Pocock α log(1 + (e− 1)t) None
(none) approximation

sfLDOF O’Brien-Fleming 2
(

1− Φ
(

Φ−1(α/2)√
t

))
None

(none) approximation
sfLinear Piecewise linear Specified points Cumulative proportion of

(t1,t2,...,tm) specification 0 < t1 . . . < tm < 1 information and error
(p1,p2,...,pm) 0 < p1 . . . < pm < 1 spending for given timepoints
sfExponential (0, 10]

(nu) Exponential αt
−ν

Recommend ν < 1
0.75 =O’Brien-Fleming-like

sfLogistic Logistic α
ea( t

1−t )
b

1+ea( t
1−t )

b b > 0

(a,b)

"WT" Wang-Tsiatis C(k, α,∆)(i/K)∆−1/2 0=O’Brien-Fleming bound
(Delta) bounds 0.5=Pocock bound
"Pocock" Pocock This is a special case
(none) bounds of WT with ∆ = 1/2.
"OF" O’Brien-Fleming This is a special case
(none) bounds of WT with ∆ = 0.

38



increasing cumulative distribution function F () defined on (−∞,∞), a real-valued parameter a and
a positive parameter b:

α(t; a, b) = αF (a+ bF−1(t)). (26)

Fix two points of the spending function 0 < t0 < t1 < 1 to have spending function values specified
by u0 × alpha and u1 × alpha, respectively, where 0 < u0 < u1 < 1. Equation (26) now yields two
linear equations with two unknowns, namely for i = 1, 2

F−1(ui) = a+ bF−1(ti).

The four value specification of param for this family of spending functions is param=c(t0, t1, u0,

u1) where the objective is that sf(t0) = alpha*u0 and sf(t1) = alpha*u1. In this parameteri-
zation, all four values must be between 0 and 1 and t0 < t1, u0 < u1.

The logistic distribution has been used with this strategy to produce spending functions for
ongoing trials at Merck Research Laboratories in addition to the GUSTO V trial [22]. The logit
function is defined for 0 < u < 1 as logit(u) = log(u/(1−u)). Its inverse is defined for x ∈ (−∞,∞)
as logit−1(x) = ex/(1 + ex). Letting b > 0, c = ea > 0, F (x) = logit−1(x) and applying (26) we
obtain the logistic spending function family:

α(t; a, b) = α× logit−1(log(c) + b× logit(u)) (27)

= α
c
(

t
1−t

)b
1 + c

(
t

1−t

)b (28)

The logistic spending function is implemented in sfLogistic(). Functions are also available replac-
ing F () with the cumulative distribution functions for the standard normal distribution (sfNormal()),
two versions of the extreme value distribution (sfExtremeValue() with F (x) = exp(−exp(−x)) and
sfExtremeValue2 with F (x) = 1 − exp(−exp(x))), the central t-distribution (sfTDist()), and the
Cauchy distribution (sfCauchy()). Of these, sfNormal() is fairly similar to sfLogistic(). On
the other hand, sfCauchy() can behave quite differently. The function sfTDist() provides in-
termediary spending functions bounded by sfNormal() and sfCauchy(); it requires an additional
parameter, the degrees of freedom See online help for more complete documentation, particularly for
sfTDist(). Following is an example that plots several of these spending functions that fit through
the same two points (t1=0.25, t2=0.5, u1=0.1, u2=0.2) but behave differently for t > 1/2.

> plotsf <- function(alpha,t,param)

{

plot(t, sfCauchy(alpha, t, param)$spend, lwd=2,

xlab="Proportion of enrollment",

ylab="Cumulative spending", type="l")

lines(t, sfLogistic(alpha, t, param)$spend, lty=4, lwd=2)

lines(t, sfNormal(alpha, t, param)$spend, lty=5, lwd=2)

lines(t, sfTDist(alpha, t, c(param, 1.5))$spend, lty=2, lwd=2)

lines(t, sfTDist(alpha, t, c(param,2.5))$spend, lty=3, lwd=2)

legend(x=c(.0, .3), y=alpha * c(.7,1), lty=1:5, lwd=2,

legend=c("Cauchy", "t 1.5 df", "t 2.5 df", "Logistic", "Normal"))

}

> t <- 1:199/200

> t <- c(t, .9975, .99875, .9995, .99975)

> param <- c(.25, .5, .1, .2)

> plotsf(.025,t,param)
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Figure 5: Example fitting two- and three-parameter spending functions

7.3 Optimized spending functions

The following two examples demonstrate some of the flexibility and research possibilities for the
gsDesign package. The particular examples may or may not be of interest, but the strategy may
be applied using a variety of optimization criteria. First, we consider finding a spending function
to match a Wang-Tsiatis design. This could be useful to adjust a Wang-Tsiatis design if the timing
of interim analyses are not as originally planned. Second, we replicate a result from Anderson [1]
which minimized expected value of the square of sample size over a family of spending functions and
a prior distribution.

Example 1 Approximating a Wang-Tsiatis design

We have noted several approximations of O’Brien-Fleming and Pocock spending rules using
spending functions in the table above. Following is sample code to provide a good approximation of
Wang-Tsiatis bounds with a given parameter ∆. This includes O’Brien-Fleming (∆=0) and Pocock
(∆=0.5) designs. First, we define a function that computes the sum of squared deviations of the
boundaries of a Wang-Tsiatis design compared to a one-parameter spending function family with a
given parameter value of x. Note that Delta is the parameter for the Wang-Tsiatis design that we
are trying to approximate. Other parameters are as before; recall that test.type should be limited
to 1 or 2 for Wang-Tsiatis designs. Defaults are used for parameters for gsDesign() not included
here.

WTapprox <- function(x, alpha=0.025, beta=.1, k=3, sf=sfHSD,

Delta=.25, test.type=2)

{

# Wang-Tsiatis comparison with a one-parameter spending function
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y1 <- gsDesign(k=k, alpha=alpha, beta=beta, test.type=test.type, sfu="WT",

sfupar=Delta)$upper$bound

y2 <- gsDesign(k=k, alpha=alpha, beta=beta, test.type=test.type, sfu=sf,

sfupar=x)$upper$bound

z <- y1-y2

return(sum(z*z))

}

We consider approximating a two-sided O’Brien-Fleming design with alpha=0.025 (one-sided)
using the exponential spending function. The function nlminb() is a standard R function used for
minimization. It minimizes a function passed to it as a function of that function’s first argument,
which may be a vector. The first parameter of nlminb() is a starting value for the minimization
routine. The second is the function to be minimized. The parameter lower below provides a lower
bound for first argument to the function being passed to nlminb(). Following parameters are fixed
parameters for the function being passed to nlminb(). The result suggests that for k = 4, an expo-
nential spending function with ν = 0.75 approximates an O’Brien-Fleming design well. Examining
this same optimization for k = 2 to 10 suggests that ν = 0.75 provides a good approximation of an
O’Brien-Fleming design across this range.

> nu <- nlminb(.67, WTapprox, lower=0, sf=sfExponential, k=4, Delta=0, test.type=2)$par

> nu

[1] 0.7562779

Running comparable code for sfHSD() and sfPower() illustrates that the exponential spending
function can provide a better approximation of an O’Brien-Fleming design than either the Hwang-
Shih-DeCani or Kim-DeMets spending functions. For Pocock designs, the Hwang-Shih-DeCani
spending function family provides good approximations.

Example 2 Minimizing the expected value of a power of sample size

In this example, we first define a function that computes a weighted average across a set of theta
values of the expected value of a given power of the sample size for a design. Note that sfupar

and sflpar are specified in the first input argument so that they may later be optimized using the
R routine nlminb(). The code is compact, which is very nice for writing, but it may be difficult to
interpret. A good way to see how the code works is to define values for all of the parameters and
run each line from the R command prompt, examining the result.

# Expected value of the power of sample size of a trial

# as a function of upper and lower spending parameter.

# Get sfupar from x[1] and sflpar from x[2].

# val is the power of the sample size for which expected

# values are computed.

# theta is a vector for which expected values are to be computed.

# thetawgt is a vector of the same length used to compute a

# weighted average of the expected values.

# Other parameters are as for gsDesign.

enasfpar <- function(x, timing=1, theta, thetawgt, k=4,
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test.type=4, alpha=0.025, beta=0.1,

astar=0, delta=0, n.fix=1, sfu=sfHSD,

sfl=sfHSD, val=1, tol=0.000001, r=18)

{

# derive design

y <- gsDesign(k=k, test.type=test.type, alpha=alpha, beta=beta,

astar=astar, delta=delta, n.fix=n.fix, timing=timing,

sfu=sfu, sfupar=x[1], sfl=sfl, sflpar=x[2], tol=tol, r=r)

# compute boundary crossing probabilities for input theta

y <- gsProbability(theta=theta, d=y)

# compute sample sizes to the val power

n <- y$n.I^val

# compute expected values

en <- n %*% (y$upper$prob + y$lower$prob)

# compute weighted average of expected values

en <- sum(as.vector(en) * as.vector(thetawgt))

return(en)

}

Now we use this function along with the R routine nlminb() which finds a minimum across
possible values of sfupar and sflpar. The design derived using the code below and a more extensive
discussion can be found in [1]. The code above is more general than in [1], however, as that paper
was restricted to test.type=5 (the program provided there also worked for test.type=6).

# example from Anderson (2006)

delta <- abs(qnorm(.025) + qnorm(.1))

# use normal distribution to get weights

x <- normalGrid(mu=delta, sigma=delta/2)

x <- nlminb(start=c(.7, -.8), enasfpar, theta=x$z, timing=1,

thetawgt=x$wgts, val=2, k=4, test.type=5, tol=0.0000001)

x$message

y <- gsDesign(k=4, test.type=5, sfupar=x$par[1], sflpar=x$par[2])

y

7.4 Writing code for a new spending function

Following is sample code using a cumulative distribution function for a beta-distribution as a spend-
ing function. Let B(a,b) denote the complete beta function. The beta distribution spending function
is denoted for any fixed a > 0 and b > 0 by

α(t) =
α

B(a, b)

t∫
0

xa−1(1− x)b−1dx.

This spending function provides much of the flexibility of spending functions in the last subsection,
but is not of the same general form. This sample code is intended to provide guidance in writing
code for a new spending function, if needed.

# implementation of 2-parameter version of beta distribution spending function

# assumes t and alpha are appropriately specified (does not check!)

42



sfbdist <- function(alpha, t, param)

{

# set up return list and its class

x <- list(name="B-dist example", param=param, parname=c("a","b"),

sf=sfbdist, spend=NULL, bound=NULL, prob=NULL, errcode=0,

errmsg="No error")

class(x) <- "spendfn"

# check for errors in specification of a and b

# gsReturnError is a simple function available from the

# package for saving errors in the returned value}

if (length(param) != 2)

{

return(gsReturnError(x,errcode=.3,

errmsg="b-dist example spending function parameter must be of length 2"))

}

if (!is.numeric(param))

{

return(gsReturnError(x,errcode=.1,

errmsg="Beta distribution spending function parameter must be numeric"))

}

if (param[1] <= 0)

{

return(gsReturnError(x,errcode=.12,

errmsg="1st Beta distribution spending function parameter must be > 0."))

}

if (param[2] <= 0)

{

return(gsReturnError(x,errcode=.13,

errmsg="2nd Beta distribution spending function parameter must be > 0."))

}

# set spending using cumulative beta distribution function and return

x$spend <- alpha * pbeta(t, x$param[1], x$param[2])

return(x)

}

The flexibility of this spending function is demonstrated by the following code which produces
the plot below. Using a=ρ, b=1 produces a Kim-DeMets spending function αtρ as shown by the
solid line with ρ=2. The dashed line (a=6, b=4) shows a spending function that is conservative very
early, but then aggressive in its spending pattern starting after about 40% of data are available. The
dotted (a=0.5, b=0.5) and dot-dashed (a=0.6, b=2) show increasingly aggressive early spending.
These may be useful in setting an initial high futility bound when the first part of a trial is used as
a proof of concept for a clinical endpoint.

> # plot some beta distribution spending functions

> plot(0:100/100, sfbdist(1, 0:100/100, c(2,1))$spend, type="l", lwd=2,

+ xlab="Proportion of information",

+ ylab="Cumulative proportion of total spending",

+ main="Beta Distribution Spending Function Example")

> lines(0:100/100, sfbdist(1, 0:100/100, c(6,4))$spend, lty=2, lwd=2)

> lines(0:100/100, sfbdist(1, 0:100/100, c(.5,.5))$spend, lty=3, lwd=2)
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Figure 6: Example plotting user-written beta-distribution spending function

> lines(0:100/100, sfbdist(1, 0:100/100, c(.6,2))$spend, lty=4, lwd=2)

> legend(x=c(.65, 1), y=1 * c(0, .25), lty=1:4, lwd=2,

+ legend=c("a=2, b=1", "a=6, b=4", "a=0.5,b=0.5", "a=0.6, b=2"))

8 Analyzing group sequential trials

We present several ways to review and interpret interim and final results from group sequential
trials. Generally, regulatory agencies will have interest in well-controlled Type I error and unbiased
treatment estimates.

8.1 The CAPTURE data

We consider interim [4] and final [3] data from the CAPTURE trial. The interim data presented
here is from finalized datasets rather than the actual data that was analyzed at the time of interim
analyses. Also, we take a binomial analysis approach here using the method of Miettinen and
Nurminen [14]; the original study analyses used the logrank test. The CAPTURE study was orginally
designed using symmetric bounds, and the final planned sample size was 1400 patients. The trial
was stopped after analyzing the data from 1050 patients. Enrollment continued during follow-up,
data entry and cleaning, adjudication and analysis of the data. By the time of the 1050 patient
analysis was evaluated and the decision was made to stop the trial, a total of 1265 patients had been
enrolled. Following are the data which are then summarized including Z-values using the methods
of Miettinen and Nurminen [14] are used, but without a continuity correction as recommended by
Gordon and Watson [8]. Table 4 provides a summary.
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Table 4: The CAPTURE data
Placebo Experimental

Analysis Events n % Events n % Z
1 30 175 17.1% 14 175 8.0% 2.58
2 55 353 15.6% 37 347 10.7% 2.58
3 84 532 15.8% 55 518 10.6% 2.58
4 101 635 15.9% 71 630 11.3% 2.58

> n1 <- c(175, 353, 532, 635)

> n2 <- c(175, 347, 518, 630)

> x1 <- c(30, 55, 84, 101)

> x2 <- c(14, 37, 55, 71)

> z <- testBinomial(x1 = x1, x2 = x2, n1 = n1, n2 = n2)

> round(z, 2)

[1] 2.58 1.93 2.47 2.41

8.2 Testing significance of the CAPTURE data

The Z-statistics computed above can only be interpreted in context of the study design. The original
design used a custom spending function which will has not been published and will not be discussed
further here. We will use the default spending functions for gsDesign() along with using 80% power
and starting with a fixed design sample size obtained using the Farrington and Manning [6] method.

> n.fix <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)

> x <- gsDesign(k = 4, n.fix = n.fix, beta = 0.2)

> ceiling(x$n.I)

[1] 373 746 1119 1491

Largely because of the futility bound used for the default design, the sample size for this design
is 1491 as opposed to the 1400 planned for CAPTURE. To reset the interim analyses to those
actually performed in the CAPTURE trial, we re-run gsDesign(), resetting the timing of analyses
and adding the 1265 patient analysis as an additional interim analysis.

