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Abstract

Chronic illness treatment strategies must adapt to the evolving health status of the
patient receiving treatment. Data-driven dynamic treatment regimes can offer guidance
for clinicians and intervention scientists on how to treat patients over time in order to
bring about the most favorable clinical outcome on average. Methods for estimating
optimal dynamic treatment regimes, such as Q-learning, typically require modeling
nonsmooth, nonmonotone transformations of data. Thus, building well-fitting models
can be challenging and in some cases may result in a poor estimate of the optimal
treatment regime. Interactive Q-learning (IQ-learning) is an alternative to Q-learning
that only requires modeling smooth, monotone transformations of the data. The R

package iqLearn provides functions for implementing both the IQ-learning and Q-
learning algorithms. We demonstrate how to estimate a two-stage optimal treatment
policy with iqLearn using a generated data set bmiData which mimics a two-stage
randomized body mass index reduction trial with binary treatments at each stage.

Keywords: Interactive Q-learning; Q-learning; Dynamic Treatment Regimes; Dynamic Pro-
gramming; SMART design.

1 Introduction

In practice, clinicians and intervention scientists must adapt treatment recommendations in
response the uniquely evolving health status of each patient. Dynamic treatment regimes
(DTRs) formalize this treatment process as a sequence of decision rules, one for each treat-
ment decision, which map current and past patient information to a recommended treatment.
A DTR is said to be optimal for a pre-specified desirable outcome if, when applied to assign
treatment to a population of interest, it yields the maximal expected outcome.

With the potential for better patient outcomes, reduced treatment burden, and cost, there
is growing interest in personalized treatment strategies (Hamburg and Collins, 2010; Abra-
hams and President, 2010). Sequential Multiple Assignment Randomized Trials (SMARTs
Lavori and Dawson, 2004; Murphy, 2005a) are designed for the estimation of optimal DTRs.
In a SMART, subjects are randomized to treatment at each decision point or stage of the
trial. Figure 1 contains a visual representation of an example SMART toy example where
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Figure 1: SMART design toy example with two randomized stages and two treatment op-
tions at each stage. Patients progress from left to right and are randomized to one of two
treatment options just prior to Stages 1 and 2. Randomizations are represented by gold
circles; treatments are displayed in blue boxes.

all subjects receive the same treatment at baseline (e.g., possibly a standard of care). After
some period of time in the baseline stage, patients are then randomized (represented by
gold circles) at the start of the first stage to one of two treatment categories: “switch” or
“augment” current treatment. After some period of time in the first stage, subjects are again
randomized to either switch or augment their current treatment(s) in the second stage. There
are many variations of this design; for example, more than two treatments can be offered at
each stage, and for ethical reasons it is common to include an option for baseline or first-
stage responders to continue their currently successful treatment. Although it is possible to
design a trial with additional stages, two stage SMARTs are common, as evidenced by many
recently completed and ongoing SMARTs. For a list of SMARTs that have finished or are
in the field, see The Methodology Center At Pennsylvania State University (2012) and Eric
Laber’s current list Laber (2013). With additional randomizations beyond one or two stages,
the number of patients assigned to each sequence of treatments decreases, along with the
power to estimate optimal decisions in the later stages. In principle, the sequential random-
ization scheme in SMARTs guarantees that there are no confounders that influence which
types of subjects follow each of the possible treatment sequences. To keep our discussion
focused, we will work under the assumption of a two-stage SMART with randomized binary
treatments at each stage. However, all the methods discussed here apply to observational
data when additional assumptions are made on the treatment assignment mechanism (see,
for example, Murphy, 2003; Moodie et al., 2012).

We introduce package iqLearn (Linn et al., 2013) in R (R Development Core Team, 2004)
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for estimating optimal DTRs from data obtained from a two stage trial with two treatments
at each stage using Interactive Q-learning (IQ-learning; Laber et al., 2013). Although
we recommend using IQ-learing instead of Q-learning in most practical settings based on
developments in Section 2 and Laber et al. (2013), a comparison of the regimes estimated by
the two methods may be of interest to some data analysts. Thus, functions for estimation
of a regime by the Q-learning algorithm are also included in iqLearn for completeness.
Introductions to both Q- and IQ-learning are provided in Section 2. Section 3 provides a
case-study illustrating the iqLearn package. A brief discussion of future work concludes the
paper in Section 4.

2 Q-learning and Interactive Q-learning

We assume data are collected from a two-stage randomized trial with binary treatments at
each stage, resulting in n i.i.d. patient trajectories of the form (X1, A1,X2, A2, Y ). The vari-
ables in the trajectory are: baseline covariates, X1 ∈ R

p1 ; first-stage randomized treatment,
A1 ∈ {−1, 1}; covariates collected during the first-stage but prior to second-stage treatment
assignment, X2 ∈ R

p2 ; second-stage randomized treatment, A2 ∈ {−1, 1}; and the response,
Y ∈ R, collected at the conclusion of the trial. We assume Y has been coded so that higher
values indicate more positive clinical outcomes. To simplify notation, we group variables
collected prior to each treatment randomization into a history vector H t, t = 1, 2. That is,
H1 = X1 and H2 = (X⊺

1, A1,X
⊺
2)

⊺.
A DTR is a pair of functions π = (π1, π2) where πt maps the domain of H t into the

space of available treatments {−1, 1}. Under π a patient presenting at time t with history
H t = ht is assigned treatment πt(ht). The goal is to estimate a DTR that when applied in
a population of patients of interest, the expected outcome is maximized. Define the value
of a fixed regime π as V π , E

π(Y ), where E
π denotes the expectation when treatment

is assigned according to the policy π. The optimal treatment regime, πopt, maximizes the
value function:

E
π
opt

(Y ) = sup
π

E
πY.

