
1 LMVAR: a linear model with heteroscedastic-
ity

This vignette describes in more detail the mathematical aspects of the model
with which the lmvar package is concerned. A short description can be found
in the vignette ’Intro’ of this package.

Assume that a stochastic vector Y ∈ Rn has a multivariate normal distribu-
tion as

Y ∼ Nn(µ?,Σ?) (1)

in which µ? ∈ Rn is the expected value and Σ? ∈ Rn,n a diagonal covariance
matrix

Σ?ij =

{
0 i 6= j

(σ?i )2 i = j.
(2)

Assume that the vector of expectation values µ? is linearly dependent on the
values of the covariates in a model matrix Xµ:

µ? = Xµβ
?
µ (3)

with Xµ ∈ Rn,kµ and β?µ ∈ Rkµ .
Similarly, assume that the vector σ? = (σ?1 , . . . , σ

?
n) depends on the covariates

in a model matrix Xσ as
log σ? = Xσβ

?
σ (4)

where log σ? = (log σ?1 , . . . , log σ?n), Xσ ∈ Rn,kσ and β?σ ∈ Rkσ . The logarithm
is taken to be the ’natural logarithm’, i.e., with base e.

We assume n ≥ kµ + kσ to avoid having an overdetermined system when we
calculate estimators for β?µ and β?σ, as explained in the next section.

If we take Xσ a n × 1 matrix in which each element is equal to 1, we have
the standard linear model.

The parameter vector β?µ is defined uniquely only if Xµ is full-rank. If not,

the space Rkµ can be split into subspaces such that there is a uniquely defined β?µ
in each subspace. The way lmvar treats this is as follows. If the user-supplied
Xµ is not full-rank, lmvar removes just enough columns from the matrix to
make it full-rank. This amounts to selecting β?µ from the subspace in which all
vector elements corresponding to the removed columns, are set to zero.

In the same way, if the user-supplied Xσ is not full-rank, just enough columns
are removed to make it so. This defines a subspace in which β?σ is defined
uniquely.

In what follows we assume thatXµ andXσ are the matrices after the columns
have been removed, i.e., they are full-rank matrices. The vector elements that
are set to zero, drop out of β?µ and β?σ and the dimensions kµ and kσ are reduced
accordingly. These reduced dimensions are returned by the function dfree in
the lmvar package.
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2 Maximum-likelihood equations

A vector element Yi is distributed as

Yi ∼
1√

2πσ?i
exp

(
−1

2

(
Yi − µ?i
σ?i

)2
)
. (5)

The logarithm of the likelihood L is defined as

logL(βµ, βσ) = −n
2

log(2π)−
n∑
k=1

(log σk +
(yk − µk)2

2σ2
k

). (6)

for all vectors βµ ∈ Rkµ and βσ ∈ Rkσ and µ and σ defined as

µ = Xµβµ

log σ = Xσβσ.
(7)

We are looking for β̂µ ∈ Rkµ and β̂σ ∈ Rkσ that maximize the log-likelihood:

(β̂µ, β̂σ) = argmax
(βµ,βσ)∈Rkµ×Rkσ

logL(βµ, βσ). (8)

These maximum likelihood estimators are taken to be the estimators of β?µ and

β?σ. We assume that β̂µ and β̂σ thus defined, exist and are unique.

Given β̂σ, this is true for β̂µ. Namely, given any βσ, logL is maximized by
the βµ which is the solution of

∇βµ logL = 0 (9)

where ∇βµ stands for the gradient ( ∂
∂βµ,1

, . . . , ∂
∂βµ,n

).

This solution is
βµ =

(
XT
µ Σ−1Xµ

)−1
XT
µ Σ−1y. (10)

with Σ ∈ Rn,n defined as in (2) but with βσ arbitrary:

Σij =

{
0 i 6= j

σ2
i i = j.

(11)

Because of our assumption that Xµ is full rank, the inverse of the matrix
XT
µ Σ−1Xµ can be taken.

It is easy to see that the solution (10) represents a maximum in the log-
likelihood. The matrix Hµµ of second-order derivatives

(Hµµ)ij =
∂2 logL

∂βµi∂βµj
(12)

is given by
Hµµ = −XT

µ Σ−1Xµ, (13)
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which is negative-definite for any βσ.
Our maximization search can now be carried out in a smaller space:

β̂σ = argmax
βσ∈Rkσ

logLP (βσ) (14)

where LP is the so-called profile-likelihood

LP (βσ) = L(βµ(βσ), βσ). (15)

with βµ depending on βσ as in (10).