> ntot <- n1 + n2

> xmod <- gsDesign(k = 5, n.fix = n.fix, beta = 0.2, n.I = c(ntot,

+ x$n.I[4]), maxn.IPlan = x$n.I[4])

The resulting upper bounds and the test statistics they are being compare to are

> round(xmod$upper$bound[1:4], 2)

[1] 3.18 2.87 2.52 2.31

> round(z, 2)

[1] 2.58 1.93 2.47 2.41
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Thus, if analyses had been performed as above for the default design it would have demonstrated
statistical significance at the n=1265 analysis with a Z-statistic of 2.41 which is greater than the
boundary of 2.31 for that analysis. Note that this is a numerical example only, as the analysis at
n=1265 was performed because of the interim treatment effect and a positive finding at n=1050;
that is, the actual bound at analysis 3 was lower and was crossed. The distribution theory for group
sequential design requires that timing of interims is independent of interim test statistics.

8.3 Stage-wise p-values

Fairbanks and Madsen [5] provide a method for computing p-values for a symmetric group sequential
trial design once a boundary has been crossed. Here we will consider just p-values for positive
efficacy findings for asymmetric designs. We assume for some i in 1, 2, . . . , k that an upper bound
is first crossed at analysis i with a test statistic values zi. The stage-wise p-value uses the same
computational method as α+(0) from (6).

pSW = P0{{Zi ≥ zi} ∩i−1
j=1 {Zj < bj}} (29)

This formula can still be used for the final analysis when the upper bound is never crossed. This
method of computing p-values emphasizes early positive results and de-emphasizes late results. No
matter how positive a result is after the first analysis, the p-value associated with a positive result
will not be smaller than a first analysis result that barely crosses its bound. There is no way to
compute a p-value if, for some reason, you stop a trial early without crossing a bound. For the
CAPTURE data analyzed according to the default design derived above, we compute a stagewise
p-value of as follows:

> y <- gsProbability(k = 4, theta = 0, n.I = ntot, a = array(-20,

+ 4), b = c(xmod$upper$bound[1:3], z[4]))

> y$upper$prob

[,1]

[1,] 0.0007264271

[2,] 0.0018577690

[3,] 0.0047510699

[4,] 0.0041621310

> sum(y$upper$prob)

[1] 0.01149740

8.4 Repeated confidence intervals

Repeated confidence intervals use the nominal Type I error at each interim analysis to compute
confidence bounds in the usual fashion. For the binomial analysis of the CAPTURE trial we use
Miettinen and Nurminen [14] confidence intervals at 2 times the nominal α-level of the upper bound,
2× (1− Φ(uk)), i = 1, 2, . . . , k.

> gsBinomialRCI <- function(d, x1, x2, n1, n2) {

+ y <- NULL

+ rname <- NULL

+ nanal <- length(x1)

+ for (i in 1:nanal) {

+ y <- c(y, ciBinomial(x1 = x1[i], x2 = x2[i], n1 = n1[i],

+ n2 = n2[i], alpha = 2 * pnorm(-d$upper$bound[i])))
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+ rname <- c(rname, paste("Analysis", i))

+ }

+ ci <- matrix(y, nrow = nanal, ncol = 2, byrow = T)

+ rownames(ci) <- rname

+ colnames(ci) <- c("Lower CI", "Upper CI")

+ ci

+ }

> rci <- gsBinomialRCI(xmod, x1, x2, n1, n2)

> pdif <- x1/n1 - x2/n2

> pdif

[1] 0.09142857 0.04917912 0.05171713 0.04635671

> rci

Lower CI Upper CI

Analysis 1 -0.02295512 0.2110715

Analysis 2 -0.02477155 0.1241560

Analysis 3 -0.0009566296 0.1049069

Analysis 4 0.001903380 0.0912106

We now plot these values in Figure 7.

> plot(n1 + n2, rci[, 2], ylim = c(-0.05, 0.25), xlab = "Sample size",

+ ylab = expression(p[C] - p[E]))

> points(n1 + n2, rci[, 1])

> points(n1 + n2, pdif)

9 Conditional power and B-values

9.1 Z-values, B-values and S-values

In some cases, rather than working with Z1, Z2,...,Zk as in Section 2.3, it is desirable to consider
variables representing incremental sets of observations between analyses. We let X1, X2, . . . be
independent and identically distributed normal random variables with mean δ and variance σ2

(before we assumed mean θ and variance σ2 = 1). We let 0 < n1 < n2 . . . < nk for some k > 1. For
i = 1, 2, . . . , k let Ii = ni/σ

2 and ti = ni/nk = Ii/Ik. We next define treatment effect estimates,
S-values, B-values, and Z-values as follows for i = 1, 2, . . . , k:

δ̂i =
∑ni
j=1Xj/ni ∼ N(δ, I−1

i ),

Si = Iiδ̂i ∼ N(Iiδ, Ii),

Zi = Si/
√
Ii ∼ N(

√
Iiδ, 1),

Bi =
√
tiZi ∼ N(

√
Iitiδ, ti)

(30)

The above forms for Si, Zi and Bi have been written in a general format that will apply to trials
with many types of endpoints where δ̂i and Ii take different forms. For this case, the relationship

Si =

ni∑
j=1

Xj/σ
2
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will be used as this simplifies distribution theory. Letting θ = δ/σ and assuming 1 6 i 6 j 6 k,
Zi, has the canonical mean (E{Zi} = θ

√
Ii) and covariance with Zj (Cov(Zi, Zj) =

√
Ii/Ij) for

group sequential design as in Section 2.1. Letting I0 = n0 = 0, for any 0 6 i < j 6 k we note that
Ij − Ii = (nj − ni)/σ2 and define the incremental summary statistics

δ̂i,j =
nj∑

m=ni+1
Xm/(nj − ni) ∼ N(δ, (Ij − Ii)−1),

Si,j = (Ij − Ii)δ̂i,j ∼ N((Ij − Ii)δ, Ij − Ii),

Zi,j = Si,j/
√
Ij − Ii ∼ N(

√
Ij − Iiδ, 1),

Bi,j =
√
tj − tiZi,j ∼ N((Ij − Ii)δ/

√
Ik, tj − ti).

(31)

For our example with δ̂i =
∑ni
m=1Xm/ni for 0 6 i < m < j 6 k we have (straightforward algebra

omitted):
Bi,j = Si,j/

√
Ik =

∑nj
m=ni+1Xm/(

√
nkσ) (32)

which implies
Bi,j = Bi,m +Bm,j (33)

where Bi,m and Bm,j are independent normal random variables with variances tm − ti and tj − tm,
respectively. Thus, the conditional distribution of Bj ≡ B0,j assuming Bi = c for some 1 < i < j 6 k
and constant c is normal distribution with mean c+(tj−ti)θ and variance tj−ti. Proschan, Lan and
Wittes [19] provide extensive coverage of B-values, including their application to group sequential
trials with several different types of endpoints.

9.2 Boundary crossing probabilities in terms of B-values

We now extend the above conditional distribution to all B-values conditional on an interim B-
value. This results in conditional boundary computation formulas that are of the same form as for
unconditional boundary crossing probabilities. Writing boundary crossing probabilities in terms of
B-values makes developing formulas for condtional power particularly easy. For i = 1, 2, . . . , k we
note that

αi(θ) = Pθ{{Zi ≥ ui} ∩i−1
j=1 {lj 6 Zj < uj}}

= Pθ{{Bi ≥ bi} ∩i−1
j=1 {aj 6 Bj < bj}}

(34)

where bi = uit
1/2
i , ai = lit

1/2
i . Formulas for βi(θ) and α+

i (θ) can be rewritten in an analogous
fashion:

α+
i (θ) = Pθ{{Bi ≥ bi} ∩i−1

j=1 {Bj < bj}} (35)

βi(θ) = Pθ{{Bi 6 ai} ∩i−1
j=1 {aj 6 Bj < bj}} (36)

9.3 Conditional power and conditional error

As an alternative to β-spending, stopping rules for futility are interpreted by considering the con-
ditional power of a positive trial given the value of a test statistic at an interim analysis. Thus,
we consider the conditional probabities of boundary crossing for a group sequential design given an
interim result. Assume 1 ≤ i < j 6 k and Bi = c. The conditional probabilities for first crossing an
upper boundary at analysis j given Bi = c is

αi,j(θ|Bi = c) = Pθ{{Bj > bj} ∩j−1
m=i+1 {am 6 B0,m < bm}|B0i = c}

= Pθ{{Bij > bj − c} ∩j−1
m=i+1 {am − c 6 Bim < bm − c}} (37)
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Formulas for α+
i,j(θ|Bi = c) and βi,j(θ|c) can be written analogously:

α+
i,j(θ|Bi = c) = Pθ{{Bi,j > bj − c} ∩j−1

m=i+1 {Bim < bm − c}} (38)

βi,j(θ|Bi = c) = Pθ{{Bj 6 bj} ∩j−1
m=i+1 {am 6 B0,m < bm}|B0i = c}

= Pθ{{Bi,j 6 bj − c} ∩j−1
m=i+1 {am − c 6 Bi,m < bm − c}} (39)

Given the above and (34 – 36), conditional boundary crossing probabilities can be computed
using the same numerical tools as unconditional boundary crossing probabilities. We rewrite (37 –
39) in terms of Z-values since this is the most common scale used for analysis.

Assume again that 1 ≤ i < m 6 j 6 k and let zi be any real value. Define

ui,j(zi) =
uj
√
tj − zi

√
ti√

tj − ti
(40)

and

li,j(zi) =
lj
√
tj − zi

√
ti√

tj − ti
. (41)

Now consider the conditional probabilities

αi,j(θ|zi) ≡ Pθ{{Zj > uj} ∩j−1
m=i+1 {lm < Zm < um}|Zi = zi}

= Pθ{{Bj > uj
√
tj} ∩j−1

m=i+1 {lm
√
tm < Bm < um

√
tm}|Bi = zi

√
ti}

= Pθ{{Bi,j > uj
√
tj − zi

√
ti} ∩j−1

m=i+1 {lm
√
tm − zi

√
ti 6 Bi,m < um

√
tm − zi

√
ti}}

= Pθ{{Zi,j > ui,j(zi)} ∩j−1
m=i+1 {li,m(zi) < Zi,m < ui,m(zi)}}. (42)

This last line is of the same general form as αi(θ) and can thus be computed in a similar fashion.
For a non-binding bound, the same logic applied ignoring the lower bound yields

α+
i,j(θ|zi) ≡ Pθ{{Zj > uj} ∩j−1

m=i+1 {Zm < um}|Zi = zi}

= Pθ{{Zi,j > ui,j(zi)} ∩j−1
m=i+1 {Zm,j < um,j(zi)}}. (43)

Finally, the conditional probability of crossing a lower bound at analysis j given a test statistic zi
at analysis i is denoted by

βi,j(θ|zi) ≡ Pθ{{Zj 6 lj} ∩j−1
m=i+1 {lm < Zm < um}|Zi = zi}

= Pθ{{Zi,j 6 li,j(zi)} ∩j−1
m=i+1 {lm,j(zi) < Zm,j < um,j(zi)}}. (44)

Since α+
i,j(θ|zi) and βi,j(θ|zi) are of the same general form as α+

i (θ) and βi(θ), respectively, they can
be computed using the same tools.

10 Bayesian design properties

All of the properties of group sequential designs we have considered so far have depended on knowing
an exact value θ measuring treatment effect. Answering some important questions requires taking
into account the uncertainty of a priori knowledge of θ:

• What is the probability of success of the trial?

• For a sponsor who remains blinded to interim results, how is this probability of success modified
by knowing only that boundaries have not been crossed at a given interim analysis?
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• Predictive power is conditional power given an exact interim result averaged over values of θ
by a prior distribution.

• In decision theory, we would want to express the value of a trial in that we should give up on
experimental agents that do not work with a minimal investment and get drugs to market as
quickly as possible with an appropriate evaluation of risk and benefit.

Examples in this section compute answers to all of these questions when framed in terms of a
particular trial.

10.1 Normal densities

The primary tool for computing group sequential probabilities is application of numerical integration
of a normal density function. Since this has many potential applications in areas - not restricted to
group sequential design - we have made this function available to users. We demonstrate its use as
a prior distribution for the parameter of interest in a group sequential design below. Here we simply
describe the use of the normalGrid() function used to work with normal densities.

We begin by plotting normal densities with mean 0 and .5 and standard deviations 1 and 2,
respectively. We then add a normal density with range -5 to -2 with mean -4 and standard deviation
1.5.

> d1 <- normalGrid()

> d2 <- normalGrid(mu = 0.5, sigma = 2)

> minx <- min(d1$z, d2$z)

> maxx <- max(d1$z, d2$z)

> plot(x = d2$z, y = d2$density, type = "l", xlim = c(minx, maxx),

+ ylim = c(0, max(d1$density)), xlab = "z", ylab = "Density",

+ lwd = 2)

> lines(x = d1$z, y = d1$density, lty = 2, lwd = 2)

> d3 <- normalGrid(mu = -4, sigma = 1.5, bounds = c(-5, -2))

> lines(x = d3$z, y = d3$density, lwd = 2, lty = 3)

> legend(x = c(4, 9), y = c(0.33, 0.4), lty = c(2, 1, 3), lwd = 2,

+ legend = c("d1", "d2", "d3"))

10.2 Subdensity functions

The subdensity functions defined here are useful for purposes of estimation as discussed by Jennison
and Turnbull [10], Chapter 8. We use them below to define a posterior distribution for θ and apply
it to predictive power calculations. We define a subdensity function for the probability that a trial
continues without crossing a boundary until analysis i, and then the Z-value takes on a value z at
that analysis, i = 1, 2, . . . , k:

pi(z, θ) =
d

dz
Pθ{{Zi ≥ z} ∩i−1

j=1 {lj < Zj < uj}}, (45)

These subdensity functions are used to compute αi(θ) as defined in equation (7).
Normally, this will not be of great concern to the reader even though this computatation will

go on ”behind the scenes” each time a group sequential design is derived or boundary crossing
probability computed. However, a subdensity function for a design may be computed using the
function gsDensity() as follows. In Figure 10, we replicate parts of figures 8.1 and 8.2 of Jennison
and Turnbull ([10]) which show the subdensities for an O’Brien-Fleming design with four analyses.
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Figure 9: Subdensity functions for θ = 0 and θ = δ for an O’Brien-Fleming design with k = 4,
α = .1, β = .2.