In the next two sections, we explain how an optimal regime can be estimated from data
using Q-learning and IQ-learning. The IQ-learning estimated optimal decision rules will be
denoted by πIQ−opt

t and the Q-learning analogs by πQ−opt
t . Both methods are implemented

in the iqLearn package.

2.1 Q-learning

Q-learning (Watkins, 1989; Watkins and Dayan, 1992; Murphy, 2005b) is an approximate
dynamic programming algorithm that can be used to estimate an optimal DTR from obser-
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vational or randomized study data. Define the Q-functions:

Q2(h2, a2) , E(Y |H2 = h2, A2 = a2),

Q1(h1, a1) , E

(
max

a2∈{−1,1}
Q2(H2, a2)|H1 = h1, A1 = a1

)
.

The Q-function at stage two measures the Quality of assigning a2 to a patient presenting
with history h2. Similarly, Q1 measures the quality of assigning a1 to a patient with h1,
assuming an optimal decision rule will be followed at stage two. Were the Q-functions
known, dynamic programming (Bellman, 1957) gives the optimal solution, π opt

t (ht) =
argmaxat∈{−1,1} Qt(h1, at). Since the underlying distribution of the patient histories is not
known, the conditional expectations that define the Q-functions are unknown and must be
approximated. Q-learning approximates the Q-functions with regression models; commonly
linear models are chosen in practice because they yield simple, interpretable models. We
will consider linear models of the form: Qt(ht, at; βt) = h

⊺
t0βt0 + ath

⊺
t1βt1, t = 1, 2, where ht0

and ht1 include an intercept and a subset of variables collected in ht. Define βt , (β⊺
t0, β

⊺
t1)

⊺.
The Q-learning algorithm is given below.

Q-learning Algorithm:

Q1. Modeling: Regress Y on H20,H21, A2 to obtain

Q̂2(H2, A2; β̂2) = H
T
20β̂20 + A2H

T
21β̂21.

Q2. Maximization: Define Ỹ , maxa2∈{−1,1} Q̂2(H2, a2, β̂2).

Ỹ = H
T
20β̂20 + |HT

21β̂21| is the predicted future
outcome assuming the optimal decision is made
at stage two.

Q3. Modeling: Regress Ỹ on H10,H11, A1 to obtain

Q̂1(H1, A1; β̂1) = H
T
10β̂10 + A1H

T
11β̂11.

The tth-stage optimal decision rule then assigns the treatment at that maximizes the esti-
mated Qt-function,

π̂Q−opt
t (ht) = argmax

at
Q̂t(ht, at; β̂t).

In Q-learning with linear models, this can be written as

π̂Q−opt
t (ht) = sign(h⊺

t1β̂21)

The first modeling step in the Q-learning algorithm is a standard multiple regression
problem to which common model building and model checking techniques can be applied
to find a parsimonious, well-fitting model. The absolute value in the definition of Ỹ arises
when A2 is coded as {−1, 1}, since argmaxa2 Q̂2(H2, a2; β̂2) = sign(H⊺

21β̂21). The second
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modeling step (Q3) requires modeling the conditional expectation of Ỹ . This can be written
as

Q1(H1, A1) = E(Ỹ |H1, A1)

= E(H⊺
20β20 + |H⊺

21β21| | H1, A1). (1)

Due to the absolute value function, Ỹ is a nonsmooth, nonmonotone transformation of H2.
Thus, the linear model in step Q3 is generally misspecified. In addition, the nonsmooth,
nonmonotone max operator in step Q2 leads to difficult nonregular inference for the param-
eters that index the first stage Q-function (Robins, 2004; Chakraborty et al., 2010; Laber
et al., 2010; Song et al., 2011; Chakraborty et al., 2013). In the next section, we develop an
alternative to Q-learning, which we call IQ-learning, that addresses the applied problem of
building good models for the first-stage Q-function and avoids model misspecification for a
large class of generative models.

2.2 Interactive Q-learning (IQ-learning)

IQ-learning differs from Q-learning in the order in which maximization step (Q2 in the
Q-learning algorithm) is performed. We demonstrate how the maximization step can be de-
layed, enabling all modeling to be performed before this nonsmooth, nonmonotone transfor-
mation. This reordering of modeling and maximization steps facilitates the use of standard,
interactive model building techniques because all terms to be modeled are linear, and hence
smooth and monotone, transformations of the data. For a large class of generative models,
IQ-learning more accurately estimates the first-stageQ-function, resulting in a higher-quality
estimated decision rule (Laber et al., 2013). Another advantage of IQ-learning is that in
many cases, conditional mean and variance modeling techniques (Carroll and Ruppert, 1988)
offer a nice framework for the necessary modeling steps. These mean and variance models are
interpretable, and the coefficients indexing them enjoy normal limit theory. Thus, they are
better suited to inform clinical practice than the misspecified first-stage model in Q-learning
whose indexing parameters are nonregular. However, the mean-variance modeling approach
we advocate here is not necessary and other modeling techniques may be applied as needed.
Indeed, a major advantage and motivation for IQ-learning is the ability for the seasoned
applied statistician to build high-quality models using standard interactive techniques for
model diagnosis and validation.