To find β̂σ from (14), we must solve

(∇βµ logL) (∇βσβµ) +∇βσ logL = 0 (16)

evaluated at βµ = βµ(βσ), and (∇βσβµ) the matrix

(∇βσβµ)ij =
∂βµi
∂βσj

. (17)

However, because of (9), the first term in (16) vanishes and we are left to solve

∇βσ logL = 0. (18)

The derivatives that are the elements of this gradient are given by

∂ logL
∂βσi

=

n∑
k=1

(−(Xσ)ki +
(yk − µk)2

σ2
k

(Xσ)ki)

=

n∑
k=1

(
(yk − µk)2

σ2
k

− 1)(Xσ)ki. (19)

The entire gradient can be written as a matrix-product as

∇βσ logL = XT
σ λσ (20)

with λσ a vector of length n whose elements λσi are

λσi =

(
yi − µi
σi

)2

− 1. (21)

The maximum-likelihood equations (18) take the form

XT
σ λσ = 0. (22)

The estimate µ of the expectation value that appears in λσ depends on βσ
as

µ = Xµβµ

= Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ Σ−1y

= Σ−1/2Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ Σ−1/2y (23)
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where the latter form is the more symmetric, with(
Σ−1/2

)
ij

=

0 i 6= j
1

σi
i = j.

. (24)

The vector (y − µ)/σ, which i-th element is (yi − µi)/σi, can be written as

y − µ
σ

= Σ−1/2
[
I − Σ−1/2Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ Σ−1/2

]
y (25)

in which I ∈ Rn,n is the identity matrix.

2.1 Profile-likelihood Hessian

Numerical procedures to solve the maximum-likelihood equations XT
σ λσ = 0

involve the calculation of the Hessian HP of the profile log-likelihood. HP is
the matrix of second-order derivatives of logLP :

(HP )ij =
∂2 logLP
∂βσj∂βσi

(26)

Differentiation of (19) gives for the second-order derivatives

(HP )ij = −2

n∑
k=1

(XT
σ )ik

yk − µk
σ2
k

{
∂µk
∂βσj

+ (yk − µk)(Xσ)kj

}
(27)

with ∂µk/(∂βσj) the element at row k and column j of the matrix (∇βσµ).
Given that µ = Xµβµ and βµ is given by (10), the j-th column vector of the
matrix is

∂µ

∂βσj
= Xµ

∂βµ
∂βσj

= Xµ

{
∂
(
XT
µ Σ−1Xµ

)−1
∂βσj

XT
µ Σ−1 +

(
XT
µ Σ−1Xµ

)−1
XT
µ

∂Σ−1

∂βσj

}
y

= Xµ

(
XT
µ Σ−1Xµ

)−1{−XT
µ

∂Σ−1

∂βσj
Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ Σ−1 +XT

µ

∂Σ−1

∂βσj

}
y

= Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ

∂Σ−1

∂βσj

{
−Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ Σ−1 + I

}
y

= Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ

∂Σ−1

∂βσj
(y − µ) (28)

The matrix ∂Σ−1/(∂βσj) takes the form

∂Σ−1

∂βσj
=

n∑
i=1

∂Σ−1

∂σi

∂σi
∂βσj

(29)

= −2

(Xσ)1j 0
. . .

0 (Xσ)nj

Σ−1
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The j-th column vector of the matrix is

∂µ

∂βσj
= −2Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ


y1−µ1

σ2
1

(Xσ)1j
...

yn−µn
σ2
n

(Xσ)nj

 (30)

and the element (∇βσµ)kj of the matrix (∇βσµ) is given by

∂µk
∂βσj

= −2

n∑
l=1

(
Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ

)
kl

yl − µl
σ2
l

(Xσ)lj . (31)

If we substitute this result in (27), we obtain for the element at row i and column
j of the Hessian:

(HP )ij =

4

n∑
k,l=1

(XT
σ )ik

yk − µk
σ2
k

(
Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ

)
kl

yl − µl
σ2
l

(Xσ)lj +

− 2

n∑
k=1

(XT
σ )ik

(
yk − µk
σk

)2

(Xσ)kj . (32)