> x <- gsDesign(k = 4, test.type = 2, sfu = "OF", alpha = 0.1,

+ beta = 0.2)

> z <- seq(-4.2, 4.2, 0.05)

> d <- gsDensity(x = x, theta = x$theta, i = 4, zi = z)

> plot(z, d$density[, 1], type = "l", ylab = expression(paste(p[4],

+ "(z,", theta, ")")))

> lines(z, d$density[, 2], lty = 2)

> u <- x$upper$bound[4]

> text(expression(paste(theta, "=", delta)), x = 2.1, y = 0.2)

> text(expression(paste(theta, "=0")), x = 0.5, y = 0.4)

10.3 The posterior distribution for θ

The initial application of (45) will be to compute a posterior distribution for θ given an interim test
statistic Zi = z at analysis, i, 1 ≤ i ≤ k. For a given parameter sample space of real-values Θ,
denote the prior distribution function for θ ∈ Θ at the beginning of the trial by G(θ). This may
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represent a continuous or discrete distribution or a combination of the two. The joint sub-density
of θ, the interim test statistics not crossing a bound prior to analysis i, and an interim value z at
analysis i, 1 ≤ i ≤ k is

pi(z, θ)
d

dθ
G(θ). (46)

To obtain a posterior distribution, we integrate over all possible values of θ ∈ Θ to get a marginal
density for Zi = z at analysis i for the denominator in the following equation for the posterior
distribution of θ given no boundary crossing prior to analysis i and the an interim test statistic
Zi = z, 1 ≤ i ≤ k:

dGi(θ|z) =
dG(θ)/dθ∫

η∈Θ
dG(η)/dηGi(z, η)

. (47)

To demonstrate the above calculation, we first compute a prior distribution for θ using the function
normalGrid(); we assume a normal prior for θ with mean .75δ and standard deviation .5δ.

> n.I <- nBinomial(p1 = 0.15, p2 = 0.1, beta = 0.2)

> x <- gsDesign(k = 4, n.fix = n.I, beta = 0.2)

> theta <- normalGrid(mu = 0.75 * x$delta, sigma = 0.5 * x$delta)

We compute the Z-statistics as in Section 8 and store them in z.
Next, we compute the subdensity function at the first interim analysis across the range of θ-values.

> d <- gsDensity(x = x, theta = theta$z, zi = z[2], i = 2)

Multiplying the prior times the subdensity gives the joint density. This is integrated over θ to
marginal subdensity at interim 2; the value theta$wgts is actually the prior density times Simpson’s
rule integration weights.

> marg <- sum(theta$wgts * d$density)

Finally, we divide the joint subdensity of θ and Z2 =z[2] by the marginal for Zi ==z[2] to get the
posterior density for θ given Z2 =z[2], and plot both the prior and posterior density for θ.

> post <- as.vector(d$density * theta$density)/marg

The same computation is carried out for interim 1 and stored in post1.

> d1 <- gsDensity(x = x, theta = theta$z, zi = z[1], i = 1)

> marg1 <- sum(theta$wgts * d1$density)

> post1 <- as.vector(d1$density * theta$density)/marg1

> plot(theta$z/x$delta, post * x$delta,

+ xlab = expression(theta/delta),

+ type = "l", lwd = 2, xlim = c(-1, 3), lty = 3,

+ ylab = expression(paste("Posterior density for ",

+ theta)))

> lines(theta$z/x$delta, theta$density * x$delta, lwd = 2)

> lines(theta$z/x$delta, post1 * x$delta, lty = 2, lwd = 2)

> legend(x = c(1.7, 3), y = c(0.75, 1), lty = 1:3, lwd = 2,

+ legend = c("Prior", "Posterior 1", "Posterior 2"))
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Figure 10: Posterior densities for θ at first two CAPTURE interim analyses along with prior density
for θ.
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10.4 Probability of success

The probability of a positive trial depends on the distribution of outcomes in the control and exper-
imental groups. The probability of a positive trial given a particular parameter value θ was defined
in (7) and (8) as

α(θ) =

K∑
i=1

Pθ{{Zi ≥ bi} ∩i−1
j=1 {aj < Zj < bj}}. (48)

If we consider θ to have a given prior distribution at the beginning of the trial, we can compute an
unconditional probability of success for the trial. In essence, since we do not know if the experimental
treatment works better than control treatment, we assign some prior beliefs about the likelihood
that experimental is better than control and use those along with the size of the trial to compute the
probability of success. The prior distribution for θ can be discrete or continuous. If the distribution
is discrete, we define m + 1 values θ0 < θ2 . . . < θm and assign prior probabilities P{θ = θj},
0 ≤ j ≤ m such that

∑m
j=1 P{θj} = 1. The probability of success for the trial is then defined as

POS =

m∑
j=0

P{θ = θj}α(θj) (49)

The simplest practical example is perhaps assuming a 2-point prior where the prior probability of the
difference specified in the alternate hypothesis used to power the trial is p and the prior probability
of no treatment difference is 1− p. Suppose the trial is designed to have power 1− β = α(δ) when
θ = δ and Type I error α = α(0) when θ = 0. Then the probability of success for the trial is

POS = p× (1− β) + (1− p)× α.

Assuming a 70% prior probability of a treatment effect δ, a 30% prior probability of no treatment
effect, power of 90% and Type I error of 2.5% results in an unconditional probability of a positive
trial of .7 × .9 + .3 × .025 = .6375. In this case, it is arguable that POS should be defined as
.7× .9 = .63 since the probability of a positive trial when θ = 0 should not be considered a success.
This alternative definition becomes ambigous when the prior distribution for θ becomes more diffuse.
We will address this issue below in the discussion of the value of a trial design.

We consider a slightly more ambitious example and show how to use gsProbability() to com-
pute (49). We derive a design using gsDesign(), in this case using default parameters. We assume
the possible parameter values are θi = i× δ where δ is the value of θ for which the trial is powered
and i = 0, 2, . . . , 6. The respective prior probabilities for these θi values are assumed to be 1/20,
2/20, 2/20, 3/20, 7/20, 3/20 and 2/20. We show the calculation and then explain in detail.

> y <- gsDesign()

> theta <- y$theta[2] * array(0:6)/4

> ptheta <- c(1, 2, 2, 3, 7, 3, 2)/20

> x <- gsProbability(theta = theta, d = y)

> one <- array(1, 3)

> pos <- one %*% x$upper$prob %*% ptheta

> pos

[,1]

[1,] 0.7136783

Note that theta[2] is the value δ for which the trial is powered as noted in the first example
in the introduction [check this!]. The last 4 lines can actually be replaced by the function POS:
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gsPOS(x, theta, ptheta). For those not familiar with it %*% represents matrix multiplication,
and thus the code one %*% x$upper$prob %*% ptheta is doing the computation

m∑
j=0

P{θj}
K∑
i=0

αi(θj).

For a prior distribution that is continuous with density f(θ) we define

POS =

∫ ∞
−∞

f(θ)α(θ)dθ. (50)

Numerical integration is required to implement this calculation, but we can still use the pos()

function just defined. For instance, assuming θ ∼ N(µ = δ, σ2 = (δ/2)2) we can use normalGrid()

from the gsDesign package to generate a grid and normal densities on that grid that can be used
to perform numerical integration. For this particular case

> y <- gsDesign()

> delta <- y$theta[2]

> g <- normalGrid(mu = delta, sigma = delta/2)

> plot(g$z, g$wgts)

> gsPOS(y, g$z, g$wgts)

[1] 0.7484896

This computation yields a probability of success of .748. The normalGrid() function is a lower-
level function used by gsProbability() and gsDesign() that is normally obscured from the user.
For Bayesian computations with a normal prior distribution, such as here, it can be quite useful as
in the above example. The values returned above in g$wgts are the normal density multiplied by
weights generated using Simpson’s rule. The plot generated by the above code (Figure 11) shows
that these values alternate as higher and lower values about a smooth function. If you compute
sum(g$wgts) you will confirm that the approximated integral over the real line of this density is 1,
as desired.

To practice with this, assume a more pessimistic prior with µ = σ = δ/2 to obtain a probability
of success of .428.

We generalize (49) and (50) by letting F () denote the cumulative distribution function for θ and
write

POS =

∫ ∞
−∞

α(θ)dF (θ). (51)

This notation will be used in further discussions to provide formulas applicable to both continuous
and discrete distributions.

10.5 Updating probability of success based on blinded results

Futility bounds are often set up to be informative about emerging treatment effects. That is, a
positive trend is often required to pass a futility bound. Efficacy bounds usually are only informative
to a lesser extent, but knowing that an efficacy bound has not been crossed at an interim analysis
generally rules out an extremely positive effect after early interim analyses and a moderately positive
effect later in the trial. Thus, knowing that a trial has not crossed a futility or efficacy bound at
an interim analysis can be helpful in updating the probability of success we have computed above.
In this subsection we will restrict consideration to the probability of ultimate trial success. For
1 ≤ i < K we denote the event that no boundary has been crossed at or before analysis i by

Ai = ∩i−1
j=1{aj < Zj < bj} (52)
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[1] 0.7484896
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Figure 11: Integration weights for normal density.
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The probability of observing Ai is

P{Ai} = 1−
∫ i∑

j=1

(αj(θ) + βj(θ))dF (θ) (53)

Letting B denote the event that the trial crosses an upper bound at or before the end of the trial
and before crossing a lower bound compute

P{Ai ∩B} =

∫ K∑
j=i+1

αj(θ)dF (θ) (54)

Based on these 2 equations, we can now compute for 1 ≤ i < K the conditional probability of a
positive trial given that no boundary has been crossed by interim i as

P{B|Ai} = P{Ai ∩B}/P{Ai}. (55)

Calculations for the 2 probabilities needed are quite similar to the gsPOS() function considered
in the previous subsection. The conditional probability of success is computed using the function
gsCPOS(). For the case considered previously with θ ∼ N(µ = δ, σ = δ/2) and a default design
we had a probability of success of .748. The following code shows that if neither trial boundary is
crossed at the first interim, the updated (posterior) probability of success is .733. After 2 analyses,
the posterior probability of success is .669.

> y <- gsDesign()

> delta <- y$theta[2]

> g <- normalGrid(bounds = c(-30, 30) * delta/2, mu = delta, sigma = delta/2)

> gsPOS(x = y, theta = g$z, wgts = g$wgts)

[1] 0.7484896

> gsCPOS(1, y, theta = g$z, wgts = g$wgts)

[1] 0.7331074

> gsCPOS(2, y, theta = g$z, wgts = g$wgts)

[1] 0.6688041

To ensure a higher conditional probability of success for the trial, a more aggressive futility bound
could be employed at the expense of requiring an increased sample size to maintain the desired power.
The code y$n.I shows that the default design requires an inflation factor of 1.07 for the sample size
compared to a fixed design with the same Type I error and power. By employing an aggressive
Hwang-Shih-DeCani spending function with γ = 1 for the futility bound, the sample size inflation
factor is increased to 1.23 ((y <- gsDesign(sflpar=1))). The probability of success for this design at
the beginning of the trial using the same prior distribution as above is still .748, but the conditional
probability of success after not hitting a boundary by interim 1 (interim 2) is now .788 (.761). While
there are many other considerations in choosing a futility bound and other prior distributions give
other results, this example suggests that something more aggressive than the default futility bound
in gsDesign() may be desirable.
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10.6 Calculating the value of a clinical trial design

Here we generalize the concept of the probability of success of a trial given above to the value of a
trial. We assume that a trial that stops with a positive result with information Ii at analysis i of a
trial when the true treatment effect is θ can be given by a function u(θ, Ii), 1 ≤ i ≤ K. Now the
formula for probability of success can be generalized to

U =

∫ ∞
−∞

f(θ)

K∑
i=1

αi(θ)u(θ, Ii)dθ. (56)

A more general formula that incorporates a costs that are incurred whether or not a trial is positive.
If this formula also discounted future costs and benefits to present-day values, it would be termed a
net present value and can be defined in a simplified form as

NPV =

∫ ∞
−∞

f(θ)

K∑
i=1

αi(θ)u(θ, Ii)− (αi(θ) + βi(θ))c(θ, Ii)(dθ. (57)

While the underlying computations are not much more difficult to allow the utility and cost functions
u() and to depend on the test statistic at the time the trial stops, this capability has not been
implemented in the package at this time. Arguably, however, the true value of a treatment depends
on its true benefit rather than exactly what is observed in a clinical trial.

The following function computes the integral (56).

value <- function(x, theta, ptheta, u)

{ x <- gsProbability(theta = theta, d=x)

one <- array(1, x$k)

as.real(one %*% (u * x$upper$prob) %*% ptheta)

}

For this implementation, u must be a scalar, a vector of length x$k or a matrix of the same dimension
as x$upper$prob (k rows and length(theta) columns) rather than a function. We return to an
example from the previous section. Assuming θ ∼ N(µ = δ, σ2 = (δ/2)2) we showed that the
probability of success as defined in (49) is .748. We will now change this definition so that a trial is
considered a success only if it is positive and the true value of θ > δ/2. This is computed as .521 as
follows:

x <- gsDesign()

delta <- x$theta[2]

g <- normalGrid(mu=delta, sigma=delta / 2)

u <- 1 * (g$z > delta/2)

value(x, theta=g$z, ptheta=g$wgts, u=u)

We finish with an example computing a futilty bound that optimizes the value of a design. We
will assume a fixed efficacy bound is used and will select an optimal spending function for the lower
bound from a one-parameter family. We allow the user to specify the number of interim analyses
as well as the desired Type I and Type II error and the prior distribution for the treatment effect.
We will assume a function f(n, theta) provides the value of a trial that stops for a positive result
after enrolling n patients when the true treatment effect is theta.

gsDesign(k=3, test.type=4, alpha=0.025, beta=0.1, astar=0,

delta=0, n.fix=1, timing=1, sfu=sfHSD, sfupar=-4,

sfl=sfHSD, sflpar=-2, tol=0.000001, r=18, n.I = 0, maxn.IPlan = 0)
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function lbValue(sflpar=-2, k=3, test.type=4, alpha=0.025, beta=0.1, astar=0,

delta=0, n.fix=1, timing=1, sfu=sfHSD, sfupar=-4,

sfl=sfHSD, tol=0.000001, r=18, f, theta, ptheta)

{ x <- gsDesign(

u <- f()

value(x, theta=theta, ptheta=ptheta, u=u)

}

A Package help files

gsDesign package overview

1.0 Group Sequential Design

Description

gsDesign is a package for deriving and describing group sequential designs. The package allows
particular flexibility for designs with alpha- and beta-spending. Many plots are available for
describing design properties.

Details

Package: gsDesign
Version: 2
License: GPL (version 2 or later)

Index:

gsDesign 2.1: Design Derivation

gsProbability 2.2: Boundary Crossing Probabilities

plot.gsDesign 2.3: Plots for group sequential designs

gsCP 2.4: Conditional Power Computation

gsBoundCP 2.5: Conditional Power at Interim Boundaries

gsbound 2.6: Boundary derivation - low level

normalGrid 3.1: Normal Density Grid

binomial 3.2: Testing, Confidence Intervals and Sample Size

for Comparing Two Binomial Rates

Survival sample size 3.3: Time-to-event sample size calculation

(Lachin-Foulkes)

Spending function overview 4.0: Spending functions

sfHSD 4.1: Hwang-Shih-DeCani Spending Function

sfPower 4.2: Kim-DeMets (power) Spending Function

sfExponential 4.3: Exponential Spending Function

sfLDPocock 4.4: Lan-DeMets Spending function overview

sfPoints 4.5: Pointwise Spending Function

sfLogistic 4.6: 2-parameter Spending Function Families

sfTDist 4.7: t-distribution Spending Function

61



Wang-Tsiatis Bounds 5.0: Wang-Tsiatis Bounds

checkScalar 6.0: Utility functions to verify variable properties

The gsDesign package supports group sequential clinical trial design. While there is a strong
focus on designs using α- and β-spending functions, Wang-Tsiatis designs, including O’Brien-
Fleming and Pocock designs, are also available. The ability to design with non-binding futility
rules allows control of Type I error in a manner acceptable to regulatory authorities when futility
bounds are employed.