IQ- and Q-learning do not differ at step one (Q1), which we refer to as the second-stage

regression. Define m(H2; β2) , H
⊺
20β20, and ∆(H2; β2) , H

⊺
21β21. We call the first term the

main effect function and the second the contrast function. ∆(H2; β2) “contrasts” the quality
of the second-stage treatments: ∆(H2; β2) = 1

2
{Q2(H2, A2 = 1) − Q2(H2, A2 = −1)}. In

the IQ-learning framework, the first-stage Q-function is defined as

Q1(h1, a1) , E(m(H2; β2)|H1 = h1, A1 = a1) +

∫
|z|g(z | h1, a1)dz, (2)

where g(· | h1, a1) is the conditional distribution of the contrast function ∆(H2; β2) given
H1 = h1 and A1 = a1. In fact, (2) is equivalent to the representation of Q1 in (1), only
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the conditional expectation has been split into two separate expectations and the second has
been written in integral form. Instead of modeling the conditional expectation in (1) directly,
IQ-learning separately models E(m(H2; β2)|H1 = h1, A1 = a1) and g(· | h1, a1). Although
IQ-learning trades one modeling step (Q3) for two, splitting up the conditional expectation
in (1) is advantageous because the terms that require modeling are now smooth, monotone
functionals of the data. The maximization occurs when the integral in (2) is computed,
which occurs after the conditional density g(· | h1, a1) has been estimated. The IQ-learning
algorithm is given below.
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IQ-learning Algorithm:

IQ1. Modeling: Regress Y on H20,H21, A2 to obtain

Q̂IQ
2 (H2, A2; β̂2) = H

T
20β̂20 + A2H

T
21β̂21.

IQ2. Modeling: Regress H
T
20β̂20 on H1, A1 to obtain an esti-

mator ℓ̂(H1, A1) of E(H
T
20β20|H1, A1).

IQ3. Modeling: Use {(HT
21,iβ̂21,H1,i, A1,i)}

n
i=1 to obtain an es-

timator ĝ(· | H1, A1) of g(· | H1, A1).

IQ4. Maximization: Combine the above estimators to form

Q̂IQ
1 (H1, A1) = ℓ̂(H1, A1) +

∫
|z|ĝ(z |

H1, A1)dz.

The IQ-learning estimated optimal DTR assigns the treatment at stage t as the maximizer
of the estimated stage-t Q-function π̂IQ−opt

t (ht) = argmaxat Q̂
IQ
t (ht, at; β̂t).

We note that it is possible to obtain Q̂IQ
1 in IQ4 by modeling the bivariate conditional

distribution of m(H2; β2) and ∆(H2; β2) given H1 and A1 instead of separate modeling
steps IQ2 and IQ3. However, it is often easier to assess model fits using standard residual
diagnostics and other well-established model checking tools when E(H⊤

20β20 | H1, A1) and
g(· | H1, A1) are modeled separately.

2.3 Remark about density estimation in IQ3

Step IQ3 in the IQ-learning algorithm requires estimating a one-dimensional conditional den-
sity. In Laber et al. (2013) we accomplish this using mean-variance, location-scale estimators
of g(· | h1, a1) of the form

ĝ(z | h1, a1) =
1

σ̂(h1, a1)
φ̂

(
z − µ̂(h1, a1)

σ̂(h1, a1)

)
,

where µ̂(h1, a1) is an estimator of µ(h1, a1) , E {∆(H2; β2) | H1 = h1, A1 = a1}, σ̂
2(h1, a1)

is an estimator of σ2(h1, a1) , E {(∆(H2; β2)− µ(h1, a1))
2 | H1 = h1, A1 = a1}, and φ̂ is

an estimator of the density of the standardized residuals {∆(H2; β2)− µ(h1, a1)} /σ(h1, a1),
say φh1,a1 , which we assume does not depend on the history h1 or the treatment a1. Mean-
variance function modeling tools are well-studied and applicable in many settings (Carroll
and Ruppert, 1988). Currently, iqLearn implements mean-variance modeling steps to esti-
mate g(· | h1, a1) with the option of using a standard normal density or empirical distribution

estimator for φ̂.
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gender ∈ {0, 1} : patient gender, coded female (0) and male (1).
race ∈ {0, 1} : patient race, coded African American (0) or other (1).
parent_BMI ∈ R : parent BMI measured at baseline.
baseline_BMI ∈ R : patient BMI measured at baseline.
A1 ∈ {−1, 1} : first-stage randomized treatment, coded so that A1 = 1 cor-

responds to meal replacement (MR) and A1 = -1 corresponds
to conventional diet (CD).

month4_BMI ∈ R : patient BMI measured at month 4.
A2 ∈ {−1, 1} : second-stage randomized treatment, coded so that A2 = 1 cor-

responds to meal replacement (MR) and A2 = -1 corresponds
to conventional diet (CD).

month12_BMI ∈ R : patient BMI measured at month 12.

Table 1: Description of variables in bmiData.

3 Using the iqLearn Package

3.1 Preparing dataset bmiData

The examples in this section will be illustrated using a simulated dataset called bmiData

which is included in the iqLearn package. The data are generated to mimic a two-stage
SMART of body mass index (BMI) reduction with two treatments at each stage. The
variables, treatments, and outcomes in bmiData were based on a small subset of variables
collected in a clinical trial studying the effect of meal replacements (MRs) on weight loss and
BMI reduction in obese adolescents; see Berkowitz et al. (2010) for a complete description of
the original randomized trial. Descriptions of the generated variables in bmiData are given
in Table (1). Baseline covariates include gender, race, parent_BMI, and baseline_BMI.
Four- and twelve-month patient BMI measurements were also included to reflect the original
trial design. In the generated data, treatment was randomized to meal replacement (MR)
or conventional diet (CD) at both stages, each with probability 0.5. In the original study,
patients randomized to CD in stage one remained on CD with probability one in stage two.
Thus, our generated data arises from a slightly difference design than that of the original
trial. In addition, some patients in the original data set were missing the final twelve month
response as well as various first- and second-stage covariates. Our generated data is complete,
and the illustration of IQ- and Q-learning with iqLearn that follows is presented under the
assumption that missing data have been addressed prior to using these methods (for example,
using an appropriate imputation strategy).

After installing iqLearn, load the package:

> library (iqLearn)

Next, load bmiData into the workspace with

> data (bmiData)
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The generated dataset bmiData is a data frame with 210 rows corresponding to patients
and 8 columns corresponding to covariates, BMI measurements, and assigned treatments.

