
KMC

The Kaplan-Meier estimator is very popular in analysis of survival data.
However, it is not easy to compute the constrained Kaplan-Meier. Current
computational method uses expectationmaximization algorithm to achieve
this, but can be slow at many situations. In this package we give a recursive
computational algorithm for the constrained Kaplan-Meier estimator. The
constraint is assumed given in linear estimating equations or mean functions.

We also illustrate how this leads to the empirical likelihood ratio test with right
censored data and apply it to test non-parametric AFT problem. The proposed
has a signifiacant speed advantage over EM algorithm.

This package is written and maintained by Yifan Yang (mailto:yifan.yang@
uky.edu), and co-authored by Dr Zhou (http://www.ms.uky.edu/~mai/). The
package is released on CRAN (http://cran.r-project.org/web/packages/kmc/).

Installation

One can install the development version uisng

library(devtools);
install_github('kmc', 'yfyang86');

1

http://www.ms.uky.edu/~mai/research/BJ2.pdf
mailto:yifan.yang@uky.edu
mailto:yifan.yang@uky.edu
http://www.ms.uky.edu/~mai/

Examples

One/two constraints

Run the following code in R with only one null hypothesis E[X] =
∫
xdF (x) =

3.7. :

library(kmc)
x <- c(1, 1.5, 2, 3, 4.2, 5, 6.1, 5.3, 4.5, 0.9, 2.1, 4.3)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
f <- function(x) {

x - 3.7
}
g = list(f = f)
result = kmc.solve(x, d, g)
print(result)

A Recursive Formula for the Kaplan-Meier Estimator with Constraint
Information:
Number of Constraints: 1
lamda(s): -1.439612

Log-likelihood(Ha) Log-likelihood(H0) -2LLR p-Value(df=1)

Est -17.5198 -17.8273 0.6150 0.4329

If we add another constraint: E[X2] = 16.5, then

> myfun5 <- function(x) {
+ x^2 - 16.5
+ }
> # construnct g as a LIST!
>
> g = list(f1 = f, f2 = myfun5)
> re0 <- kmc.solve(x, d, g)
> re0

A Recursive Formula for the Kaplan-Meier Estimator with Constraint
Information:
Number of Constraints: 2
lamda(s): -0.4148702 -0.1546575

2

Log-likelihood(Ha) Log-likelihood(H0) -2LLR p-Value(df=2)

Est -17.5198 -17.8345 0.6293 0.7301

Contour Plot

If there were two constraints, we could plot a contour plot for the log-likelihood.
Typically, 30 × 30 data points, are used to draw the contour plot, which means
the computation repeats 900 times.

ZZ <- plotkmc2D(re0)

This package offers a naive contour plot. One can use ZZ to draw contour plot
with the help of ggplot2.

Figure 1: contour

A careful tuning version is

#!/usr/local/bin/Rscript
file: TESTKMC.R
args <- commandArgs(TRUE)

t1=as.numeric(args[1])
t2=as.numeric(args[2])

library(kmc)
x <- c(1, 1.5, 2, 3, 4.2, 5, 6.1, 5.3, 4.5, 0.9, 2.1, 4.3)
d <- c(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1)
f_1 <- function(x) {x - t1}

3

f_2 <- function(x) {x^2-t2}
g <- list(f1=f_1,f2=f_2);

re0 <- kmc.solve(x, d, g)

ZZ <- plotkmc2D(re0,range0 = c(0.1, .4, 30))

Figure 2: contour2

This version uses a 30 by 30 grid to contruct the contour plot on a iMac2007
2.0Hz Core2 machine and only spend (2s to load R):

time Rscript TESTKMC.R 4.0 18.6
real0m20.202s

4

user0m18.817s
sys0m0.240s

Real Data Example

The speed advantage of KMC algorithm could be used in time consuming analysis
such as drawing contour plot. In this real data example, we illustrate the proposed
algorithm to analyze the Stanford heart transplants program described in (Miller
1982). There were 157 patients who received transplants collected in the data,
among which 55 were still alive and 102 were deceased. Besides, the survival
time were scaled by 365.25. We could draw a contour plot of intercept and slope
for a AFT model.