The routines are designed to provide simple access to commonly used designs using default
arguments. Standard, published spending functions are supported as well as the ability to
write custom spending functions. A gsDesign class is defined and returned by the gsDesign()

function. A plot function for this class provides a wide variety of plots: boundaries, power,
estimated treatment effect at boundaries, conditional power at boundaries, spending function
plots, expected sample size plot, and B-values at boundaries. Using function calls to access
the package routines provides a powerful capability to derive designs or output formatting that
could not be anticipated through a gui interface. This enables the user to easily create designs
with features they desire, such as designs with minimum expected sample size.

Thus, the intent of the gsDesign package is to easily create, fully characterize and even optimize
routine group sequential trial designs as well as provide a tool to evaluate innovative designs.

Author(s)

Keaven Anderson

Maintainer: Keaven Anderson <keaven_anderson@merck.com>

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Proschan, MA, Lan, KKG, Wittes, JT (2006), Statistical Monitoring of Clinical Trials. A
Unified Approach. New York: Springer.

See Also

gsDesign, gsProbability

Examples

# assume a fixed design (no interim) trial with the same endpoint

# requires 200 subjects for 90% power at alpha=.025, one-sided

x <- gsDesign(n.fix=200)

plot(x)
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gsDesign 2.1: Design Derivation

Description

gsDesign() is used to find boundaries and trial size required for a group sequential design.

Usage

gsDesign(k=3, test.type=4, alpha=0.025, beta=0.1, astar=0,

delta=0, n.fix=1, timing=1, sfu=sfHSD, sfupar=-4,

sfl=sfHSD, sflpar=-2, tol=0.000001, r=18, n.I = 0,

maxn.IPlan = 0)

print.gsDesign(x,...)

Arguments

k Number of analyses planned, including interim and final.

test.type 1=one-sided
2=two-sided symmetric
3=two-sided, asymmetric, beta-spending with binding lower bound
4=two-sided, asymmetric, beta-spending with non-binding lower bound
5=two-sided, asymmetric, lower bound spending under the null hypothesis with
binding lower bound
6=two-sided, asymmetric, lower bound spending under the null hypothesis with
non-binding lower bound.
See details, examples and manual.

alpha Type I error, always one-sided. Default value is 0.025.

beta Type II error, default value is 0.1 (90% power).

astar Normally not specified. If test.type=5 or 6, astar specifies the total proba-
bility of crossing a lower bound at all analyses combined. This will be changed
to 1−alpha when default value of 0 is used. Since this is the expected usage,
normally astar is not specified by the user.

delta Standardized effect size. See details and examples.

n.fix Sample size for fixed design with no interim; used to find maximum group
sequential sample size. See details and examples.

timing Sets relative timing of interim analyses. Default of 1 produces equally spaced
analyses. Otherwise, this is a vector of length k or k-1. The values should sat-
isfy 0 < timing[1] < timing[2] < ... < timing[k-1] < timing[k]=1.

sfu A spending function or a character string indicating a boundary type (that
is, “WT” for Wang-Tsiatis bounds, “OF” for O’Brien-Fleming bounds and
“Pocock” for Pocock bounds). For one-sided and symmetric two-sided testing
is used to completely specify spending (test.type=1, 2), sfu. The default
value is sfHSD which is a Hwang-Shih-DeCani spending function. See details,
Spending function overview, manual and examples.
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sfupar Real value, default is −4 which is an O’Brien-Fleming-like conservative bound
when used with the default Hwang-Shih-DeCani spending function. This is
a real-vector for many spending functions. The parameter sfupar specifies
any parameters needed for the spending function specified by sfu; this will be
ignored for spending functions (sfLDOF, sfLDPocock) or bound types (“OF”,
“Pocock”) that do not require parameters.

sfl Specifies the spending function for lower boundary crossing probabilities when
asymmetric, two-sided testing is performed (test.type = 3, 4, 5, or 6). Un-
like the upper bound, only spending functions are used to specify the lower
bound. The default value is sfHSD which is a Hwang-Shih-DeCani spending
function. The parameter sfl is ignored for one-sided testing (test.type=1)
or symmetric 2-sided testing (test.type=2). See details, spending functions,
manual and examples.

sflpar Real value, default is −2, which, with the default Hwang-Shih-DeCani spend-
ing function, specifies a less conservative spending rate than the default for
the upper bound.

tol Tolerance for error (default is 0.000001). Normally this will not be changed
by the user. This does not translate directly to number of digits of accuracy,
so use extra decimal places.

r Integer value controlling grid for numerical integration as in Jennison and
Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger
number of grid points and greater accuracy. Normally r will not be changed
by the user.

n.I Used for re-setting bounds when timing of analyses changes from initial design;
see examples.

maxn.IPlan Used for re-setting bounds when timing of analyses changes from initial design;
see examples.

x In print.gsDesign this is an object of class gsDesign.

... This should allow optional arguments that are standard when calling print.

Details

Many parameters normally take on default values and thus do not require explicit specification.
One- and two-sided designs are supported. Two-sided designs may be symmetric or asymmetric.
Wang-Tsiatis designs, including O’Brien-Fleming and Pocock designs can be generated. Designs
with common spending functions as well as other built-in and user-specified functions for Type
I error and futility are supported. Type I error computations for asymmetric designs may
assume binding or non-binding lower bounds. The print function has been extended using
print.gsDesign to print gsDesign objects; see examples.

The user may ignore the structure of the value returned by gsDesign() if the standard printing
and plotting suffice; see examples.

delta and n.fix are used together to determine what sample size output options the user
seeks. The default, delta=0 and n.fix=1, results in a ‘generic’ design that may be used with
any sampling situation. Sample size ratios are provided and the user multiplies these times the
sample size for a fixed design to obtain the corresponding group sequential analysis times. If
delta>0, n.fix is ignored, and delta is taken as the standardized effect size - the signal to
noise ratio for a single observation; for example, the mean divided by the standard deviation
for a one-sample normal problem. In this case, the sample size at each analysis is computed.
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When delta=0 and n.fix>1, n.fix is assumed to be the sample size for a fixed design with no
interim analyses. See examples below.

Following are further comments on the input argument test.type which is used to control
what type of error measurements are used in trial design. The manual may also be worth
some review in order to see actual formulas for boundary crossing probabilities for the various
options. Options 3 and 5 assume the trial stops if the lower bound is crossed for Type I and
Type II error computation (binding lower bound). For the purpose of computing Type I error,
options 4 and 6 assume the trial continues if the lower bound is crossed (non-binding lower
bound); that is a Type I error can be made by crossing an upper bound after crossing a previous
lower bound. Beta-spending refers to error spending for the lower bound crossing probabilities
under the alternative hypothesis (options 3 and 4). In this case, the final analysis lower and
upper boundaries are assumed to be the same. The appropriate total beta spending (power) is
determined by adjusting the maximum sample size through an iterative process for all options.
Since options 3 and 4 must compute boundary crossing probabilities under both the null and
alternative hypotheses, deriving these designs can take longer than other options. Options 5
and 6 compute lower bound spending under the null hypothesis.

Value

An object of the class gsDesign. This class has the following elements and upon return from
gsDesign() contains:

k As input.

test.type As input.

alpha As input.

beta As input.

astar As input, except when test.type=5 or 6 and astar is input as 0; in this case
astar is changed to 1-alpha.

delta The standardized effect size for which the design is powered. Will be as input
to gsDesign() unless it was input as 0; in that case, value will be computed
to give desired power for fixed design with input sample size n.fix.

n.fix Sample size required to obtain desired power when effect size is delta.

timing A vector of length k containing the portion of the total planned information
or sample size at each analysis.

tol As input.

r As input.

upper Upper bound spending function, boundary and boundary crossing probabilities
under the NULL and alternate hypotheses. See Spending function overview
and manual for further details.

lower Lower bound spending function, boundary and boundary crossing probabilities
at each analysis. Lower spending is under alternative hypothesis (beta spend-
ing) for test.type=3 or 4. For test.type=2, 5 or 6, lower spending is under
the null hypothesis. For test.type=1, output value is NULL. See Spending
function overview and manual.

n.I Vector of length k. If values are input, same values are output. Otherwise, n.I
will contain the sample size required at each analysis to achieve desired timing

and beta for the output value of delta. If delta=0 was input, then this is
the sample size required for the specified group sequential design when a fixed
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design requires a sample size of n.fix. If delta=0 and n.fix=1 then this is
the relative sample size compared to a fixed design; see details and examples.

maxn.IPlan As input.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

gsDesign package overview, Plots for group sequential designs, gsProbability, Spending func-
tion overview, Wang-Tsiatis Bounds

Examples

# symmetric, 2-sided design with O,Brien-Fleming-like boundaries

# lower bound is non-binding (ignored in Type I error computation)

# sample size is computed based on a fixed design requiring n=800

x <- gsDesign(k=5, test.type=2, n.fix=800)

# note that "x" below is equivalent to print(x) and print.gsDesign(x)

x

plot(x)

plot(x, plottype=2)

# Assuming after trial was designed actual analyses occurred after

# 300, 600, and 860 patients, reset bounds

y <- gsDesign(k=3, test.type=2, n.fix=800, n.I=c(300,600,860),

maxn.IPlan=x$n.I[x$k])

y

# asymmetric design with user-specified spending that is non-binding

# sample size is computed relative to a fixed design with n=1000

sfup <- c(.033333, .063367, .1)

sflp <- c(.25, .5, .75)

timing <- c(.1, .4, .7)

x <- gsDesign(k=4, timing=timing, sfu=sfPoints, sfupar=sfup, sfl=sfPoints,

sflpar=sflp,n.fix=1000)

x

plot(x)

plot(x, plottype=2)

# same design, but with relative sample sizes

gsDesign(k=4, timing=timing, sfu=sfPoints, sfupar=sfup, sfl=sfPoints,

sflpar=sflp)
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gsBound 2.6: Boundary derivation - low level

Description

gsBound() and gsBound1() are lower-level functions used to find boundaries for a group se-
quential design. They are not recommended (especially gsBound1()) for casual users. These
functions do not adjust sample size as gsDesign() does to ensure appropriate power for a design.

gsBound() computes upper and lower bounds given boundary crossing probabilities assuming
a mean of 0, the usual null hypothesis. gsBound1() computes the upper bound given a lower
boundary, upper boundary crossing probabilities and an arbitrary mean (theta).

Usage

gsBound(I, trueneg, falsepos, tol=0.000001, r=18)

gsBound1(theta, I, a, probhi, tol=0.000001, r=18, printerr=0)

Arguments

Note that all vector arguments should have the same length which will be denoted here as k.

theta Scalar containing mean (drift) per unit of statistical information.

I Vector containing statistical information planned at each analysis.

a Vector containing lower bound that is fixed for use in gsBound1.

trueneg Vector of desired probabilities for crossing upper bound assuming mean of 0.

falsepos Vector of desired probabilities for crossing lower bound assuming mean of 0.

probhi Vector of desired probabilities for crossing upper bound assuming mean of
theta.

tol Tolerance for error (scalar; default is 0.000001). Normally this will not be
changed by the user. This does not translate directly to number of digits of
accuracy, so use extra decimal places.

r Single integer value controlling grid for numerical integration as in Jennison
and Turnbull (2000); default is 18, range is 1 to 80. Larger values provide
larger number of grid points and greater accuracy. Normally r will not be
changed by the user.

printerr If this scalar argument set to 1, this will print messages from underlying C
program. Mainly intended to notify user when an output solution does not
match input specifications. This is not intended to stop execution as this often
occurs when deriving a design in gsDesign that uses beta-spending.

Details

The function gsBound1() requires special attention to detail and knowledge of behavior when
a design corresponding to the input parameters does not exist.
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Value

Both routines return a list. Common items returned by the two routines are:

k The length of vectors input; a scalar.

theta As input in gsBound1(); 0 for gsBound().

I As input.

a For gsbound1, this is as input. For gsbound this is the derived lower bound-
ary required to yield the input boundary crossing probabilities under the null
hypothesis.

b The derived upper boundary required to yield the input boundary crossing
probabilities under the null hypothesis.

tol As input.

r As input.

error Error code. 0 if no error; greater than 0 otherwise.

rates a list containing two items:

falsepos vector of upper boundary crossing probabilities as input.

trueneg vector of lower boundary crossing probabilities as input.

problo vector of lower boundary crossing probabilities; computed using input lower
bound and derived upper bound.

probhi vector of upper boundary crossing probabilities as input.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

gsDesign package overview, gsDesign, gsProbability

Examples

# set boundaries so that probability is .01 of first crossing

# each upper boundary and .02 of crossing each lower boundary

# under the null hypothesis

x <- gsBound(I=c(1, 2, 3)/3, trueneg=array(.02, 3),

falsepos=array(.01, 3))

x

# use gsBound1 to set up boundary for a 1-sided test
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x <- gsBound1(theta= 0, I=c(1, 2, 3) / 3, a=array(-20, 3),

probhi=c(.001, .009, .015))

x$b

# check boundary crossing probabilities with gsProbability

y <- gsProbability(k=3, theta=0, n.I=x$I, a=x$a, b=x$b)$upper$prob

# Note that gsBound1 only computes upper bound

# To get a lower bound under a parameter value theta:

# use minus the upper bound as a lower bound

# replace theta with -theta

# set probhi as desired lower boundary crossing probabilities

# Here we let set lower boundary crossing at 0.05 at each analysis

# assuming theta=2.2

y <- gsBound1(theta=-2.2, I=c(1, 2, 3)/3, a= -x$b,

probhi=array(.05, 3))

y$b

# Now use gsProbability to look at design

# Note that lower boundary crossing probabilities are as

# specified for theta=2.2, but for theta=0 the upper boundary

# crossing probabilities are smaller than originally specified

# above after first interim analysis

gsProbability(k=length(x$b), theta=c(0, 2.2), n.I=x$I, b=x$b, a= -y$b)

gsProbability 2.2: Boundary Crossing Probabilities

Description

Computes power/Type I error and expected sample size for a group sequential design across a
selected set of parameter values for a given set of analyses and boundaries. The print function
has been extended using print.gsProbability to print gsProbability objects; see examples.

Usage

gsProbability(k=0, theta, n.I, a, b, r=18, d=NULL)

Arguments

k Number of analyses planned, including interim and final.

theta Vector of standardized effect sizes for which boundary crossing probabilities
are to be computed.

n.I Sample size or relative sample size at analyses; vector of length k. See gsDesign
and manual.

a Lower bound cutoffs (z-values) for futility or harm at each analysis, vector of
length k.

b Upper bound cutoffs (z-values) for futility at each analysis; vector of length k.

r Control for grid as in Jennison and Turnbull (2000); default is 18, range is 1
to 80. Normally this will not be changed by the user.
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d If not NULL, this should be an object of type gsDesign returned by a call to
gsDesign(). When this is specified, the values of k, n.I, a, b, and r will be
obtained from d and only theta needs to be specified by the user.

Details

Depending on the calling sequence, an object of class gsProbability or class gsDesign is
returned. If it is of class gsDesign then the members of the object will be the same as described
in gsDesign. If d is input as NULL (the default), all other arguments (other than r) must be
specified and an object of class gsProbability is returned. If d is passed as an object of class
gsProbability or gsDesign the only other argument required is theta; the object returned
has the same class as the input d. On output, the values of theta input to gsProbability will
be the parameter values for which the design is characterized.