> dim (bmiData)

[1] 210 8

> head (bmiData)

gender race parent_BMI baseline_BMI month4_BMI month12_BMI A1 A2

1 0 1 31.59683 35.84005 34.22717 34.27263 CD MR

2 1 0 30.17564 37.30396 36.38014 36.38401 CD MR

3 1 0 30.27918 36.83889 34.42168 34.41447 MR CD

4 1 0 27.49256 36.70679 32.52011 32.52397 CD CD

5 1 1 26.42350 34.84207 33.72922 33.73546 CD CD

6 0 0 29.30970 36.68640 32.06622 32.15977 MR MR

Recode treatments Meal Replacement (MR) and Conventional Diet (CD) as 1 and -1, re-
spectively.

> bmiData$A1[which (bmiData$A1=="MR")] = 1

> bmiData$A1[which (bmiData$A1=="CD")] = -1

> bmiData$A2[which (bmiData$A2=="MR")] = 1

> bmiData$A2[which (bmiData$A2=="CD")] = -1

> bmiData$A1 = as.numeric (bmiData$A1)

> bmiData$A2 = as.numeric (bmiData$A2)

We use the negative percent change in BMI at month 12 from baseline as our final outcome:

> y = -100*(bmiData$month12_BMI -

+ bmiData$baseline_BMI)/bmiData$baseline_BMI

Thus, higher values indicate greater BMI loss, a desirable clinical outcome. We will next
show how to implement IQ-learning with the iqLearn package to obtain an estimate of the
optimal DTR, π̂IQ−opt = (π̂IQ−opt

1 , π̂IQ−opt
2 ), that maximizes the expected BMI reduction.

3.2 IQ-learning functions

The current version of the iqLearn package only allows specification of linear models at all
modeling steps. An advantage of IQ-learning over Q-learning is that for a large class of
generative models, linear models are correctly specified at each modeling step (Laber et al.,
2013). In general, this is not true for Q-learing at the first-stage. In our illustrations, we skip
some of the typical exploratory techniques that a careful analyst would employ to find the
best-fitting models. These steps would not be meaningful with the bmiData dataset since
it was simulated with linear working models and would only detract from our main focus
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which is to present the steps of the IQ-learning algorithm using the functions in iqLearn.
Analysts who use IQ-learning should employ standard data exploration techniques between
each modeling step. Another consequence of using generated data is that we will not intrepret
any coefficients or comment on model fit. In fact, most of the R2 statistics are nearly 1 and
many terms appear highly significant, reflecting the fact that the data are not real. All
models and decision rules estimated in this section are strictly illustrative. In addition, the
results in this section are not representative of the results of the original meal replacement
study.

STEP IQ1: second-stage regression

The first step in the IQ-learning algorithm is to model the response as a function of
second-stage history variables and treatment. We model the second-stage Q-function as a
linear function of gender, parent_BMI, month4_BMI, and A2, fitting the model using least
squares.

> fitIQ2 = learnIQ2 (y ~ gender + parent_BMI + month4_BMI +

+ A2*(parent_BMI + month4_BMI), data=bmiData, treatName="A2",

+ intNames=c ("parent_BMI", "month4_BMI"))

The function learnIQ2() creates an object of type learnIQ2 that contains a lm() object
of the linear regression in addition to several other components. We have implemented the
formula specification above. The user can specify any formula admissible by lm(), but it
must include the main effect of treatment A2 and at least one treatment interaction term.
The second and third arguments specify which variable codes the second stage treatment and
covariates interacting with treatment respectively. If exploratory work suggests there are no
treatment-by-covariate interactions at the second stage, IQ-learning has no advantage over
Q-learning, and it would be appropriate to model the conditional expectation of Ỹ directly
at the first stage. The default S3 method for learnIQ2() requires a matrix or data frame of
variables to use as main effects in the linear model. Below, we create this data frame.

> s2vars = bmiData[, c(1,3,5)]

> head (s2vars)

gender parent_BMI month4_BMI

1 0 31.59683 34.22717

2 1 30.17564 36.38014

3 1 30.27918 34.42168

4 1 27.49256 32.52011

5 1 26.42350 33.72922

6 0 29.30970 32.06622

The default method also requires a vector of indices that point to the columns of s2vars
that should be included as treatment interactions in the model.

> s2ints = c (2,3)

10



The default method for learnIQ2() is

> fitIQ2 = learnIQ2 (H2=s2vars, Y=y, A2=bmiData$A2, s2ints=s2ints)

To print the regression output we can call a summary() of the learnIQ2 object.

> summary (fitIQ2)

Stage 2 Regression:

Call:

lm(formula = Y ~ s2. - 1)

Residuals:

Min 1Q Median 3Q Max

-20.5929 -3.7614 -0.1526 4.4436 17.4479

Coefficients:

Estimate Std. Error t value Pr(>|t|)

s2.intercept 41.28845 3.98789 10.353 < 2e-16 ***

s2.gender -0.64891 0.89924 -0.722 0.4714

s2.parent_BMI -0.15509 0.10236 -1.515 0.1313

s2.month4_BMI -0.82067 0.13992 -5.865 1.8e-08 ***

s2.A2 -7.38709 3.97545 -1.858 0.0646 .

s2.parent_BMI:A2 0.20223 0.10201 1.983 0.0488 *

s2.month4_BMI:A2 0.02816 0.13982 0.201 0.8406

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.437 on 203 degrees of freedom

Multiple R-squared: 0.605, Adjusted R-squared: 0.5914

F-statistic: 44.42 on 7 and 203 DF, p-value: < 2.2e-16

The plot() function can be used to obtain residual diagnostic plots from the linear regres-
sion, shown in Figure 2. These plots can be used to check the usual normality and constant
variance assumptions. The learnIQ2 object returns a list that contains the estimated main
effect coefficients,

> fitIQ2$betaHat20

s2.intercept s2.gender s2.parent_BMI s2.month4_BMI

41.2884512 -0.6489144 -0.1550899 -0.8206701

and interaction coefficients,
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Figure 2: Residual diagnostic plots from the second-stage regression in IQ-learning.