We can write the Hessian as a matrix-product as

HP = XT
σ Λ1Xµ

(
XT
µ Σ−1Xµ

)−1
XT
µ Λ1Xσ +XT

σ Λ2Xσ (33)

with two n× n diagonal matrices

(Λ1)ij =

0 i 6= j

2
yi − µi
σ2
i

i = j
(Λ2)ij =


0 i 6= j

−2

(
yi − µi
σi

)2

i = j.
(34)

3 Distributions for estimators

Asymptotic theory of maximum-likelihood estimators tells that the vector of
the combined estimators (β̂µ, β̂σ) as defined in (8), is distributed approximately
as

(β̂µ, β̂σ) ∼ Nkµ+kσ
(
(β?µ, β

?
σ),Σββ

)
for n large. (35)

This distribution is valid in the limit of a large number of observations n.
The covariance matrix Σββ is given in terms of the inverse Fisher information

matrix In:

Σββ =
1

n
I−1n . (36)

The Fisher information matrix is given in terms of the expected value of the
Hessian at βµ = β?µ and βσ = β?σ:

In = − 1

n
E[H?]. (37)
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The Hessian H is the Hessian of the full log-likelihood, in contrast to the profile-
likelihood Hessian:

H? =

(
H?
µµ H?

µσ

H?
µσ
T H?

σσ

)
(38)

with the three block-matrices defined as(
H?
µµ

)
ij

=
∂2 logL

∂βµi∂βµj
,
(
H?
µσ

)
ij

=
∂2 logL

∂βµi∂βσj
, (H?

σσ)ij =
∂2 logL

∂βσi∂βσj
(39)

evaluated at βµ = β?µ and βσ = β?σ.
We have already calculated Hµµ in (13). The other block matrices are given

by

(
H?
µσ

)
ij

= −2

n∑
k=1

yk − µ?k
σ?k

2 (Xµ)ki (Xσ)kj

(H?
σσ)ij = −2

n∑
k=1

(
yk − µ?k
σ?k

)2

(Xσ)ki (Xσ)kj .

In matrix notation:

H?
µµ = −XT

µ Σ?−1Xµ, H?
µσ = −XT

µ Λ?1Xσ, H?
σσ = XT

σ Λ?2Xσ. (40)

with Λ?1 equal to Λ1 with µ = µ? and σ = σ?, and likewise for Λ?2.
When we take expected values and keep in mind that

E[Y − µ?] = 0

E[(Yi − µ?i )(Yj − µ?j )] =

{
0 i 6= j

σ?i
2 i = j

,

we arrive at

E[H?
µµ] = −XT

µ Σ?−1Xµ, E[H?
µσ] = 0, E[H?

σσ] = −2XT
σXσ (41)

This brings the expected value of the Hessian in the form

E[H?] = −
(
XT
µ Σ?−1Xµ 0

0 2XT
σXσ

)
. (42)

The function fisher in the lmvar package calculates the Fisher information ma-
trix. It estimates E[H?] by replacing the true but unknown σ? by its maximum-
likelihood estimator σ̂ in Σ?.

The expectation value (42) brings the covariance matrix Σββ in the form

Σββ =

((
XT
µ Σ?−1Xµ

)−1
0

0 1
2

(
XT
σXσ

)−1
)
. (43)
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This implies that β̂µ and β̂σ are independent stochastic variables distributed as

β̂µ ∼ Nkµ(β?µ,
(
XT
µ Σ?−1Xµ

)−1
)

β̂σ ∼ Nkσ (β?σ,
1
2

(
XT
σXσ

)−1
)

for n large. (44)

We obtain for the asymptotic distribution of the maximum-likelihood estimators
of µ? and σ?

µ̂ ∼ Nn(µ?, Xµ

(
XT
µ Σ?−1Xµ

)−1
XT
µ )

log σ̂ ∼ Nn(log σ?, 1
2Xσ

(
XT
σXσ

)−1
XT
σ )

for n large. (45)

The expectation value and the variance for an element σ̂i of σ̂ are

E[σ̂i] = σ?i exp

(
(Xσ

(
XT
σXσ

)−1
XT
σ )ii

4

)

var(σ̂i) = (E[σ̂i])
2

(
exp(

(Xσ

(
XT
σXσ

)−1
XT
σ )ii

2
)− 1

) for n large. (46)

The function fitted.lmvar (with the option log = FALSE) returns µ̂ and σ̂.
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