Value

k As input.

theta As input.

n.I As input.

lower A list containing two elements: bound is as input in a and prob is a matrix of
boundary crossing probabilities. Element i,j contains the boundary crossing
probability at analysis i for the j-th element of theta input. All boundary
crossing is assumed to be binding for this computation; that is, the trial must
stop if a boundary is crossed.

upper A list of the same form as lower containing the upper bound and upper bound-
ary crossing probabilities.

en A vector of the same length as theta containing expected sample sizes for the
trial design corresponding to each value in the vector theta.

r As input.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

Plots for group sequential designs, gsDesign, gsDesign package overview
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Examples

# making a gsDesign object first may be easiest...

x <- gsDesign()

# take a look at it

x

# default plot for gsDesign object shows boundaries

plot(x)

# plottype=2 shows boundary crossing probabilities

plot(x, plottype=2)

# now add boundary crossing probabilities and

# expected sample size for more theta values

y <- gsProbability(d=x, theta=x$delta*seq(0, 2, .25))

class(y)

# note that "y" below is equivalent to print(y) and

# print.gsProbability(y)

y

# the plot does not change from before since this is a

# gsDesign object; note that theta/delta is on x axis

plot(y, plottype=2)

# now let,s see what happens with a gsProbability object

z <- gsProbability(k=3, a=x$lower$bound, b=x$upper$bound,

n.I=x$n.I, theta=x$delta*seq(0, 2, .25))

# with the above form, the results is a gsProbability object

class(z)

z

# default plottype is now 2

# this is the same range for theta, but plot now has theta on x axis

plot(z)

plot.gsDesign 2.3: Plots for group sequential designs

Description

The plot() function has been extended to work with objects returned by gsDesign() and
gsProbability(). For objects of type gsDesign, seven types of plots are provided: z-values
at boundaries (default), power, estimated treatment effects at boundaries, conditional power at
boundaries, spending functions, expected sample size, and B-values at boundaries. For objects
of type gsProbability plots are available for z-values at boundaries, power (default), esti-
mated treatment effects at boundaries, conditional power, expected sample size and B-values at
boundaries.
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Usage

plot.gsProbability(x, plottype=2, ...)

plot.gsDesign(x, plottype=1, ...)

Arguments

x Object of class gsDesign for plot.gsDesign() or gsProbability for

plot.gsProbability().

plottype 1=boundary plot (default for gsDesign),

2=power plot (default for gsProbability),

3=estimated treatment effect at boundaries,

4=conditional power at boundaries,

5=spending function plot (only available if class(x)=="gsDesign"),

6=expected sample size plot, and

7=B-values at boundaries.

Character values for plottype may also be entered: "Z" for plot type 1,
"power" for plot type 2, "thetahat" for plot type 3, "CP" for plot type 4,
"sf" for plot type 5, "ASN", "N" or "n" for plot type 6, and "B", "B-val" or
"B-value" for plot type 7.

... This allows many optional arguments that are standard when calling plot.

Other arguments include:

theta which is used for plottype=2, 4, 6; normally defaults will be adequate;
see details.

ses=TRUE which applies only when plottype=3 and

class(x)=="gsDesign"; indicates that estimated standardized effect size at
the boundary is to be plotted rather than the actual estimate.

xval="Default" which is only effective when plottype=2 or 6. Appropriately
scaled (reparameterized) values for x-axis for power and expected sample size
graphs; see details.

Details

The intent is that many standard plot() parameters will function as expected; exceptions
to this rule exist. In particular, main, xlab, ylab, lty, col, lwd, type, pch, cex have
been tested and work for most values of plottype; one exception is that type="l" cannot be
overridden when plottype=2. Default values for labels depend on plottype and the class of x.

Note that there is some special behavior for values plotted and returned for power and ex-
pected sample size (ASN) plots for a gsDesign object. A call to x<-gsDesign() produces
power and expected sample size for only two theta values: 0 and x$delta. The call plot(x,
plottype="Power") (or plot(x,plottype="ASN") for a gsDesign object produces power (ex-
pected sample size) curves and returns a gsDesign object with theta values determined as fol-
lows. If theta is non-null on input, the input value(s) are used. Otherwise, for a gsProbability

object, the theta values from that object are used. For a gsDesign object where theta is in-
put as NULL (the default), theta=seq(0,2,.05)*x$delta) is used. For a gsDesign object, the
x-axis values are rescaled to theta/x$delta and the label for the x-axis theta/delta. For a
gsProbability object, the values of theta are plotted and are labeled as theta. See examples
below.
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Estimated treatment effects at boundaries are computed dividing the Z-values at the boundaries
by the square root of n.I at that analysis.

Spending functions are plotted for a continuous set of values from 0 to 1. This option should
not be used if a boundary is used or a pointwise spending function is used (sfu or sfl="WT",

"OF", "Pocock" or sfPoints).

Conditional power is computed using the function gsBoundCP(). The default input for this
routine is theta="thetahat" which will compute the conditional power at each bound using the
estimated treatment effect at that bound. Otherwise, if the input is gsDesign object conditional
power is computed assuming theta=x$delta, the original effect size for which the trial was
planned.

Average sample number/expected sample size is computed using n.I at each analysis times the
probability of crossing a boundary at that analysis. If no boundary is crossed at any analysis,
this is counted as stopping at the final analysis.

B-values are Z-values multiplied by sqrt(t)=sqrt(x$n.I/n$n.I[x$k]). Thus, the expected
value of a B-value at an analysis is the true value of theta multiplied by the proportion of total
planned observations at that time. See Proschan, Lan and Wittes (2006).

Value

An object of class(x); in many cases this is the input value of x, while in others x$theta is
replaced and corresponding characteristics computed; see details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.com〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Proschan, MA, Lan, KKG, Wittes, JT (2006), Statistical Monitoring of Clinical Trials. A
Unified Approach. New York: Springer.

See Also

gsDesign package overview, gsDesign, gsProbability

Examples

# symmetric, 2-sided design with O,Brien-Fleming-like boundaries

# lower bound is non-binding (ignored in Type I error computation)

# sample size is computed based on a fixed design requiring n=100

x <- gsDesign(k=5, test.type=2, n.fix=100)

x

# the following translate to calls to plot.gsDesign since x was

# returned by gsDesign; run these commands one at a time
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plot(x)

plot(x, plottype=2)

plot(x, plottype=3)

plot(x, plottype=4)

plot(x, plottype=5)

plot(x, plottype=6)

plot(x, plottype=7)

# choose different parameter values for power plot

# start with design in x from above

y <- gsProbability(k=5, theta=seq(0, .5, .025), x$n.I,

x$lower$bound, x$upper$bound)

# the following translates to a call to plot.gsProbability since

# y has that type

plot(y)

gsCP 2.4: Conditional Power Computation

Description

gsCP() takes a given group sequential design, assumes an interim z-statistic at a specified interim
analysis and computes boundary crossing probabilities at future planned analyses.

Usage

gsCP(x, theta=NULL, i=1, zi=0, r=18)

Arguments

x An object of type gsDesign or gsProbability

theta θ value(s) at which conditional power is to be computed; if NULL, an estimated
value of θ based on the interim test statistic (zi/sqrt(x$n.I[i])) as well as
at x$theta is computed.

i analysis at which interim z-value is given

zi interim z-value at analysis i (scalar)

r Integer value controlling grid for numerical integration as in Jennison and
Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger
number of grid points and greater accuracy. Normally r will not be changed
by the user.

Details

See Conditional power section of manual for further clarification. See also Muller and Schaffer
(2001) for background theory.
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Value

An object of the class gsProbability. Based on the input design and the interim test statistic,
the output object has bounds for test statistics computed based on observations after interim
i that are equivalent to the original design crossing boundaries conditional on the interim test
statistic value input. Boundary crossing probabilities are computed for the input θ values.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Muller, Hans-Helge and Schaffer, Helmut (2001), Adaptive group sequential designs for clin-
ical trials: combining the advantages of adaptive and classical group sequential approaches.
Biometrics;57:886-891.

See Also

gsDesign, gsProbability, gsBoundCP

Examples

# set up a group sequential design

x <- gsDesign(k=5)

x

# assuming a z-value of .5 at analysis 2, what are conditional

# boundary crossing probabilities for future analyses

# assuming theta values from x as well as a value based on the interim

# observed z

CP <- gsCP(x, i=2, zi=.5)

CP

# summing values for crossing future upper bounds gives overall

# conditional power for each theta value

CP$theta

CP$upper$prob
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gsBoundCP 2.5: Conditional Power at Interim Boundaries

Description

gsBoundCP() computes the total probability of crossing future upper bounds given an interim
test statistic at an interim bound. For each interim boundary, assumes an interim test statistic
at the boundary and computes the probability of crossing any of the later upper boundaries.

Usage

gsBoundCP(x, theta="thetahat", r=18)

Arguments

x An object of type gsDesign or gsProbability

theta if "thetahat" and class(x)!="gsDesign", conditional power computations
for each boundary value are computed using estimated treatment effect assum-
ing a test statistic at that boundary (zi/sqrt(x$n.I[i]) at analysis i, interim
test statistic zi and interim sample size/statistical information of x$n.I[i]).
Otherwise, conditional power is computed assuming the input scalar value
theta.

r Integer value controlling grid for numerical integration as in Jennison and
Turnbull (2000); default is 18, range is 1 to 80. Larger values provide larger
number of grid points and greater accuracy. Normally r will not be changed
by the user.

Details

See Conditional power section of manual for further clarification. See also Muller and Schaffer
(2001) for background theory.

Value

A list containing two vectors, CPlo and CPhi.

CPlo A vector of length x$k-1 with conditional powers of crossing upper bounds
given interim test statistics at each lower bound

CPhi A vector of length x$k-1 with conditional powers of crossing upper bounds
given interim test statistics at each upper bound.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉
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References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Muller, Hans-Helge and Schaffer, Helmut (2001), Adaptive group sequential designs for clin-
ical trials: combining the advantages of adaptive and classical group sequential approaches.
Biometrics;57:886-891.

See Also

gsDesign, gsProbability, gsCP

Examples

# set up a group sequential design

x <- gsDesign(k=5)

x

# compute conditional power based on interim treatment effects

gsBoundCP(x)

# compute conditional power based on original x$delta

gsBoundCP(x, theta=x$delta)

normalGrid 3.1: Normal Density Grid

Description

normalGrid() is intended to be used for computation of the expected value of a function of a
normal random variable. The function produces grid points and weights to be used for numerical
integration.

Usage

normalGrid(r=18, bounds=c(0,0), mu=0, sigma=1)

Arguments

r Control for grid points as in Jennison and Turnbull (2000), Chapter 19; default
is 18. Range: 1 to 80. This might be changed by the user (e.g., r=6 which
produces 65 gridpoints compare to 185 points when r=18) when speed is more
important than precision.

bounds Range of integration. Real-valued vector of length 2. Default value of 0, 0
produces a range of + or - 6 standard deviations (6*sigma) from the mean
(=mu).

mu Mean of the desired normal distribution.

sigma Standard deviation of the desired normal distribution.
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Value

z Grid points for numerical integration.

wgts Weights to be used with grid points in z.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.com〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Examples

# standard normal distribution

x <- normalGrid(r=3)

plot(x$z, x$wgts)

# verify that numerical integration replicates sigma

# get grid points and weights

x <- normalGrid(mu=2, sigma=3)

# compute squared deviation from mean for grid points

dev <- (x$z-2)^2

# multiply squared deviations by integration weights and sum

sigma2 <- sum(dev * x$wgts)

# square root of sigma2 should be sigma (3)

sqrt(sigma2)

# do it again with larger r to increase accuracy

x <- normalGrid(r=22, mu=2, sigma=3)

sqrt(sum((x$z-2)^2 * x$wgts))

# find expected sample size for default design with

# n.fix=1000

x <- gsDesign(n.fix=1000)

x

y <- normalGrid(r=3, mu=x$theta[2], sigma=x$theta[2] / 1.5)

z <- gsProbability(k=3, theta=y$z, n.I=x$n.I, a=x$lower$bound,

b=x$upper$bound)

z <- gsProbability(d=x, theta=y$z)

cat("Expected sample size averaged over normal ")

cat("prior distribution for theta with mu=",

x$theta[2], "sigma=", x$theta[2]/1.5, ":",

round(sum(z$en*y$wgt), 1), "\n")
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plot(y$z, z$en, xlab="theta", ylab="E{N}",

main="Expected sample size for different theta values")

Binomial 3.2: Testing, Confidence Intervals and Sample Size for Comparing
Two Binomial Rates

Description

Support is provided for sample size estimation, testing confidence intervals and simulation for
fixed sample size trials (that is, not group sequential or adaptive) with two arms and binary
outcomes. Both superiority and non-inferiority trials are considered. While all routines default
to comparisons of risk-difference, options to base computations on risk-ratio and odds-ratio are
also included.

nBinomial() computes sample size using the method of Farrington and Manning (1990) to
derive sample size required to power a trial to test the difference between two binomial event
rates. The routine can be used for a test of superiority or non-inferiority. For a design that
tests for superiority nBinomial() is consistent with the method of Fleiss, Tytun, and Ury (but
without the continuity correction) to test for differences between event rates. This routine is
consistent with the Hmisc package routine bsamsize for superiority designs. Vector arguments
allow computing sample sizes for multiple scenarios for comparative purposes.

testBinomial() computes a Z- or Chi-square-statistic that compares two binomial event rates
using the method of Miettinen and Nurminen (1980). This can be used for superiority or non-
inferiority testing. Vector arguments allow easy incorporation into simulation routines for fixed,
group sequential and adaptive designs.

ciBinomial() computes confidence intervals for 1) the difference between two rates, 2) the risk-
ratio for two rates or 3) the odds-ratio for two rates. This procedure provides inference that is
consistent with testBinomial() in that the confidence intervals are produced by inverting the
testing procedures in testBinomial(). The Type I error alpha input to ciBinomial is always
interpreted as 2-sided.

simBinomial() performs simulations to estimate the power for a Miettinin and Nurminen (1980)
test comparing two binomial rates for superiority or non-inferiority. As noted in documentation
for bpower.sim() in the HMisc package, by using testBinomial() you can see that the formulas
without any continuity correction are quite accurate. In fact, Type I error for a continuity-
corrected test is significantly lower (Gordon and Watson, 1996) than the nominal rate. Thus,
as a default no continuity corrections are performed.

Usage

nBinomial(p1, p2, alpha=.025, beta=0.1, delta0=0, ratio=1,

sided=1, outtype=1, scale="Difference")

testBinomial(x1, x2, n1, n2, delta0=0, chisq=0, adj=0,

scale="Difference", tol=.1e-10)

ciBinomial(x1, x2, n1, n2, alpha=.05, adj=0, scale="Difference")

simBinomial(p1, p2, n1, n2, delta0=0, nsim=10000, chisq=0, adj=0,

scale="Difference")

79



Arguments

For simBinomial() and ciBinomial() all arguments must have length 1.

For testBinomial(), x2, x2, n1, n2, delta0, chisq, and adj may be vectors.