> fitIQ2$betaHat21

s2.A2 s2.parent_BMI:A2 s2.month4_BMI:A2

-7.38708909 0.20223376 0.02815973

The first term of $betaHat20 is the intercept and the first term of $betaHat21 is the main
effect of treatment A2. Other useful elements in the list include the vector of estimated
optimal second-stage treatments for each patient in the dataset ($optA2), the lm() object
($s2Fit), the vector of estimated main effect terms ($main), and the vector of estimated
contrast function terms ($contrast).

STEP IQ2: main effect function regression
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The next step in the IQ-learning algorithm is to model the conditional expectation
of the main effect term given first-stage history variables and treatment. We accomplish
this by regressing {H⊺

20,iβ̂20}
n
i=1 on a linear function of {H1,i, A1,i}

n
i=1 using the function

learnIQ1main() which creates an object of type learnIQ1main. The learnIQ1main() func-
tion extracts the estimated vector of main effect terms from the learnIQ2 object to use as
the response variable in the regression.

> fitIQ1main = learnIQ1main (~ gender + race + parent_BMI +

+ baseline_BMI + A1*(gender + parent_BMI), data=bmiData,

+ treatName="A1", intNames=c ("gender", "parent_BMI"), s2object=fitIQ2)

> summary (fitIQ1main);

Main Effect Term Regression:

Call:

lm(formula = mainResp ~ s1m. - 1)

Residuals:

Min 1Q Median 3Q Max

-4.0200 -1.2126 0.1407 1.1547 5.2493

Coefficients:

Estimate Std. Error t value Pr(>|t|)

s1m.intercept 40.29745 1.25558 32.095 < 2e-16 ***

s1m.gender -0.62882 0.24014 -2.619 0.0095 **

s1m.race -0.14183 0.24233 -0.585 0.5590

s1m.parent_BMI -0.37081 0.02276 -16.292 < 2e-16 ***

s1m.baseline_BMI -0.54769 0.03475 -15.761 < 2e-16 ***

s1m.A1 5.05355 0.72522 6.968 4.44e-11 ***

s1m.gender:A1 0.18455 0.24083 0.766 0.4444

s1m.parent_BMI:A1 -0.16380 0.02115 -7.746 4.51e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.725 on 202 degrees of freedom

Multiple R-squared: 0.9519, Adjusted R-squared: 0.95

F-statistic: 499.6 on 8 and 202 DF, p-value: < 2.2e-16

The user can specify any right-hand sided formula admissible by lm(), but it must include
the main effect of treatment A1. If no treatment interactions are desired, intNames can
be omitted or specified as NULL (the default). The default S3 method for learnIQ1main()
requires a matrix or data frame of variables to use as main effects in the linear model. Below,
we create this data frame.
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> s1vars = bmiData[, 1:4]

> head (s1vars)

gender race parent_BMI baseline_BMI

1 0 1 31.59683 35.84005

2 1 0 30.17564 37.30396

3 1 0 30.27918 36.83889

4 1 0 27.49256 36.70679

5 1 1 26.42350 34.84207

6 0 0 29.30970 36.68640

The default method also requires a vector of indices that point to the columns of s1vars that
should be included as treatment interactions in the model. If no interactions are desired,
s1mainInts can be omitted, as the default is NULL.

> s1mainInts = c (1,3)

The default method for learnIQ1main() is

> fitIQ1main = learnIQ1main (object=fitIQ2, H1Main=s1vars,

+ A1=bmiData$A1, s1mainInts=s1mainInts)

where the first argument is the learnIQ2 object. Again, plot() gives residual diagnostic
plots from the fitted regression model, shown in Figure 3. Elements of the list returned by
learnIQ1main() include the estimated main effect coefficients,
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Figure 3: Residual diagnostic plots from the regression model for the main effect term.

> fitIQ1main$alphaHat0

s1m.intercept s1m.gender s1m.race s1m.parent_BMI

40.2974492 -0.6288155 -0.1418311 -0.3708085

s1m.baseline_BMI

-0.5476887

and estimated interaction coefficients,

> fitIQ1main$alphaHat1

s1m.A1 s1m.gender:A1 s1m.parent_BMI:A1

5.0535529 0.1845549 -0.1637973
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Other elements are used in future steps of the algorithm.

STEP IQ3: contrast function density modeling

The final modeling step in IQ-learning is to model the conditional density of the contrast
function given first-stage history variables and treatment. We will accomplish this by con-
sidering the class of location-scale density models and employing standard conditional mean
and variance modeling techniques. Thus, we begin by modeling the conditional mean of the
contrast function using learnIQ1cm().