LL= 50
beta0 <- 3.52016
beta1 <- -0.01973458 #-0.0185
beta.grid <- function(x0,range,n0,type="sq",u=5){

n0 = as.double(n0)
if (type=="sq"){

o1 <- c(
-range*(u*(n0:1)^2)/(u*n0^2),0,
range*(u*(1:n0)^2)/(u*n0^2)
)

}else{
if (type=='sqrt'){

o1 <- c(
-range*(u*sqrt(n0:1))/(u*sqrt(n0)),0,
range*(u*sqrt(1:n0))/(u*sqrt(n0)))
}else{
o1=c(
-range*(n0:1)/n0,
0,
range*(1:n0)/n0
)
}

}
return(

x0+o1
);

}

beta.0 <- beta.grid(beta0,0.05,LL,"l")
beta.1 <- beta.grid(beta1,.00151,LL,"l")#0.00051

set.seed(1234)

5

y=log10(stanford5$time)+runif(152)/1000

d <- stanford5$status

oy = order(y,-d)
d=d[oy]
y=y[oy]
x=cbind(1,stanford5$age)[oy,]

ZZ=matrix(0,2*LL+1,2*LL+1)

library(kmc)
tic=0
for(jj in 1:(2*LL+1)){
for(ii in 1:(2*LL+1)){

beta=c(beta.0[ii],beta.1[jj])
ZZ[jj,ii]=kmc.bjtest(y,d,x=x,beta=beta,init.st="naive")$"-2LLR"

}
}
ZZ2<-ZZ
ZZ[ZZ<0]=NA ## when KMC.BJTEST fails to converge, it'll return a negative value.

range(ZZ,finite=T) -> zlim
floor.d<-function(x,n=4){floor(x*10^n)/(10^n)}

postscript("C:/Temp/Fig2_1.eps",width=7,height=7)
contour(

y=beta.0,
x=beta.1,
ZZ,
zlim=c(0,.17),
levels=unique(floor.d(

beta.grid(x0=mean(zlim),range=diff(zlim)/2,n0=15,type="sqrt",u=10),
4)),

ylab="Intercept",
xlab=expression(beta[Age])
)

The countour plot is

Another one concentrates on two hypothesizes on survival function are considered:
H

(1)
0 : Mean =

∫
xdF (x) = µ; H(2)

0 : F (3) =
∫
I(x ≤ 3)dF (x) = ν.

Here, 30 × 30 combinations of (µ, ν) near NPMLE(0.5569,3.061), i.e. value
plugged in with Kaplan Meier estimation, were used to construct a contour plot
of the constrained log empirical likelihood. On the same computer, the program
finished in 17 seconds. EM based method could also reproduce the same plot,

6

Figure 3: contour

7

Figure 4: contour2

8

but the time spend is not evaluated as some values fails to converge within 2
minutes.

Initial value

There are known issues on some scenario when dealing with more than one
constraint. According to our simulation, automatic tuning strategy fails under
some constraints. One can always use proper initial values, and I will add
additional strategies in future work.

In current developing version, this package depends on rootSolve::multiroot,
which provides a lot of options.

Update

1. After rootSolve was updated, kmc doesn’t work on option: em.boost=T or
using.C=T. The safe option to calculate the model is

kmc.solve(x,d,g,em.boost=F,using.num=T,using.Fortran=T,using.C=F,em.it=10)
This issue is related to initial value selection problem.

2. The next version may remove the dependency on rootSolve and solution
is a trying which depends on Eigen.

3. I will delete the dependency on Rcpp as it prevent the package works on
Mac 10.6.

4. introduce a C++ port for emplik::el.cen.EM and it has been approved
in emplik package.

5. A redesigned data structure with C++ implement: nocopy_kmc_data in
src.

Bug Report

Please contact Yifan Yang (mailto:yifan.yang@uky.edu), or leave feed back on
the github page.

9

./src/common_kmc.h
http://eigen.tuxfamily.org/
./src/kmc.cpp
mailto:yifan.yang@uky.edu

	KMC
	Installation
	Examples
	One/two constraints
	Contour Plot
	Real Data Example
	Initial value
	Update
	Bug Report