For nBinomial(), p1, p2, beta, delta0 and ratio may be vectors.

For nBinomial() or testBinomial(), when one or more arguments is a vector, the routines
return a vector of sample sizes and powers, respectively. Where vector arguments are allowed,
there may be a mix of scalar and vector arguments. All arguments specified using vectors must
have the same length.

p1 event rate in group 1 under the alternative hypothesis

p2 event rate in group 2 under the alternative hypothesis

alpha type I error; see sided below to distinguish between 1- and 2-sided tests

beta type II error

delta0 A value of 0 (the default) always represents no difference between treatment
groups under the null hypothesis. delta0 is interpreted differently depending
on the value of the parameter scale. If scale="Difference" (the default),
delta0 is the difference in event rates under the null hypothesis (p10 - p20).
If scale="RR", delta0 is the logarithm of the relative risk of event rates (p10
/ p20) under the null hypothesis. If scale="LNOR", delta0 is the difference in
natural logarithm of the odds-ratio under the null hypothesis log(p10 / (1

- p10)) - log(p20 / (1 - p20)).

ratio sample size ratio for group 2 divided by group 1

sided 2 for 2-sided test, 1 for 1-sided test

outtype nBinomial only; (default) returns total sample size; 2 returns sample size for
each group (n1, n2); 3 and delta0=0 returns a list with total sample size (n),
sample size in each group (n1, n2), null and alternate hypothesis variance
(sigma0, sigma1), input event rates (p1, p2) and null hypothesis event rates
(p10, p20).

x1 Number of “successes” in the control group

x2 Number of “successes” in the experimental group

n1 Number of observations in the control group

n2 Number of observations in the experimental group

chisq An indicator of whether or not a chi-square (as opposed to Z) statistic is to
be computed. If delta=0 (default), the difference in event rates divided by its
standard error under the null hypothesis is used. Otherwise, a Miettinen and
Nurminen chi-square statistic for a 2 x 2 table is used.

adj With adj=1, the standard variance with a continuity correction is used for
a Miettinen and Nurminen test statistic This includes a factor of n/(n − 1)
where n is the total sample size. If adj is not 1, this factor is not applied.
The default is adj=0 since nominal Type I error is generally conservative with
adj=1 (Gordon and Watson, 1996).

scale “Difference”, “RR”, “OR”; see the scale parameter documentation above and
Details. This is a scalar argument.

nsim The number of simulations to be performed in simBinomial()

tol Default should probably be used; this is used to deal with a rounding issue in
interim calculations
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Details

Testing is 2-sided when a Chi-square statistic is used and 1-sided when a Z-statistic is used.
Thus, these 2 options will produce substantially different results, in general. For non-inferiority,
1-sided testing is appropriate.

You may wish to round sample sizes up using ceiling().

Farrington and Manning (1990) begin with event rates p1 and p2 under the alternative hypothesis
and a difference between these rates under the null hypothesis, delta0. From these values, actual
rates under the null hypothesis are computed, which are labeled p10 and p20 when outtype=3.
The rates p1 and p2 are used to compute a variance for a Z-test comparing rates under the
alternative hypothesis, while p10 and p20 are used under the null hypothesis.

Sample size with scale="Difference" produces an error if p1-p2=delta0. Normally, the al-
ternative hypothesis under consideration would be p1-p2-delta0> 0. However, the alternative
can have p1-p2-delta0< 0.

Value

testBinomial() and simBinomial() each return a vector of either Chi-square or Z test statis-
tics. These may be compared to an appropriate cutoff point (e.g., qnorm(.975) for normal or
qchisq(.95,1) for chi-square).

With the default outtype=2, nBinomial() returns a list containing two vectors n1 and n2

containing sample sizes for groups 1 and 2, respectively. With outtype=1, a vector of total
sample sizes is returned. With outtype=3, nBinomial() returns a list as follows:

n A vector with total samples size required for each event rate comparison spec-
ified

n1 A vector of sample sizes for group 1 for each event rate comparison specified

n2 A vector of sample sizes for group 2 for each event rate comparison specified

sigma0 A vector containing the variance of the treatment effect difference under the
null hypothesis

sigma1 A vector containing the variance of the treatment effect difference under the
alternative hypothesis

p1 As input

p2 As input

pbar Returned only for superiority testing (\delta0=0), the weighted average of p1
and p2 using weights n1 and n2

p10 group 1 event rate used for null hypothesis

p20 group 2 event rate used for null hypothesis

Author(s)

Keaven Anderson 〈keaven anderson@merck.com〉

References

Farrington, CP and Manning, G (1990), Test statistics and sample size formulae for compar-
ative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk.
Statistics in Medicine; 9: 1447-1454.
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Fleiss, JL, Tytun, A and Ury (1980), A simple approximation for calculating sample sizes for
comparing independent proportions. Biometrics;36:343-346.

Gordon, I and Watson R (1985), The myth of continuity-corrected sample size formulae. Bio-
metrics; 52: 71-76.

Miettinin, O and Nurminen, M (1980), Comparative analysis of two rates. Statistics in Medicine;
4 : 213-226.

Examples

# Compute z-test test statistic comparing 39/500 to 13/500

# use continuity correction in variance

x <- testBinomial(x1=39, x2=13, n1=500, n2=500, adj=1)

x

pnorm(x, lower.tail=FALSE)

# Compute with unadjusted variance

x0 <- testBinomial(x1=39, x2=23, n1=500, n2=500)

x0

pnorm(x0, lower.tail=FALSE)

# Perform 10k simulations to test validity of the above

# asymptotic p-values

# (you may want to perform more to reduce standard error of estimate)

sum(as.real(x0) <=

simBinomial(p1=.078, p2=.078, n1=500, n2=500, nsim=10000)) / 10000

sum(as.real(x0) <=

simBinomial(p1=.052, p2=.052, n1=500, n2=500, nsim=10000)) / 10000

# Perform a non-inferiority test to see if p2=400 / 500 is within 5

# p1=410 / 500 use a z-statistic with unadjusted variance

x <- testBinomial(x1=410, x2=400, n1=500, n2=500, delta0= -.05)

x

pnorm(x, lower.tail=FALSE)

# since chi-square tests equivalence (a 2-sided test) rather than

# non-inferiority (a 1-sided test),

# the result is quite different

pchisq(testBinomial(x1=410, x2=400, n1=500, n2=500, delta0= -.05,

chisq=1, adj=1), 1, lower.tail=FALSE)

# now simulate the z-statistic witthout continuity corrected variance

sum(qnorm(.975) <=

simBinomial(p1=.8, p2=.8, n1=500, n2=500, nsim=100000)) / 100000

# compute a sample size to show non-inferiority

# with 5% margin, 90% power

nBinomial(p1=.2, p2=.2, delta0=.05, alpha=.025, sided=1, beta=.1)

# assuming a slight advantage in the experimental group lowers

# sample size requirement

nBinomial(p1=.2, p2=.19, delta0=.05, alpha=.025, sided=1, beta=.1)

# compute a sample size for comparing 15% vs 10% event rates

# with 1 to 2 randomization

nBinomial(p1=.15, p2=.1, beta=.2, ratio=2, alpha=.05)
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# now look at total sample size using 1-1 randomization

nBinomial(p1=.15, p2=.1, beta=.2, alpha=.05)

# look at power plot under different control event rate and

# relative risk reductions

p1 <- seq(.075, .2, .000625)

p2 <- p1 * 2 / 3

y1 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

p2 <- p1 * .75

y2 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

p2 <- p1 * .6

y3 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

p2 <- p1 * .5

y4 <- nBinomial(p1, p2, beta=.2, outtype=1, alpha=.025, sided=1)

plot(p1, y1, type="l", ylab="Sample size",

xlab="Control group event rate", ylim=c(0, 6000), lwd=2)

title(main="Binomial sample size computation for 80 pct power")

lines(p1, y2, lty=2, lwd=2)

lines(p1, y3, lty=3, lwd=2)

lines(p1, y4, lty=4, lwd=2)

legend(x=c(.15, .2),y=c(4500, 6000),lty=c(2, 1, 3, 4), lwd=2,

legend=c("25 pct reduction", "33 pct reduction",

"40 pct reduction", "50 pct reduction"))

gsBinomialExact 3.4: One-Sample Exact Binomial Boundary Crossing Probabilities

Description

Computes power/Type I error and expected sample size for a group sequential design in a single-
arm trial with a binary outcome. The print function has been extended using print.gsBinomialExact

to print gsBinomialExact objects; see examples.

Usage

gsBinomialExact(k=2, theta=c(.1, .2), n.I=c(50, 100), a=c(3, 7), b=c(20,30))

Arguments

k Number of analyses planned, including interim and final.

theta Vector of possible underling binomial probabilities for a single binomial sample.

n.I Sample size at analyses (increasing positive integers); vector of length k.

a Number of ”successes”required to cross lower bound cutoffs for futility or harm
at each analysis; vector of length k; -1 means no lower bound.

b Number of ”successes” required to cross upper bound cutoffs for futility or
harm at each analysis; vector of length k.
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Details

Based on the book ”Group Sequential Methods with Applications to Clinical Trials,”Christopher
Jennison and Bruce W. Turnbull, Chapter 12, Section 12.1.2 Exact Calculations for Binary Data.
This computation is often used as an approximation for the distribution of the number of events
in one treatment group out of all events when the probability of an event is small and sample
size is large.

An object of class gsBinomialExact is returned. On output, the values of theta input to
gsBinomialExact will be the parameter values for which the boundary crossing probabilities
and expected sample sizes are computed.

Note that a[1] equal to -1 lower bound at n.I[1] means 0 successes continues at interim 1; a[2]==0
at interim 2 means 0 successes stops trial for futility at 2nd analysis. For final analysis, set a[k]
equal to b[k]-1 to incorporate all possibilities into non-positive trial; see example.

Value

gsBinomialExact() returns a list of class gsBinomialExact and gsProbability (see example);
when displaying one of these objects, the default function to print is print.gsProbability().
The object returned from gsBinomialExact() contains the following elements:

k As input.

theta As input.

n.I As input.

lower A list containing two elements: bound is as input in a and prob is a matrix of
boundary crossing probabilities. Element i,j contains the boundary crossing
probability at analysis i for the j-th element of theta input. All boundary
crossing is assumed to be binding for this computation; that is, the trial must
stop if a boundary is crossed.

upper A list of the same form as lower containing the upper bound and upper bound-
ary crossing probabilities.

en A vector of the same length as theta containing expected sample sizes for the
trial design corresponding to each value in the vector theta.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Jon Hartzel with modifications for gsDesign package by Yevgen Tymofyeyev and Keaven An-
derson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

gsProbability
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Examples

zz <- gsBinomialExact(k=3,theta=seq(0,1,0.1), n.I=c(12,24,36),

a=c(-1, 0, 11), b=c( 5, 9, 12))

# let,s see what class this is

class(zz)

# because of "gsProbability" class above, following is equivalent to

# print.gsProbability(zz)

zz

nSurvival 3.3: Time-to-event sample size calculation (Lachin-Foulkes)

Description

nSurvival() is used to calculate the sample size for a clinical trial with a time-to-event endpoint.
The Lachin and Foulkes (1986) method is used.

Usage

nSurvival(lambda.0, lambda.1, Ts, Tr, eta = 0, rand.ratio = 1,

alpha = 0.05, beta = 0.10, sided = 2, approx = FALSE,

type = c("rr", "rd"), entry = c("unif", "expo"), gamma = NA)

Arguments

lambda.0, lambda.1

event hazard rate for placebo and treatment group respectively.

eta equal dropout hazard rate for both groups.

rand.ratio randomization ratio between placebo and treatment group. Default is balanced
design, i.e., randomization ratio is 1.

Ts maximum study duration.

Tr accrual (recruitment) duration.

alpha type I error rate. Default is 0.05 since 2-sided testing is default.

beta type II error rate. Default is 0.10 (90% power).

sided one or two-sided test? Default is two-sided test.

approx logical. If TRUE, the approximation sample size formula for risk difference is
used.

type type of sample size calculation: risk ratio (“rr”) or risk difference (“rd”).

entry patient entry type: uniform entry ("unif") or exponential entry ("expo").

gamma rate parameter for exponential entry. NA if entry type is "unif" (uniform). A
non-zero value is supplied if entry type is "expo" (exponential).
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Details

nSurvival produces the number of subjects and events for a set of pre-specified trial parameters,
such as accrual duration and follow-up period. The calculation is based on Lachin and Foulkes
method and can be used for risk ratio or risk difference. The function also consider non-uniform
entry as well as uniform entry.

If the logical approx is TRUE, the variance under alternative hypothesis is used to replace the
variance under null hypothesis.

For non-uniform entry. a non-zero value of gamma for exponential entry must be supplied.
For positive gamma, the entry distribution is convex, whereas for negative gamma, the entry
distribution is concave.

Value

nSurvival produces a list with the following component returned:

Method As input.

Entry As input.

Sample.size Number of subjects.

Num.events Number of events.
Hazard.p, Hazard.t

hazard rate for placebo and treatment group. As input.

Dropout as input.

Frac.p, Frac.t

randomization proportion for placebo and treatment. As input.

Gamma as input.

Alpha as input.

Beta as input.

Sided as input.

Study.dura Study duration.

Accrual Accrual period.

Author(s)

Shanhong Guan 〈shanhong guan@merck.com〉

References

Lachin JM and Foulkes MA (1986), Evaluation of Sample Size and Power for Analyses of Sur-
vival with Allowance for Nonuniform Patient Entry, Losses to Follow-Up, Noncompliance, and
Stratification. Biometrics, 42, 507-519.

Examples

# consider a trial with

# 2 year maximum follow-up

# 6 month uniform enrollment

# Treatment/placebo hazards = 0.1/0.2 per 1 person-year

# drop out hazard 0.1 per 1 person-year
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# alpha = 0.05 (two-sided)

# power = 0.9 (default beta=.1)

ss <- nSurvival(lambda.0=.2 , lambda.1=.1, eta = .1, Ts = 2, Tr = .5,

sided=1, alpha=.025)

# symmetric, 2-sided design with O,Brien-Fleming-like boundaries

# sample size is computed based on a fixed design requiring n=100

x<-gsDesign(k = 5, test.type = 2)

x

# boundary plot

plot(x)

# power plot

plot(x, plottype = 2)

# total sample size

ceiling(x$n.I[x$k] * ss$Sample.size)

# number of events at analyses

ceiling(ss$Num.events * x$n.I)

Spending functions 4.0: Spending function overview

Description

Spending functions are used to set boundaries for group sequential designs. Using the spending
function approach to design offers a natural way to provide interim testing boundaries when
unplanned interim analyses are added or when the timing of an interim analysis changes. Many
standard and investigational spending functions are provided in the gsDesign package. These
offer a great deal of flexibility in setting up stopping boundaries for a design.

Usage

spendingFunction(alpha, t, param)

Arguments

alpha Real value > 0 and no more than 1. Defaults in calls to gsDesign() are
alpha=0.025 for one-sided Type I error specification and alpha=0.1 for Type
II error specification. However, this could be set to 1 if, for descriptive pur-
poses, you wish to see the proportion of spending as a function of the propor-
tion of sample size/information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size/information for which the spending function will be
computed.

param A single real value or a vector of real values specifying the spending function
parameter(s); this must be appropriately matched to the spending function
specified.
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Details

Spending functions have three arguments as noted above and return an object of type spendfn.
Normally a spending function will be passed to gsDesign() in the parameter sfu for the upper
bound and sfl for the lower bound to specify a spending function family for a design. In this
case, the user does not need to know the calling sequence - only how to specify the parameter(s)
for the spending function. The calling sequence is useful when the user wishes to plot a spending
function as demonstrated below in examples. In addition to using supplied spending functions,
a user can write code for a spending function. See examples.