> fitIQ1cm = learnIQ1cm (~ gender + race + parent_BMI +

+ baseline_BMI + A1*(gender + parent_BMI + baseline_BMI),

+ data=bmiData, treatName="A1", intNames=c ("gender", "parent_BMI",

+ "baseline_BMI"),

+ s2object=fitIQ2);

> summary (fitIQ1cm)

Contrast Mean Regression:

Call:

lm(formula = cmResp ~ s1cm. - 1)

Residuals:

Min 1Q Median 3Q Max

-0.140304 -0.040954 -0.002024 0.038278 0.140948

Coefficients:

Estimate Std. Error t value Pr(>|t|)

s1cm.intercept -7.3287896 0.0425272 -172.332 < 2e-16 ***

s1cm.gender -0.0044590 0.0080960 -0.551 0.582407

s1cm.race 0.0072002 0.0081239 0.886 0.376517

s1cm.parent_BMI 0.2094135 0.0007631 274.428 < 2e-16 ***

s1cm.baseline_BMI 0.0183059 0.0011694 15.654 < 2e-16 ***

s1cm.A1 -0.0520737 0.0425007 -1.225 0.221918

s1cm.gender:A1 -0.0090028 0.0080828 -1.114 0.266683

s1cm.parent_BMI:A1 0.0066622 0.0007675 8.681 1.35e-15 ***

s1cm.baseline_BMI:A1 -0.0040765 0.0011732 -3.475 0.000626 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05765 on 201 degrees of freedom

Multiple R-squared: 0.9981, Adjusted R-squared: 0.998

F-statistic: 1.183e+04 on 9 and 201 DF, p-value: < 2.2e-16
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The user can specify any right-hand sided formula admissible by lm(), but it must include
the main effect of treatment A1. The default S3 method for learnIQ1cm() requires a matrix
or data frame of variables to use as main effects in the linear model and indicies indicating the
treatment interaction effects. intNames can be omitted or specified as NULL if no interactions
are desired. We will use s1vars and specify the interactions with a vector for s1cmInts.

> s1cmInts = c (1,3,4)

The default method is

> fitIQ1cm = learnIQ1cm (object=fitIQ2, H1CMean=s1vars, A1=bmiData$A1,

+ s1cmInts=s1cmInts);

Figure (4) displays the residual diagnostics produced by plot(). The learnIQ1cm() function
returns a list with several elements. The residuals from the contrast mean fit are stored in
$cmeanResids. Estimated main effect coefficients can be accessed,

> fitIQ1cm$betaHat10

s1cm.intercept s1cm.gender s1cm.race

-7.328789639 -0.004459014 0.007200203

s1cm.parent_BMI s1cm.baseline_BMI

0.209413508 0.018305862

as well as the interaction coefficients,

> fitIQ1cm$betaHat11

s1cm.A1 s1cm.gender:A1 s1cm.parent_BMI:A1

-0.052073685 -0.009002806 0.006662162

s1cm.baseline_BMI:A1

-0.004076464

Other items in the list are used in upcoming steps of the algorithm.
After fitting the model for the conditional mean of the contrast function, we must specify

a model for the variance of the residuals. Standard approaches can be used to determine if
a constant variance fit is sufficient. If so,

> fitIQ1var = learnIQ1var (fitIQ1cm)

is the default for estimating the common standard deviation. Equivalently, method=‘homo’
can be specified to indicate homoskedastic variance,

> fitIQ1var = learnIQ1var (object=fitIQ1cm, method="homo")

17
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Figure 4: Residual diagnostic plots from the linear regression model for the contrast function
mean.

but this additional statement is unnecessary since it is the default. A list is returned with
the estimated common standard deviation of the contrast mean fit residuals ($stdDev), the
vector of standardized residuals for each patient in the dataset ($stdResids), and several
other elements, some of which are NULL when method=‘homo’.

If the variance is thought to be non-constant across historiesH1 and/or treatment A1, the
option method=‘hetero’ allows specification of a log-linear model for the squared residuals.
As before, the formula should be only right-hand sided and must include the main effect
of treatment A1. The default for s1varInts is NULL, which can be used if no interactions
are desired in the model. The formula version and alternate default specification are shown
below and are similar to previous steps.

> fitIQ1var = learnIQ1var (~ gender + race + parent_BMI +

18



+ baseline_BMI + A1*(parent_BMI), data=bmiData, treatName="A1",

+ intNames=c ("parent_BMI"), method="hetero", cmObject=fitIQ1cm)

> s1varInts = c (3, 4)

> fitIQ1var = learnIQ1var (object=fitIQ1cm, H1CVar=s1vars,

+ s1sInts=s1varInts, method="hetero")

> summary (fitIQ1var)

Variance Model:

Call:

lm(formula = lRes2 ~ s1v. - 1)

Residuals:

Min 1Q Median 3Q Max

-8.5694 -0.8962 0.4247 1.4247 2.9195

Coefficients:

Estimate Std. Error t value Pr(>|t|)

s1v.intercept -8.241606 1.484122 -5.553 8.77e-08 ***

s1v.gender 0.077415 0.285104 0.272 0.7863

s1v.race 0.075925 0.286549 0.265 0.7913

s1v.parent_BMI -0.002661 0.026917 -0.099 0.9213

s1v.baseline_BMI 0.036738 0.040900 0.898 0.3701

s1v.A1 1.921779 1.478243 1.300 0.1951

s1v.parent_BMI:A1 -0.053469 0.027035 -1.978 0.0493 *

s1v.baseline_BMI:A1 -0.002528 0.041195 -0.061 0.9511

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.033 on 202 degrees of freedom

Multiple R-squared: 0.9222, Adjusted R-squared: 0.9191

F-statistic: 299.4 on 8 and 202 DF, p-value: < 2.2e-16

Figure (5) displays the residual diagnostics produced by plot(). The learnIQ1var object
returns a list that includes estimated main effect coefficients,

> fitIQ1var$gammaHat0

s1v.intercept s1v.gender s1v.race s1v.parent_BMI

-7.138610546 0.077414538 0.075925188 -0.002661492

s1v.baseline_BMI

0.036738083

and interaction coefficients,
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Figure 5: Residual diagnostic plots from the log-linear variance model.

> fitIQ1var$gammaHat1

s1v.A1 s1v.parent_BMI:A1 s1v.baseline_BMI:A1

1.921779012 -0.053468524 -0.002528188

when method=‘hetero’. The vector of standardized residuals can be found in $stdResids.
Other elements in the list are used in the next IQ-learning step.

The final step in the conditional density modeling process is to choose between the normal
and empirical density estimators. Based on empirical experiments (see Laber et al., 2013),
we recommend choosing the empirical estimator by default, as not much is lost when the
true density is normal. However, iqResids() can be used to inform the choice of density
estimator. The object of type iqResids can be plotted to obtain a normal QQ-plot of
the standardized residuals, displayed in Figure 6. If the observations deviate from the line,
dens=‘nonpar’ should be used in the final IQ-learning step, IQ4.
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> fitResids = iqResids (fitIQ1var)
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Figure 6: Normal QQ-plot of the standardized residuals obtained from the contrast mean
and variance modeling steps.

STEP IQ4: combine first-stage estimators

The function learnIQ1() has four inputs: the previous three first-stage objects and the
method to use for the density estimator, either ‘norm’ or ‘nonpar’. It combines all the
first-stage modeling steps to estimate the first-stage optimal decision rule.

> fitIQ1 = learnIQ1 (mainObj=fitIQ1main, cmObj=fitIQ1cm, sigObj=fitIQ1var,

+ dens="nonpar")

A vector of estimated optimal first-stage treatments for patients in the study is returned
($optA1).
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Recommend treatment with IQ1() and IQ2()

After estimating the optimal regime using the IQ-learning algorithm, the functions IQ1()
and IQ2() can be used to recommend treatment for future patients. To determine the rec-
ommended first-stage treatment for a patient with observed history h1, we must form vectors
h1main, h1cm, and h1var that match the order of main effects in each of the corresponding
first-stage modeling steps. We suggest checking summary() for each of the first-stage model-
ing objects to ensure the new patient’s history vectors have the correct variable ordering. If
the ‘homo’ option was used to fit a constant variance, h1var can be left unspecified or set to
NULL. In our examples, the main effects used in each of the three first-stage modeling steps
all happened to be the same variables in the same order. Thus, in this example h1main,
h1cm, and h1var are equivalent.

> h1 = c (1, 1, 30, 35)

> h1main = h1

> h1cm = h1

> h1var = h1

> optIQ1 = IQ1 (mainObj=fitIQ1main, cmObj=fitIQ1cm, sigObj=fitIQ1var,

+ dens="nonpar", h1main=h1main, h1cm=h1cm, h1sig=h1var)

> optIQ1

$q1Pos

[1] 9.964656

$q1Neg

[1] 9.308351

$q1opt

[1] 1

As displayed above, a list is returned by IQ1() that includes the value of the first-stage
Q-function when A1 = 1 ($q1Pos) and A1 = −1 ($q1Neg) as well as the recommended
first-stage treatment for that patient, $q1opt.

For a patient with second-stage history h2, we only need to check the order of the main
effects in the second-stage regression and form a corresponding vector based on the new
patient’s observed history.

> h2 = c (1, 30, 45);

> optIQ2 = IQ2 (fitIQ2, h2);

> optIQ2

$q2Pos

[1] -0.9962029

$q2Neg
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[1] -0.8904261

$q2opt

[1] -1

Similar to IQ1, a list is returned that contains the value of the second-stage Q-function when
A2 = 1 ($q2Pos) and A2 = −1 ($q2Neg) as well as the recommended second-stage treatment,
$q2opt).

3.3 Q-learning functions

For convenience, when a comparison of IQ- and Q-learning is desired, functions are available
in iqLearn to estimate and recommend optimal treatment strategies using Q-learning. Func-
tion qLearnS2() implements the second-stage regression in the same manner as learnIQ2(),
with the minor exception that a treatment-by-covariate interaction is not required but rather
only the main effect of treatment A2. Examples of the default and formula implementations
are given below.

> fitQ2 = qLearnS2 (H2=s2vars, Y=y, A2=bmiData$A2, s2ints=s2ints);

> fitQ2 = qLearnS2 (y ~ gender + parent_BMI + month4_BMI +

+ A2*(parent_BMI + month4_BMI), data=bmiData, treatName="A2",

+ intNames=c("parent_BMI", "month4_BMI"));

Methods summary() and plot() can be used in the same way as in the IQ-learning section;
see discussion of learnIQ2() for more details and examples.

The function that estimates the first-stage Q-function is qLearnS1(). It can be imple-
mented with either a right-hand sided formula specification or the default method. Both
options are demonstrated below.

> fitQ1 = qLearnS1 (object=fitQ2, H1q=s1vars, A1=bmiData$A1,

+ s1ints=c(3,4));

> fitQ1 = qLearnS1 (~ gender + race + parent_BMI + baseline_BMI +

+ A1*(gender + parent_BMI), data=bmiData, treatName="A1",

+ intNames=c ("gender", "parent_BMI"), qS2object=fitQ2);

It is necessary to include the main effect of treatment A1, but s1ints (intNames in the
formula version) can be omitted or specified as NULL if no interactions are desired in the
model. Both qLearnS2 and qLearnS1 objects hold lists that include the estimated parameter
vectors for the main effects and treatment interactions.

> fitQ2$betaHat20

s2.intercept s2.gender s2.parent_BMI s2.month4_BMI

41.2884512 -0.6489144 -0.1550899 -0.8206701

23



> fitQ2$betaHat21

s2.A2 s2.parent_BMI:A2 s2.month4_BMI:A2

-7.38708909 0.20223376 0.02815973

> fitQ1$betaHat10

s1.intercept s1.gender s1.race s1.parent_BMI

38.83160227 -0.70842181 0.01415719 -0.26714110

s1.baseline_BMI

-0.57425620

> fitQ1$betaHat11

s1.A1 s1.gender:A1 s1.parent_BMI:A1

4.5484118 0.3189128 -0.1501112

In addition, Ỹ can be accessed from qLearnS2 with $Ytilde, and the lm() objects at each
stage are also included ($s2Fit and $s1Fit). Finally, the qLearnS1 object contains a vector
of estiamted optimal first-stage treatments for patients in the dataset ($optA1), and the
qLearnS2 object contains the corresponding second-stage vector ($optA2).