Value

An object of type spendfn.

name A character string with the name of the spending function.

param any parameters used for the spending function.

parname a character string or strings with the name(s) of the parameter(s) in param.

sf the spending function specified.

spend a vector of cumulative spending values corresponding to the input values in t.

bound this is null when returned from the spending function, but is set in gsDesign()

if the spending function is called from there. Contains z-values for bounds of
a design.

prob this is null when returned from the spending function, but is set in gsDesign()

if the spending function is called from there. Contains probabilities of bound-
ary crossing at i-th analysis for j-th theta value input to gsDesign() in
prob[i,j].

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

gsDesign, sfHSD, sfPower, sfLogistic, sfExponential, Wang-Tsiatis Bounds, gsDesign pack-
age overview

Examples

# Example 1: simple example showing what mose users need to know

# design a 4-analysis trial using a Hwang-Shih-DeCani spending function

# for both lower and upper bounds
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x <- gsDesign(k=4, sfu=sfHSD, sfupar=-2, sfl=sfHSD, sflpar=1)

# print the design

x

# plot the alpha- and beta-spending functions

plot(x, plottype=5)

# Example 2: advance example: writing a new spending function

# Most users may ignore this!

# implementation of 2-parameter version of

# beta distribution spending function

# assumes t and alpha are appropriately specified (does not check!)

sfbdist <- function(alpha, t, param)

{

# check inputs

checkVector(param, "numeric", c(0, Inf), c(FALSE, TRUE))

if (length(param) !=2) stop(

"b-dist example spending function parameter must be of length 2")

# set spending using cumulative beta distribution and return

x <- list(name="B-dist example", param=param, parname=c("a", "b"),

sf=sfbdist, spend=alpha *

pbeta(t, param[1], param[2]), bound=NULL, prob=NULL)

class(x) <- "spendfn"

x

}

# now try it out!

# plot some example beta (lower bound) spending functions using

# the beta distribution spending function

t <- 0:100/100

plot(t, sfbdist(1, t, c(2, 1))$spend, type="l",

xlab="Proportion of information",

ylab="Cumulative proportion of total spending",

main="Beta distribution Spending Function Example")

lines(t, sfbdist(1, t, c(6, 4))$spend, lty=2)

lines(t, sfbdist(1, t, c(.5, .5))$spend, lty=3)

lines(t, sfbdist(1, t, c(.6, 2))$spend, lty=4)

legend(x=c(.65, 1), y=1 * c(0, .25), lty=1:4,

legend=c("a=2, b=1","a=6, b=4","a=0.5, b=0.5","a=0.6, b=2"))

sfHSD 4.1: Hwang-Shih-DeCani Spending Function

Description

The function sfHSD implements a Hwang-Shih-DeCani spending function. This is the default
spending function for gsDesign(). Normally it will be passed to gsDesign in the parameter
sfu for the upper bound or sfl for the lower bound to specify a spending function family for a
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design. In this case, the user does not need to know the calling sequence. The calling sequence
is useful, however, when the user wishes to plot a spending function as demonstrated below in
examples.

Usage

sfHSD(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size/information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size/information for which the spending function will be
computed.

param A single real value specifying the gamma parameter for which Hwang-Shih-
DeCani spending is to be computed; allowable range is [-40, 40]

Details

A Hwang-Shih-DeCani spending function takes the form

f(t;α, γ) = α(1− e−γt)/(1− e−γ)

where γ is the value passed in param. A value of γ = −4 is used to approximate an O’Brien-
Fleming design (see sfExponential for a better fit), while a value of γ = 1 approximates a
Pocock design well.

Value

An object of type spendfn. See Spending function overview for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.com〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

Spending function overview, gsDesign, gsDesign package overview
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Examples

# design a 4-analysis trial using a Hwang-Shih-DeCani spending function

# for both lower and upper bounds

x <- gsDesign(k=4, sfu=sfHSD, sfupar=-2, sfl=sfHSD, sflpar=1)

# print the design

x

# since sfHSD is the default for both sfu and sfl,

# this could have been written as

x <- gsDesign(k=4, sfupar=-2, sflpar=1)

# print again

x

# plot the spending function using many points to obtain a smooth curve

# show default values of gamma to see how the spending function changes

# also show gamma=1 which is supposed to approximate a Pocock design

t <- 0:100/100

plot(t, sfHSD(0.025, t, -4)$spend,

xlab="Proportion of final sample size",

ylab="Cumulative Type I error spending",

main="Hwang-Shih-DeCani Spending Function Example", type="l")

lines(t, sfHSD(0.025, t, -2)$spend, lty=2)

lines(t, sfHSD(0.025, t, 1)$spend, lty=3)

legend(x=c(.0, .375), y=.025*c(.8, 1), lty=1:3,

legend=c("gamma= -4", "gamma= -2", "gamma= 1"))

sfPower 4.2: Kim-DeMets (power) Spending Function

Description

The function sfPower() implements a Kim-DeMets (power) spending function. This is a flexible,
one-parameter spending function recommended by Jennison and Turnbull (2000). Normally it
will be passed to gsDesign() in the parameter sfu for the upper bound or sfl for the lower
bound to specify a spending function family for a design. In this case, the user does not need
to know the calling sequence. The calling sequence is useful, however, when the user wishes to
plot a spending function as demonstrated below in examples.

Usage

sfPower(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size/information.
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t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size/information for which the spending function will be
computed.

param A single, positive value specifying the ρ parameter for which Kim-DeMets
spending is to be computed; allowable range is (0,15]

Details

A Kim-DeMets spending function takes the form

f(t;α, ρ) = αtρ

where ρ is the value passed in param. See examples below for a range of values of ρ that may
be of interest (param=0.75 to 3 are documented there).

Value

An object of type spendfn. See Spending function overview for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

Spending function overview, gsDesign, gsDesign package overview

Examples

# design a 4-analysis trial using a Kim-DeMets spending function

# for both lower and upper bounds

x <- gsDesign(k=4, sfu=sfPower, sfupar=3, sfl=sfPower, sflpar=1.5)

# print the design

x

# plot the spending function using many points to obtain a smooth curve

# show rho=3 for approximation to O,Brien-Fleming and rho=.75 for

# approximation to Pocock design.

# Also show rho=2 for an intermediate spending.

# Compare these to Hwang-Shih-DeCani spending with gamma=-4, -2, 1

t <- 0:100/100

plot(t, sfPower(0.025, t, 3)$spend, xlab="Proportion of sample size",

ylab="Cumulative Type I error spending",

main="Kim-DeMets (rho) versus Hwang-Shih-DeCani (gamma) Spending",
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type="l", cex.main=.9)

lines(t, sfPower(0.025, t, 2)$spend, lty=2)

lines(t, sfPower(0.025, t, 0.75)$spend, lty=3)

lines(t, sfHSD(0.025, t, 1)$spend, lty=3, col=2)

lines(t, sfHSD(0.025, t, -2)$spend, lty=2, col=2)

lines(t, sfHSD(0.025, t, -4)$spend, lty=1, col=2)

legend(x=c(.0, .375), y=.025*c(.65, 1), lty=1:3,

legend=c("rho= 3", "rho= 2", "rho= 0.75"))

legend(x=c(.0, .357), y=.025*c(.65, .85), lty=1:3, bty="n", col=2,

legend=c("gamma= -4", "gamma= -2", "gamma=1"))

sfExponential 4.3: Exponential Spending Function

Description

The function sfExponential implements the exponential spending function (Anderson and
Clark, 2009). Normally sfExponential will be passed to gsDesign in the parameter sfu for
the upper bound or sfl for the lower bound to specify a spending function family for a design.
In this case, the user does not need to know the calling sequence. The calling sequence is useful,
however, when the user wishes to plot a spending function as demonstrated below in examples.

Usage

sfExponential(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size/information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size/information for which the spending function will be
computed.

param A single positive value specifying the nu parameter for which the exponential
spending is to be computed; allowable range is (0, 1.5].

Details

An exponential spending function is defined for any positive nu and 0 ≤ t ≤ 1 as

f(t;α, ν) = α(t) = αt
−ν
.

A value of nu=0.8 approximates an O’Brien-Fleming spending function well.

The general class of spending functions this family is derived from requires a continuously
increasing cumulative distribution function defined for x > 0 and is defined as

f(t;α, ν) = 1− F
(
F−1(1− α)/tν

)
.
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The exponential spending function can be derived by letting F (x) = 1−exp(−x), the exponential
cumulative distribution function. This function was derived as a generalization of the Lan-
DeMets (1983) spending function used to approximate an O’Brien-Fleming spending function
(sfLDOF()),

f(t;α) = 2− 2Φ
(

Φ−1(1− α/2)/t1/2
)
.

Value

An object of type spendfn.

Note

The manual shows how to use sfExponential() to closely approximate an O’Brien-Fleming
design. An example is given below. The manual is not linked to this help file, but is available
in library/gsdesign/doc/gsDesignManual.pdf in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.com〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Lan, KKG and DeMets, DL (1983), Discrete sequential boundaries for clinical trials. Biometrika;
70:659-663.

See Also

Spending function overview, gsDesign, gsDesign package overview

Examples

# use ,best, exponential approximation for k=6 to O,Brien-Fleming design

# (see manual for details)

gsDesign(k=6, sfu=sfExponential, sfupar=0.7849295,

test.type=2)$upper$bound

# show actual O,Brien-Fleming bound

gsDesign(k=6, sfu="OF", test.type=2)$upper$bound

# show Lan-DeMets approximation

# (not as close as sfExponential approximation)

gsDesign(k=6, sfu=sfLDOF, test.type=2)$upper$bound

# plot exponential spending function across a range of values of interest

t <- 0:100/100

plot(t, sfExponential(0.025, t, 0.8)$spend,

xlab="Proportion of final sample size",

ylab="Cumulative Type I error spending",

main="Exponential Spending Function Example", type="l")

lines(t, sfExponential(0.025, t, 0.5)$spend, lty=2)

lines(t, sfExponential(0.025, t, 0.3)$spend, lty=3)

lines(t, sfExponential(0.025, t, 0.2)$spend, lty=4)
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lines(t, sfExponential(0.025, t, 0.15)$spend, lty=5)

legend(x=c(.0, .3), y=.025*c(.7, 1), lty=1:5,

legend=c("nu = 0.8", "nu = 0.5", "nu = 0.3", "nu = 0.2",

"nu = 0.15"))

text(x=.59, y=.95*.025, labels="<--approximates O,Brien-Fleming")

sfLDOF 4.4: Lan-DeMets Spending function overview

Description

Lan and DeMets (1983) first published the method of using spending functions to set boundaries
for group sequential trials. In this publication they proposed two specific spending functions:
one to approximate an O’Brien-Fleming design and the other to approximate a Pocock design.
Both of these spending functions are available here, mainly for historical purposes. Neither
requires a parameter.

Usage

sfLDOF(alpha, t, param)

sfLDPocock(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size/information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size/information for which the spending function will be
computed.

param This parameter is not used and need not be specified. It is here so that the
calling sequence conforms the to the standard for spending functions used with
gsDesign().

Details

The Lan-DeMets (1983) spending function to approximate an O’Brien-Fleming bound is imple-
mented in the function (sfLDOF()):

f(t;α) = 2− 2Φ
(

Φ−1(1− α/2)/t1/2
)
.

The Lan-DeMets (1983) spending function to approximate a Pocock design is implemented in
the function sfLDPocock():

f(t;α) = ln(1 + (e− 1)t).

As shown in examples below, other spending functions can be used to get as good or better
approximations to Pocock and O’Brien-Fleming bounds. In particular, O’Brien-Fleming bounds
can be closely approximated using sfExponential.
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Value

An object of type spendfn. See spending functions for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

Lan, KKG and DeMets, DL (1983), Discrete sequential boundaries for clinical trials. Biometrika;70:
659-663.

See Also

Spending function overview, gsDesign, gsDesign package overview

Examples

# 2-sided, symmetric 6-analysis trial Pocock

# spending function approximation

gsDesign(k=6, sfu=sfLDPocock, test.type=2)$upper$bound

# show actual Pocock design

gsDesign(k=6, sfu="Pocock", test.type=2)$upper$bound

# approximate Pocock again using a standard

# Hwang-Shih-DeCani approximation

gsDesign(k=6, sfu=sfHSD, sfupar=1, test.type=2)$upper$bound

# use ,best, Hwang-Shih-DeCani approximation for Pocock, k=6;

# see manual for details

gsDesign(k=6, sfu=sfHSD, sfupar=1.3354376, test.type=2)$upper$bound

# 2-sided, symmetric 6-analysis trial

# O,Brien-Fleming spending function approximation

gsDesign(k=6, sfu=sfLDOF, test.type=2)$upper$bound

# show actual O,Brien-Fleming bound

gsDesign(k=6, sfu="OF", test.type=2)$upper$bound

# approximate again using a standard Hwang-Shih-DeCani

# approximation to O,Brien-Fleming

x<-gsDesign(k=6, test.type=2)

x$upper$bound

x$upper$param

# use ,best, exponential approximation for k=6; see manual for details
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gsDesign(k=6, sfu=sfExponential, sfupar=0.7849295,

test.type=2)$upper$bound

sfPoints 4.5: Pointwise Spending Function

Description

The function sfPoints implements a spending function with values specified for an arbitrary
set of specified points. It is now recommended to use sfLinear rather than sfPoints. Normally
sfPoints will be passed to gsDesign in the parameter sfu for the upper bound or sfl for the
lower bound to specify a spending function family for a design. In this case, the user does not
need to know the calling sequence, just the points they wish to specify. If using sfPoints() in a
design, it is recommended to specify how to interpolate between the specified points (e.g

”
linear

interpolation); also consider fitting smooth spending functions; see Spending function overview.

Usage

sfPoints(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size/information.

t A vector of points with increasing values from 0 to 1, inclusive. The last point
should be 1. Values of the proportion of sample size/information for which
the spending function will be computed.

param A vector of the same length as t specifying the cumulative proportion of spend-
ing to corresponding to each point in t.

Value

An object of type spendfn. See spending functions for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.
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See Also

Spending function overview, gsDesign, gsDesign package overview, sfLogistic

Examples

# example to specify spending on a pointwise basis

x <- gsDesign(k=6, sfu=sfPoints, sfupar=c(.01, .05, .1, .25, .5, 1),

test.type=2)

x

# get proportion of upper spending under null hypothesis

# at each analysis

y <- x$upper$prob[, 1] / .025

# change to cumulative proportion of spending

for(i in 2:length(y))

y[i] <- y[i - 1] + y[i]

# this should correspond to input sfupar

round(y, 6)

# plot these cumulative spending points

plot(1:6/6, y, main="Pointwise spending function example",

xlab="Proportion of final sample size",

ylab="Cumulative proportion of spending",

type="p")

# approximate this with a t-distribution spending function

# by fitting 3 points

tx <- 0:100/100

lines(tx, sfTDist(1, tx, c(c(1, 3, 5)/6, .01, .1, .5))$spend)

text(x=.6, y=.9, labels="Pointwise Spending Approximated by")

text(x=.6, y=.83, "t-Distribution Spending with 3-point interpolation")

sfLinear 4.6: Piecewise Linear Spending Function

Description

The function sfLinear() allows specification of a piecewise linear spending function. This
provides complete flexibility in setting spending at desired timepoints in a group sequential
design. Normally this function will be passed to gsDesign() in the parameter sfu for the upper
bound or sfl for the lower bound to specify a spending function family for a design. When
passed to gsDesign(), the value of param would be passed to sfLinear through the gsDesign()
arguments sfupar for the upper bound and sflpar for the lower bound.