To recommend the Q-learning estimated optimal treatments for a new patient based on
observed histories, functions qLearnQ1() and qLearnQ2() are available and are similar to
IQ1() and IQ2(). They require the observed history vectors for the new patient to have
the same variables in the same order as the main effects in the regressions used to build the
Q-learning regime. Checking the summary() of the Q-learning objects is recommended to
ensure the histories are set up properly. Examples are given below.

> summary (fitQ1)

Stage 1 Regression:

Call:

lm(formula = Ytilde ~ s1. - 1)

Residuals:

Min 1Q Median 3Q Max

-4.3604 -1.3291 0.0098 1.3419 4.8536

Coefficients:

Estimate Std. Error t value Pr(>|t|)

s1.intercept 38.83160 1.34129 28.951 < 2e-16 ***

s1.gender -0.70842 0.25653 -2.762 0.00628 **

s1.race 0.01416 0.25887 0.055 0.95644
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s1.parent_BMI -0.26714 0.02431 -10.987 < 2e-16 ***

s1.baseline_BMI -0.57426 0.03712 -15.470 < 2e-16 ***

s1.A1 4.54841 0.77473 5.871 1.76e-08 ***

s1.gender:A1 0.31891 0.25727 1.240 0.21657

s1.parent_BMI:A1 -0.15011 0.02259 -6.645 2.76e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.843 on 202 degrees of freedom

Multiple R-squared: 0.9547, Adjusted R-squared: 0.9529

F-statistic: 532 on 8 and 202 DF, p-value: < 2.2e-16

> h1q = c (1, 1, 30, 35);

> optQ1 = qLearnQ1 (fitQ1, h1q);

> optQ1

$q1Pos

[1] 10.38813

$q1Neg

[1] 9.660148

$q1opt

[1] 1

> summary (fitQ2)

Stage 2 Regression:

Call:

lm(formula = Y ~ s2. - 1)

Residuals:

Min 1Q Median 3Q Max

-20.5929 -3.7614 -0.1526 4.4436 17.4479

Coefficients:

Estimate Std. Error t value Pr(>|t|)

s2.intercept 41.28845 3.98789 10.353 < 2e-16 ***

s2.gender -0.64891 0.89924 -0.722 0.4714

s2.parent_BMI -0.15509 0.10236 -1.515 0.1313

s2.month4_BMI -0.82067 0.13992 -5.865 1.8e-08 ***

s2.A2 -7.38709 3.97545 -1.858 0.0646 .
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s2.parent_BMI:A2 0.20223 0.10201 1.983 0.0488 *

s2.month4_BMI:A2 0.02816 0.13982 0.201 0.8406

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.437 on 203 degrees of freedom

Multiple R-squared: 0.605, Adjusted R-squared: 0.5914

F-statistic: 44.42 on 7 and 203 DF, p-value: < 2.2e-16

> h2q = c (1, 30, 45);

> optQ2 = qLearnQ2 (fitQ2, h2q);

> optQ2

$q2Pos

[1] -0.9962029

$q2Neg

[1] -0.8904261

$q2opt

[1] -1

Elements in the returned lists are the same as those returned by IQ1() and IQ2().

3.4 Estimating Regime Value

We may wish to compare our estimated optimal regime to a standard of care or constant
regime that recommends one treatment for all patients. One way to compare regimes is to
estimate the value function. A plug-in estimator for V π is

V̂ π ,

∑n

i=1 Yi✶{A1i = π1(h1i)}✶{A2i = π2(h2i)}∑n

i=1 ✶{A1i = π1(h1i)}✶{A2i = π2(h2i)}
,

where Yi is the ith patient’s response, (A1i, A2i) the randomized treatments and (h1i,h2i)
the observed histories. This estimator is a weighted average of the outcomes observed from
patients in the trial who received treatment in accordance with the regime π. It is more
commonly known as the Horvitz-Thompson estimator (Horvitz and Thompson, 1952). The
function value() estimates the value of a regime using the plug-in estimator and also returns
value estimates corresponding to four non-dynamic regimes: $valPosPos (π1 = 1, π2 = 1);
$valPosNeg (π1 = 1, π2 = −1); $valNegPos (π1 = −1, π2 = 1); and $valNegNeg (π1 =
−1, π2 = −1). value() takes as input d1, a vector of first-stage treatments assigned by
the regime of interest; d2, a vector of second-stage treatments assigned by the regime of
interest; Y, the response vector; A1, the vector of first-stage randomized treatments received
by patients in the trial; and A2, the vector of second-stage randomized treatments.
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> estVal = value (d1=fitIQ1$optA1, d2=fitIQ2$optA2, Y=y, A1=bmiData$A1,

+ A2=bmiData$A2)

> estVal

$value

[1] 6.650607

$valPosPos

[1] 6.201568

$valPosNeg

[1] 3.523643

$valNegPos

[1] 8.063114

$valNegNeg

[1] 7.917462

attr(,"class")

[1] "value"

4 Conclusion

We have demonstrated how to estimate an optimal two-stage DTR using the IQ-learning
or Q-learning functions and tools in the R package iqLearn. As indicated by its name,
Interactive Q-learning allows the analyst to interact with the data at each step of the IQ-
learning process to build models that fit the data well and are interpretable. At each model
building step, the IQ-learning functions in iqLearn encourage the use of standard statistical
methods for exploratory analysis, model selection, and model diagnostics.

Future versions of iqLearn will implement more general model options, in particular, the
ability to handle data with more than two treatments at each stage.
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