Usage

sfLinear(alpha, t, param)

98



Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size or information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size or information for which the spending function will
be computed.

param A vector with a positive, even length. All values must be strictly between
0 and 1. Letting m <- length(param/2), the first m points in param specify
increasing values strictly between 0 and 1 where the proportion of total spend-
ing is specified. The last m points in param specify increasing values strictly
between 0 and 1 with the cumulative proportion of spending at the timepoints
in the first part of the vector.

Value

An object of type spendfn. The cumulative spending returned in sfLinear$spend is 0 for t=0
and alpha for t>=1. For t between specified points, linear interpolation is used to determine
sfLinear$spend. See Spending function overview for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

Spending function overview, gsDesign, gsDesign package overview

Examples

# set up alpha spending and beta spending to be piecewise linear

sfupar <- c(.2, .4, .05, .2)

sflpar <- c(.3, .5, .65, .5, .75, .9)

x <- gsDesign(sfu=sfLinear, sfl=sfLinear, sfupar=sfupar, sflpar=sflpar)

plot(x, plottype="sf")

x
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sfLogistic 4.7: Two-parameter Spending Function Families

Description

The functions sfLogistic(), sfNormal(), sfExtremeValue(), sfExtremeValue2(), sfCauchy(),
and sfBetaDist() are all 2-parameter spending function families. These provide increased flex-
ibility in some situations where the flexibility of a one-parameter spending function family is
not sufficient. These functions all allow fitting of two points on a cumulative spending function
curve; in this case, four parameters are specified indicating an x and a y coordinate for each of 2
points. Normally each of these functions will be passed to gsDesign() in the parameter sfu for
the upper bound or sfl for the lower bound to specify a spending function family for a design.
In this case, the user does not need to know the calling sequence. The calling sequence is useful,
however, when the user wishes to plot a spending function as demonstrated in the examples;
note, however, that an automatic α- and β-spending function plot is also available.

Usage

sfLogistic(alpha, t, param)

sfNormal(alpha, t, param)

sfExtremeValue(alpha, t, param)

sfExtremeValue2(alpha, t, param)

sfCauchy(alpha, t, param)

sfBetaDist(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size or information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size or information for which the spending function will
be computed.

param In the two-parameter specification, sfBetaDist() requires 2 positive values,
while sfLogistic(), sfNormal(), sfExtremeValue(),

sfExtremeValue2() and sfCauchy() require the first parameter to be any
real value and the second to be a positive value. The four parameter specifi-
cation is c(t1,t2,u1,u2) where the objective is that sf(t1)=alpha*u1 and
sf(t2)=alpha*u2. In this parameterization, all four values must be between
0 and 1 and t1 < t2, u1 < u2.

Details

sfBetaDist(alpha,t,param) is simply alpha times the incomplete beta cumulative distribution
function with parameters a and b passed in param evaluated at values passed in t.

The other spending functions take the form

f(t;α, a, b) = αF (a+ bF−1(t))
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where F () is a cumulative distribution function with values > 0 on the real line (logistic for
sfLogistic(), normal for sfNormal(), extreme value for sfExtremeValue() and Cauchy for
sfCauchy()) and F−1() is its inverse.

For the logistic spending function this simplifies to

f(t;α, a, b)α(1− (1 + ea(t/(1− t))b)−1).

For the extreme value distribution with

F (x) = exp(− exp(−x))

this simplifies to
f(t;α, a, b) = α exp(−ea(− ln t)b).

Since the extreme value distribution is not symmetric, there is also a version where the standard
distribution is flipped about 0. This is reflected in sfExtremeValue2() where

F (x) = 1− exp(− exp(x)).

Value

An object of type spendfn. See Spending function overview for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.

Author(s)

Keaven Anderson 〈keaven anderson@merck.〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

Spending function overview, gsDesign, gsDesign package overview

Examples

# design a 4-analysis trial using a Kim-DeMets spending function

# for both lower and upper bounds

x<-gsDesign(k=4, sfu=sfPower, sfupar=3, sfl=sfPower, sflpar=1.5)

# print the design

x

# plot the alpha- and beta-spending functions

plot(x, plottype=5)

# start by showing how to fit two points with sfLogistic

# plot the spending function using many points to obtain a smooth curve
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# note that curve fits the points x=.1, y=.01 and x=.4, y=.1

# specified in the 3rd parameter of sfLogistic

t <- 0:100/100

plot(t, sfLogistic(1, t, c(.1, .4, .01, .1))$spend,

xlab="Proportion of final sample size",

ylab="Cumulative Type I error spending",

main="Logistic Spending Function Examples",

type="l", cex.main=.9)

lines(t, sfLogistic(1, t, c(.01, .1, .1, .4))$spend, lty=2)

# now just give a=0 and b=1 as 3rd parameters for sfLogistic

lines(t, sfLogistic(1, t, c(0, 1))$spend, lty=3)

# try a couple with unconventional shapes again using

# the xy form in the 3rd parameter

lines(t, sfLogistic(1, t, c(.4, .6, .1, .7))$spend, lty=4)

lines(t, sfLogistic(1, t, c(.1, .7, .4, .6))$spend, lty=5)

legend(x=c(.0, .475), y=c(.76, 1.03), lty=1:5,

legend=c("Fit (.1, 01) and (.4, .1)", "Fit (.01, .1) and (.1, .4)",

"a=0, b=1", "Fit (.4, .1) and (.6, .7)",

"Fit (.1, .4) and (.7, .6)"))

# set up a function to plot comparsons of all

# 2-parameter spending functions

plotsf <- function(alpha, t, param)

{

plot(t, sfCauchy(alpha, t, param)$spend,

xlab="Proportion of enrollment",

ylab="Cumulative spending", type="l", lty=2)

lines(t, sfExtremeValue(alpha, t, param)$spend, lty=5)

lines(t, sfLogistic(alpha, t, param)$spend, lty=1)

lines(t, sfNormal(alpha, t, param)$spend, lty=3)

lines(t, sfExtremeValue2(alpha, t, param)$spend, lty=6, col=2)

lines(t, sfBetaDist(alpha, t, param)$spend, lty=7, col=3)

legend(x=c(.05, .475), y=.025*c(.55, .9),

lty=c(1, 2, 3, 5, 6, 7),

col=c(1, 1, 1, 1, 2, 3),

legend=c("Logistic", "Cauchy", "Normal", "Extreme value",

"Extreme value 2", "Beta distribution"))

}

# do comparison for a design with conservative early spending

# note that Cauchy spending function is quite different

# from the others

param <- c(.25, .5, .05, .1)

plotsf(.025, t, param)

sfTDist 4.8: t-distribution Spending Function

Description

The function sfTDist() provides perhaps the maximum flexibility among spending functions
provided in the gsDesign package. This function allows fitting of three points on a cumulative
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spending function curve; in this case, six parameters are specified indicating an x and a y
coordinate for each of 3 points. Normally this function will be passed to gsDesign() in the
parameter sfu for the upper bound or sfl for the lower bound to specify a spending function
family for a design. In this case, the user does not need to know the calling sequence. The calling
sequence is useful, however, when the user wishes to plot a spending function as demonstrated
below in examples.

Usage

sfTDist(alpha, t, param)

Arguments

alpha Real value> 0 and no more than 1. Normally, alpha=0.025 for one-sided Type
I error specification or alpha=0.1 for Type II error specification. However, this
could be set to 1 if for descriptive purposes you wish to see the proportion of
spending as a function of the proportion of sample size/information.

t A vector of points with increasing values from 0 to 1, inclusive. Values of the
proportion of sample size/information for which the spending function will be
computed.

param In the three-parameter specification, the first paramater (a) may be any real
value, the second (b) any positive value, and the third parameter (df=degrees
of freedom) any real value 1 or greater. When gsDesign() is called with a
t-distribution spending function, this is the parameterization printed. The
five parameter specification is c(t1,t2,u1,u2,df) where the objective is that
the resulting cumulative proportion of spending at t represented by sf(t)

satisfies sf(t1)=alpha*u1, sf(t2)=alpha*u2. The t-distribution used has df
degrees of freedom. In this parameterization, all the first four values must be
between 0 and 1 and t1 < t2, u1 < u2. The final parameter is any real value
of 1 or more. This parameterization can fit any two points satisfying these
requirements. The six parameter specification attempts to fit 3 points, but
does not have flexibility to fit any three points. In this case, the specification
for param is c(t1,t2,t3,u1,u2,u3) where the objective is that sf(t1)=alpha*u1,
sf(t2)=alpha*u2, and sf(t3)=alpha*u3. See examples to see what happens
when points are specified that cannot be fit.

Details

The t-distribution spending function takes the form

f(t;α) = αF (a+ bF−1(t))

where F () is a cumulative t-distribution function with df degrees of freedom and F−1() is its
inverse.

Value

An object of type spendfn. See spending functions for further details.

Note

The manual is not linked to this help file, but is available in library/gsdesign/doc/gsDesignManual.pdf
in the directory where R is installed.
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Author(s)

Keaven Anderson 〈keaven anderson@merck.com〉

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical
Trials. Boca Raton: Chapman and Hall.

See Also

Spending function overview, gsDesign, gsDesign package overview

Examples

# 3-parameter specification: a, b, df

sfTDist(1, 1:5/6, c(-1, 1.5, 4))$spend

# 5-parameter specification fits 2 points, in this case

# the 1st 2 interims are at 25% and 50% of observations with

# cumulative error spending of 10% and 20%, respectively

# final parameter is df

sfTDist(1, 1:3/4, c(.25, .5, .1, .2, 4))$spend

# 6-parameter specification fits 3 points

# Interims are at 25%. 50% and 75% of observations

# with cumulative spending of 10%, 20% and 50%, respectively

# Note: not all 3 point combinations can be fit

sfTDist(1, 1:3/4, c(.25, .5, .75, .1, .2, .5))$spend

# Example of error message when the 3-points specified

# in the 6-parameter version cannot be fit

try(sfTDist(1, 1:3/4, c(.25, .5, .75, .1, .2, .3))$errmsg)

# sfCauchy (sfTDist with 1 df) and sfNormal (sfTDist with infinite df)

# show the limits of what sfTdist can fit

# for the third point are u3 from 0.344 to 0.6 when t3=0.75

sfNormal(1, 1:3/4, c(.25, .5, .1, .2))$spend[3]

sfCauchy(1, 1:3/4, c(.25, .5, .1, .2))$spend[3]

# plot a few t-distribution spending functions fitting

# t=0.25, .5 and u=0.1, 0.2

# to demonstrate the range of flexibility

t <- 0:100/100

plot(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 1))$spend,

xlab="Proportion of final sample size",

ylab="Cumulative Type I error spending",

main="t-Distribution Spending Function Examples", type="l")

lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 1.5))$spend, lty=2)

lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 3))$spend, lty=3)

lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 10))$spend, lty=4)

lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 100))$spend, lty=5)

legend(x=c(.0, .3), y=.025*c(.7, 1), lty=1:5,

legend=c("df = 1", "df = 1.5", "df = 3", "df = 10", "df = 100"))

104



checkScalar 6.0 Utility functions to verify variable properties

Description

Utility functions to verify an objects’s properties including whether it is a scalar or vector,
the class, the length, and (if numeric) whether the range of values is on a specified interval.
Additionally, the checkLengths function can be used to ensure that all the supplied inputs have
equal lengths.

Usage

isInteger(x)

checkScalar(x, isType = "numeric", ...)

checkVector(x, isType = "numeric", ..., length=NULL)

checkRange(x, interval = 0:1, inclusion = c(TRUE, TRUE),

varname = deparse(substitute(x)), tol=0)

checkLengths(..., allowSingle=FALSE)

Arguments

x any object.

isType character string defining the class that the input object is expected to be.

length integer specifying the expected length of the object in the case it is a vector.
If length=NULL, the default, then no length check is performed.

interval two-element numeric vector defining the interval over which the input object is
expected to be contained. Use the inclusion argument to define the boundary
behavior.

inclusion two-element logical vector defining the boundary behavior of the specified in-
terval. A TRUE value denotes inclusion of the corresponding boundary. For
example, if interval=c(3,6) and inclusion=c(FALSE,TRUE), then all the
values of the input object are verified to be on the interval (3,6].

varname character string defining the name of the input variable as sent into the function
by the caller. This is used primarily as a mechanism to specify the name of
the variable being tested when checkRange is being called within a function.

tol numeric scalar defining the tolerance to use in testing the intervals of the

checkRange function.

... For the checkScalar and checkVector functions, this input represents addi-
tional arguments sent directly to the checkRange function. For the

checkLengths function, this input represents the arguments to check for equal
lengths.

allowSingle logical flag. If TRUE, arguments that are vectors comprised of a single element
are not included in the comparative length test in the checkLengths function.
Partial matching on the name of this argument is not performed so you must
specify ’allowSingle’ in its entirety in the call.
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Details

isInteger is similar to is.integer except that isInteger(1) returns TRUE whereas is.integer(1)
returns FALSE.

checkScalar is used to verify that the input object is a scalar as well as the other properties
specified above.

checkVector is used to verify that the input object is an atomic vector as well as the other
properties as defined above.

checkRange is used to check whether the numeric input object’s values reside on the specified
interval. If any of the values are outside the specified interval, a FALSE is returned.

checkLength is used to check whether all of the supplied inputs have equal lengths.

Examples

# check whether input is an integer

isInteger(1)

isInteger(1:5)

try(isInteger("abc")) # expect error

# check whether input is an integer scalar

checkScalar(3, "integer")

# check whether input is an integer scalar that resides

# on the interval on [3, 6]. Then test for interval (3, 6].

checkScalar(3, "integer", c(3,6))

try(checkScalar(3, "integer", c(3,6), c(FALSE, TRUE))) # expect error

# check whether the input is an atomic vector of class numeric,

# of length 3, and whose value all reside on the interval [1, 10)

x <- c(3, pi, exp(1))

checkVector(x, "numeric", c(1, 10), c(TRUE, FALSE), length=3)

# do the same but change the expected length; expect error

try(checkVector(x, "numeric", c(1, 10), c(TRUE, FALSE), length=2))

# create faux function to check input variable

foo <- function(moo) checkVector(moo, "character")

foo(letters)

try(foo(1:5)) # expect error with function and argument name in message

# check for equal lengths of various inputs

checkLengths(1:2, 2:3, 3:4)

try(checkLengths(1,2,3,4:5)) # expect error

# check for equal length inputs but ignore single element vectors

checkLengths(1,2,3,4:5,7:8, allowSingle=TRUE)
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